小型四旋翼飞行器飞行控制系统研究与设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海交通大学 硕士学位论文 小型四旋翼飞行器飞行控制系统研究与设计 姓名:刘焕晔 申请学位级别:硕士 专业:软件工程 指导教师:胡飞 20090101
小型四旋翼飞行器飞行控制系统研究与设计
小型四旋翼飞行器飞行控制系统研究与设计 摘 要
旋翼式飞行器因其起飞和降落所需空间较少,在障碍物密集环境下的操控性 较高,以及飞行器姿态保持能力较强的优点,在民用和军事领域都有广泛的应用 前景。其中,小型四旋翼飞行器的研究近年来日趋成熟,并为自动控制,先进传 感技术以及计算机科学等诸多技术领域的融合研究提供了一个平台。 在空中机器 人智能控制,三维路径规划,多飞行器空中交通管理和碰撞规避等方面,小型四 旋翼飞行器控制系统都具有很高的研究价值。 本论文对小型四旋翼飞行器的多种飞行控制算法展开研究,并通过大量的计 算机仿真加以验证。论文的主要工作和贡献如下: 1)小型四旋翼飞行器动力学建模:将四旋翼飞行器看作刚体,选取影响飞 行器运动的关键受力和力矩,之后根据牛顿定律和欧拉方程,推导出关于三个平 动位移量和三个转动位移量的动力学方程。 2) 基于经典 PID 算法的四旋翼飞行器系统的控制: 设计了一个基于经典 PID 算法的控制系统。在该系统中,将整个控制结构分为内环控制(姿态控制)和外 环控制(飞行位置控制)两个闭合环路,分别进行设计。该控制系统可使飞行器 准确飞抵目标位置,并在该位置保持盘旋状态下的稳定。 3)基于 Backstepping 方法的四旋翼飞行器系统的控制:根据四旋翼飞行器 系统的状态方程,运用 Backstepping 方法推导出使系统稳定的控制量表达式。仿 真结果显示,该控制器与基于经典 PID 算法的控制器相比,在系统响应超调, 上升时间和稳定时间三个方面均有明显改善。 4)基于 Backstepping 方法的四旋翼飞行器系统的自适应控制:在之前设计 的基于 Backstepping 方法的控制器的基础上, 设计了分别针对未知质量和外界干 扰的估计器,从而使新设计的控制器具有自适应性。仿真结果显示,该控制器在 飞行器质量阶梯式递减和存在一定形式的外界小扰动的情况下, 仍然能保持系统 的稳定,从而验证了该控制系统的鲁棒性。 纵观全文,在所建立的小型四旋翼飞行器动力学模型的基础上,本文在控制 系统的设计过程中遵循了由简单到复杂的方法论, 在前一步设计的控制系统基础 上引入新的控制算法和结构, 使飞行器最终在基于 Backstepping 方法的自适应控 制系统的控制下,表现出良好的稳定性和鲁棒性,从而为四旋翼飞行器的实际工
V
小型四旋翼飞行器飞行控制系统研究与设计
程应用提供了重要的理论基础。
关键词 四旋翼飞行器,飞行控制器,动力学模型,Backstepping 方 法,自适应控制
II
小型四旋翼飞行器飞行控制系统研究与设计
STUDY AND DESIGN OF Fቤተ መጻሕፍቲ ባይዱIGHT CONTROL SYSTEMS FOR SMALL SCALE QUADROTORS
ABSTRACT
Rotary-wing aircrafts have many military and civilian applications due to their requiring small areas for taking off and landing, great maneuverability in obstacle- heavy environment and great ability to maintain the position and orientation. The research of small scale quadrotors, one kind of rotary wing aircrafts, have gradually become mature in recent years, and also provided an important platform for investigations in such fields as the autonomous control, advanced sensor technology and computer science. Investigations on the control system of small scale quadrotor proved to be of high value in such applications as intelligent control of the aerial robot, 3D trajectory planning and the air traffic management and collision avoidance of multi aircrafts. In this paper, different kinds of flight control algorithms applying to the small scale quadrotor are presented, and a large number of simulations on these control algorithms are made. This paper demonstrates all the work we have done and the final results we have achieved which are outlined as follows: 1) Small scale quadrotor modeling: An essential point we held when we did the modeling is to treat the quadrotor as a rigid body. Those forces and moments which have significant effects on the quadrotor are selected and the dynamic equations for the three linear translations and three angular rotations are considered and deducted according to the Newton’ s law of machnics and Euler Equation. 2) The control strategy based on the classic PID method: According to the dynamic model of the small scale quadrotor, a control system based on the classic PID method is devised. The whole control system is separated into two parts, namely the inner loop control (angular rotations control) and the out loop control(translational position c ontrol), and designed each of them respectively. The simulation results showthat with this control strategy, the quadrotor can reach the target position accurately and keep its stabilization when hovering. 3) The control strategy based on the Backstepping method: A control strategy is
小型四旋翼飞行器飞行控制系统研究与设计
小型四旋翼飞行器飞行控制系统研究与设计 摘 要
旋翼式飞行器因其起飞和降落所需空间较少,在障碍物密集环境下的操控性 较高,以及飞行器姿态保持能力较强的优点,在民用和军事领域都有广泛的应用 前景。其中,小型四旋翼飞行器的研究近年来日趋成熟,并为自动控制,先进传 感技术以及计算机科学等诸多技术领域的融合研究提供了一个平台。 在空中机器 人智能控制,三维路径规划,多飞行器空中交通管理和碰撞规避等方面,小型四 旋翼飞行器控制系统都具有很高的研究价值。 本论文对小型四旋翼飞行器的多种飞行控制算法展开研究,并通过大量的计 算机仿真加以验证。论文的主要工作和贡献如下: 1)小型四旋翼飞行器动力学建模:将四旋翼飞行器看作刚体,选取影响飞 行器运动的关键受力和力矩,之后根据牛顿定律和欧拉方程,推导出关于三个平 动位移量和三个转动位移量的动力学方程。 2) 基于经典 PID 算法的四旋翼飞行器系统的控制: 设计了一个基于经典 PID 算法的控制系统。在该系统中,将整个控制结构分为内环控制(姿态控制)和外 环控制(飞行位置控制)两个闭合环路,分别进行设计。该控制系统可使飞行器 准确飞抵目标位置,并在该位置保持盘旋状态下的稳定。 3)基于 Backstepping 方法的四旋翼飞行器系统的控制:根据四旋翼飞行器 系统的状态方程,运用 Backstepping 方法推导出使系统稳定的控制量表达式。仿 真结果显示,该控制器与基于经典 PID 算法的控制器相比,在系统响应超调, 上升时间和稳定时间三个方面均有明显改善。 4)基于 Backstepping 方法的四旋翼飞行器系统的自适应控制:在之前设计 的基于 Backstepping 方法的控制器的基础上, 设计了分别针对未知质量和外界干 扰的估计器,从而使新设计的控制器具有自适应性。仿真结果显示,该控制器在 飞行器质量阶梯式递减和存在一定形式的外界小扰动的情况下, 仍然能保持系统 的稳定,从而验证了该控制系统的鲁棒性。 纵观全文,在所建立的小型四旋翼飞行器动力学模型的基础上,本文在控制 系统的设计过程中遵循了由简单到复杂的方法论, 在前一步设计的控制系统基础 上引入新的控制算法和结构, 使飞行器最终在基于 Backstepping 方法的自适应控 制系统的控制下,表现出良好的稳定性和鲁棒性,从而为四旋翼飞行器的实际工
V
小型四旋翼飞行器飞行控制系统研究与设计
程应用提供了重要的理论基础。
关键词 四旋翼飞行器,飞行控制器,动力学模型,Backstepping 方 法,自适应控制
II
小型四旋翼飞行器飞行控制系统研究与设计
STUDY AND DESIGN OF Fቤተ መጻሕፍቲ ባይዱIGHT CONTROL SYSTEMS FOR SMALL SCALE QUADROTORS
ABSTRACT
Rotary-wing aircrafts have many military and civilian applications due to their requiring small areas for taking off and landing, great maneuverability in obstacle- heavy environment and great ability to maintain the position and orientation. The research of small scale quadrotors, one kind of rotary wing aircrafts, have gradually become mature in recent years, and also provided an important platform for investigations in such fields as the autonomous control, advanced sensor technology and computer science. Investigations on the control system of small scale quadrotor proved to be of high value in such applications as intelligent control of the aerial robot, 3D trajectory planning and the air traffic management and collision avoidance of multi aircrafts. In this paper, different kinds of flight control algorithms applying to the small scale quadrotor are presented, and a large number of simulations on these control algorithms are made. This paper demonstrates all the work we have done and the final results we have achieved which are outlined as follows: 1) Small scale quadrotor modeling: An essential point we held when we did the modeling is to treat the quadrotor as a rigid body. Those forces and moments which have significant effects on the quadrotor are selected and the dynamic equations for the three linear translations and three angular rotations are considered and deducted according to the Newton’ s law of machnics and Euler Equation. 2) The control strategy based on the classic PID method: According to the dynamic model of the small scale quadrotor, a control system based on the classic PID method is devised. The whole control system is separated into two parts, namely the inner loop control (angular rotations control) and the out loop control(translational position c ontrol), and designed each of them respectively. The simulation results showthat with this control strategy, the quadrotor can reach the target position accurately and keep its stabilization when hovering. 3) The control strategy based on the Backstepping method: A control strategy is