初高中数学衔接校本教研教材

合集下载

初高中衔接补课数学教案

初高中衔接补课数学教案

初高中衔接补课数学教案
教学内容:初中数学与高中数学衔接
教学目标:
1. 了解初中数学与高中数学的衔接关系;
2. 掌握初中数学中的基础知识,为高中数学学习打下坚实基础;
3. 培养学生数学思维,提高解题能力。

教学步骤:
第一步:导入(5分钟)
通过回顾初中数学知识,引导学生对高中数学衔接有一个整体的认识。

第二步:复习初中数学基础知识(20分钟)
1. 复习初中数学中的代数、几何等基础知识,包括方程、不等式、几何图形等;
2. 强化重难点知识点,解答学生遇到的疑惑和困惑。

第三步:介绍高中数学的拓展内容(20分钟)
1. 介绍高中数学中的新知识点,包括函数、导数、积分等;
2. 分析初中数学与高中数学的衔接关系,帮助学生理解高中数学知识的重要性。

第四步:练习与讨论(30分钟)
1. 给学生布置相关练习题,让学生独立完成;
2. 学生完成后,进行讨论和解析,帮助学生理解题目背后的思想和方法。

第五步:作业布置(5分钟)
布置相关作业,让学生在课后进行复习和巩固。

教学反思:
通过本节课的教学,学生对初中数学与高中数学的衔接有了更深入的了解,同时也加深了对高中数学知识的理解和掌握。

在后续的教学中,可以继续强化学生的数学思维和解题能力,提高学生成绩。

(完整版)《新课程背景下初高中数学教学的衔接研究》课题开题报告

(完整版)《新课程背景下初高中数学教学的衔接研究》课题开题报告

开远市教育科研“小课题”《新课程背景下初高中数学教学的衔接研究》课题研究开题报告立项编号:20120661课题名称:新课程背景下初高中数学教学的衔接研究课题类别:市级一般课题研究领域:学科教学****人:***所在单位:开远市第九中学《新课程背景下初高中数学教学的衔接研究》课题开题报告一、课题名称《新课程背景下初高中数学教学的衔接研究》二、课题研究周期2012年6月—2013年9月(一年)三、课题提出的背景2009年云南省进入高中新课改,高中课程标准,教学大纲都有很大变化,数学结构、内容等都与往年有所改变,初高中脱节问题日益突出。

近几年来普通高中办学规模不断扩大,学业水平起点不同的新生涌入高中,我校作为普及高中试点学校,学生录取成绩较低,被调查对象15届高一新生,入学数学成绩最高分85,最低分6,平均分约为52.4。

初中基础较弱,大部分高一新生学习数学感觉很吃力,教师教学方面也倍感困难,不但要教授高中新知还要补充初中知识,因此研究衔接教学十分必要。

通过分析初高中学习衔接方面存在问题,主要集中在以下几点:1. 教材的变革与深化需要进行衔接教学教材是课程建设的主要载体,是课程改革的主要内容之一,每次的课程改革都体现出新的课程理念,全新的课程设计,新课程改革后使用的教材,虽然初高中教材的难度都有所降低,但与初中义务制教材相比,高中现行教材(人教A 版)有如下特点:一是容量大,高中必修课本5本,高考考察选修内容理科3本,文科2本,另外高考选作题涉及选修4系列的三本课本。

高中知识点增多、灵活性加大、课时减少、课容量增大、进度加快。

二是内容抽象,高中教材不仅有大量抽象的数学符号和数学术语,我们既要准确理解他们的意义,区别与初中教学中的差距,同时还要能够运用它们进行推理、运算,这对刚进高中抽象思维能力不强的学生来说难度不小。

三是起点高,从整个高中教材编排体系来看,要求高一学年完成必修1、2、3、4四本课本的教学,由于《函数》这一章太难,很容易让学生产生畏惧情绪,新教材又把空间立体几何安排在高一上学期,也超出了部分学生的思维水平和接受能力,造成知识脱节。

初中与高中的衔接数学教案

初中与高中的衔接数学教案

初中与高中的衔接数学教案教学目标:通过本课学习,学生将能够熟练掌握初中数学知识,为高中数学学习奠定良好基础。

教学内容:初中与高中数学知识的衔接,包括初中数学知识的复习与延伸,高中数学知识的引入。

教学重点:初中数学知识的回顾与巩固,高中数学知识的初步引入与理解。

教学难点:初中数学知识与高中数学知识的衔接,学生需要跨越知识的边界,理清逻辑关系。

教学准备:教师准备好教案、教材、多媒体设备等教学工具;学生准备好课本、笔记本和笔等学习用具。

教学步骤:1.复习初中数学知识。

教师可以通过课堂互动让学生回顾和巩固初中数学知识,如方程、函数、几何等内容。

2.引入高中数学知识。

教师可以简要介绍高中数学的内容和学习方法,让学生做好学习准备。

3.进行知识衔接。

教师可以通过案例讲解初中数学知识与高中数学知识的联系和衔接,引导学生拓展思路,加深理解。

4.分组讨论。

教师让学生小组合作讨论与解决一些涉及初中和高中数学知识的问题,培养学生的合作与解决问题的能力。

5.总结与反思。

教师带领学生总结本节课的学习内容,学生反思自己的学习收获和不足之处,并提出问题。

教学评价:通过教师的现场观察、学生的表现以及课后作业的完成情况,对学生的学习情况进行评价,并提出建议和指导。

教学反思:教师根据教学过程和学生的反馈,总结本节课的教学效果和不足之处,为下一节课的教学改进提供参考。

扩展活动:为学生提供相关拓展资料或参加数学竞赛等活动,激发学生学习兴趣,促进数学能力的提升。

教学结束语:本节课的目标是让学生理清初中数学与高中数学之间的联系,帮助学生顺利过渡到高中数学学习阶段。

希望大家在今后的学习中能够积极探索,勇攀高峰!谢谢大家的认真听讲,下节课见!。

初高中知识衔接数学教案

初高中知识衔接数学教案

初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。

教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。

教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。

教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。

教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。

第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。

第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。

第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。

第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。

第六步:作业布置(5分钟)布置相关作业,巩固所学知识。

教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。

在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。

同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。

数学初高中衔接班教案

数学初高中衔接班教案

数学初高中衔接班教案
教学目标:
1. 帮助学生顺利过渡从初中数学到高中数学的学习
2. 加强学生对基础数学知识的掌握和应用能力
3. 培养学生解决实际问题的数学思维能力
教学内容:
1. 复习初中数学的重点知识,如代数、几何、函数等
2. 引入高中数学的知识,如排列组合、概率、微积分等
3. 培养学生分析和解决问题的能力
教学过程:
1. 复习初中知识
- 通过讲解、练习和考试等方式复习初中数学知识,包括代数、几何、函数等2. 引入高中知识
- 介绍高中数学的知识点,并通过案例分析和实例演练等方式引导学生理解和掌握3. 综合训练
- 定期进行综合训练,综合初高中知识,巩固学生所学内容
4. 课外拓展
- 鼓励学生参加数学竞赛或进行相关研究,扩展数学视野
教学评估:
1. 定期进行小测验,检测学生对知识点的掌握情况
2. 每学期末进行综合考试,综合考察学生对初高中数学知识的理解和应用能力
3. 不定期进行课堂互动,了解学生的学习情况并及时调整教学方法
教学资源:
1. 教材:《数学初中教材》、《数学高中教材》
2. 参考书籍:《数学衔接教程》、《数学基础训练》等
3. 网络资源:数学学习平台、在线教学资源等
备注:
本教案仅供参考,根据学生实际情况和学校教学大纲进行适当调整,以确保教学效果和学生学习质量。

初高中衔接班数学教案

初高中衔接班数学教案

初高中衔接班数学教案
教学目标:
1. 让学生从初中数学的知识基础出发,逐步过渡到高中数学的学习内容,为顺利适应高中数学课程做好准备。

2. 帮助学生建立数学思维和解题能力,培养他们的数学学习兴趣和自信心。

教学内容:
1. 复习初中数学基础知识,包括代数、几何、函数等方面的内容。

2. 引入和探讨高中数学的一些基本概念和方法,如集合与映射、函数的基本性质、解析几何等。

3. 练习高中数学的典型题目,培养学生的解题能力和运用知识的能力。

教学过程:
1. 复习初中数学知识,通过课堂练习和作业,夯实基础。

2. 导入高中数学内容,引导学生理解新概念和方法。

3. 组织学生分组讨论,解决一些高难度数学问题,培养合作精神和解题方法。

4. 布置课外作业,巩固和拓展学生所学内容。

5. 定期组织模拟考试,检测学生学习效果。

教学资源:
1. 《新课标数学》教材及配套辅导书。

2. 数学练习册和习题集。

3. 电子教学资源和多媒体教学手段。

评价方式:
1. 经常性的小测验和作业评定,评价学生对知识的掌握情况。

2. 定期组织模拟考试,评价学生的解题能力和应试能力。

3. 考察学生在课堂讨论和小组合作中的表现情况。

教学心得:
通过组织系统的初高中衔接班数学教学,可以有效帮助学生顺利过渡到高中数学学习阶段,并且提高他们的数学学习能力和解题能力。

同时也可以培养学生的合作意识和团队精神,
为其未来的学习和发展奠定良好的基础。

初高中知识衔接教案数学

初高中知识衔接教案数学

初高中知识衔接教案数学
教学目标:
1.了解初中数学和高中数学之间的知识差距和联系
2.掌握初中数学和高中数学知识的衔接技巧
3.培养学生良好的学习习惯和数学思维能力
教学内容:
1.初中数学与高中数学的知识差距分析
2.初中数学与高中数学知识的延伸和深化
3.初中数学知识在高中数学中的应用
教学步骤:
一、导入:
1.通过谈论学生对初中数学和高中数学的认识和感受,引出本次课的主题。

二、讲解:
1.介绍初中数学和高中数学知识的差距和联系,并列举具体例子进行讲解。

2.讲解初中数学知识在高中数学中的应用和延伸。

三、练习:
1.让学生通过习题练习,感受初高中数学知识的衔接。

2.分组讨论,帮助学生找到初高中数学知识的联系和延伸。

四、巩固:
1.布置作业,让学生通过作业巩固本节课的知识点。

2.鼓励学生主动学习,培养他们对数学知识的兴趣。

五、总结:
1.回顾本节课的内容,强调初高中数学知识的衔接和延伸的重要性。

2.激励学生努力学习,提高数学水平。

教学反思:
通过本节课的教学,学生能够逐渐认识到初高中数学知识的联系和差距,同时也培养了学生对数学的兴趣和学习能力。

在未来的教学中,需要更加注重启发学生的思维能力和培养他们的解决问题的能力。

初高中课程衔接数学教案

初高中课程衔接数学教案

初高中课程衔接数学教案
主题:初高中数学课程衔接
教学目标:
1. 了解初中数学和高中数学之间的衔接关系;
2. 理解初中数学知识在高中数学中的延续和拓展;
3. 能够运用初中数学知识解决高中数学问题;
4. 提高数学解题能力和思维逻辑能力。

教学内容:
1. 初中数学与高中数学之间的关系;
2. 初中数学知识在高中数学中的应用;
3. 初高中数学知识的渐进性和深入性。

教学过程:
1. 引入:通过简单例题引导学生思考初中数学和高中数学之间的关系;
2. 概念讲解:讲解初中数学和高中数学之间的衔接关系,指导学生理解初中数学知识在高中数学中的延续和拓展;
3. 练习:设计一些练习题,让学生运用初中数学知识解决高中数学问题;
4. 深化:引导学生思考初高中数学知识的渐进性和深入性,帮助他们提高数学解题能力和思维逻辑能力;
5. 小结:总结本节课的内容,强调初高中数学课程衔接的重要性。

教学反思:
1. 教师在引入阶段要注意启发学生思考,激发学生学习兴趣;
2. 练习环节要设计多样性的题型,让学生全面理解初高中数学知识的衔接和延续;
3. 在深化环节要引导学生发散性思维,提高数学解题能力和抽象思维能力。

注:此教案范本仅供参考,具体教学过程和内容根据实际情况灵活调整。

浙教版初高中衔接数学教案

浙教版初高中衔接数学教案

浙教版初高中衔接数学教案一、教学目标:1. 熟练掌握初中数学知识,为高中数学学习打下坚实基础。

2. 熟练运用初中数学知识解决高中数学问题。

3. 提高学生对数学的兴趣和学习动力。

二、教学内容:1. 高中数学与初中数学的联系和区别。

2. 数列与函数的基本概念和性质。

3. 逻辑与集合的基础知识。

4. 几何学习方法与技巧。

三、教学重点与难点:1. 数列、函数、逻辑与集合的基本概念和性质。

2. 高中数学中的解题方法、思维模式和技巧。

3. 如何将初中数学知识应用到高中数学中。

四、教学方法:1. 讲授结合示例、实例进行,引导学生主动思考和解决问题。

2. 组织学生进行小组讨论、合作学习。

3. 利用多媒体教学资源辅助教学。

五、教学过程:1. 导入:通过复习初中数学知识,引出高中数学的相关内容。

2. 学习:介绍数列、函数、逻辑、集合的基本概念和性质,并进行相关例题讲解。

3. 引入:讲解高中数学的解题方法和思维模式,引导学生逐步应用到具体问题中。

4. 练习:组织学生进行练习,巩固所学知识。

5. 总结:对今天学习的内容进行总结,引导学生积极思考并总结方法。

六、教学反馈:1. 学生进行作业检查,及时纠正错误。

2. 学生进行课后习题训练,巩固和拓展知识。

3. 教师进行课堂评价,及时反馈学生学习情况。

七、教学资源:1. 课本、教辅资料。

2. 多媒体教学资源。

3. 互联网资源和相关学习平台。

八、教学评价:1. 学生学习态度、表现情况。

2. 学生课堂表现、作业完成情况。

3. 教学效果评价。

以上是初高中数学衔接教案范本,可以根据具体教学内容和学生情况进行调整和完善。

希望对您有所帮助。

初高中衔接课教案数学

初高中衔接课教案数学

初高中衔接课教案数学
教学内容:初高中数学知识的延伸和拓展
教学目标:通过本节课的学习,学生能够理解初中数学知识与高中数学知识之间的联系,掌握基本的数学概念和解题方法,为高中数学学习奠定良好的基础。

教学重点:初中数学知识与高中数学知识之间的联系,基本数学概念的巩固和延伸
教学难点:初中数学知识在高中数学学习中的应用
教学过程:
一、复习初中数学知识(15分钟)
1. 让学生回顾初中数学的相关知识点,包括代数、几何、概率等内容。

2. 通过简单的练习题考查学生对初中数学知识的掌握情况。

二、初高中数学知识的联系(20分钟)
1. 介绍初中数学与高中数学之间的关系和联系,引导学生思考初中知识在高中学习中的作用和重要性。

2. 通过案例分析和实例讲解,让学生理解初中数学知识在高中学习中的应用。

三、数学概念的延伸和拓展(20分钟)
1. 给学生讲解一些高中数学的基本概念和方法,如函数、导数、积分等。

2. 带领学生进行练习和讨论,巩固新学的数学概念。

四、练习与拓展(20分钟)
1. 出一些综合性的练习题,让学生运用所学知识解题。

2. 引导学生思考和讨论如何运用初中数学知识解决高中数学问题。

五、作业布置(5分钟)
布置相关作业,让学生巩固所学知识,为下节课的学习做好准备。

教学反思:通过这堂课的教学,学生能够清晰地了解初高中数学知识之间的联系,并能够运用初中知识解决高中数学问题。

同时,学生也意识到数学是一个有机整体,不同知识点之间存在内在联系,需要系统性地学习和掌握。

高中衔接教材数学教案模板

高中衔接教材数学教案模板

高中衔接教材数学教案模板
教案标题:直线方程
教学目标:
1. 知识与技能:掌握一次函数的基本概念和性质,能够准确地表示直线的方程。

2. 过程与方法:培养学生分析问题、解决问题的能力,提高学生的逻辑思维和数学建模能力。

3. 情感态度价值观:增强学生对数学学习的兴趣,培养学生对数学的自信心和求知欲。

教学重点、难点:
1. 理解一次函数的定义和性质。

2. 掌握直线的方程表示方法。

教学准备:
1. 教材:高中数学教材。

2. 教具:黑板、彩色粉笔、投影仪等。

教学过程:
一、导入(5分钟)
通过引入一道与直线相关的实际问题,激发学生的学习兴趣,引出直线方程的话题。

二、讲解一次函数的定义和性质(15分钟)
1. 介绍一次函数的概念和表达式。

2. 讲解一次函数的性质和图像特点。

三、讲解直线的方程表示方法(20分钟)
1. 推导直线的一般方程形式。

2. 通过实例演示如何通过给定的两点确定直线的方程。

四、练习与讨论(15分钟)
1. 让学生做一些相关练习,巩固所学知识。

2. 让学生在小组内讨论,分享解题思路。

五、拓展应用(10分钟)
以实际问题为背景,引导学生学会将数学知识运用到解决实际问题中。

六、作业布置(5分钟)
布置相关作业,让学生复习巩固所学内容。

教学反思:
通过本节课的教学,学生对一次函数和直线的方程有了更深入的理解,提高了解决相关问题的能力。

在教学过程中,也发现了一些学生对概念理解不够清晰的问题,需要在以后的教学中加强相关知识点的讲解和引导。

初中高中衔接课数学教案

初中高中衔接课数学教案

初中高中衔接课数学教案
教学目标:
1. 了解初中数学和高中数学之间的联系和延伸。

2. 掌握基本的高中数学概念和方法。

3. 提高解决问题的能力和思维逻辑。

教学内容:
本课程主要包括以下内容:
1. 高中数学基本概念和方法。

2. 初中数学和高中数学的延伸联系。

3. 解题方法和策略。

教学步骤:
一、导入
1. 通过讨论初中数学和高中数学的异同点,引导学生思考数学知识的延伸和发展。

2. 提出本节课的学习目标和重点。

二、讲解
1. 介绍高中数学的基本概念和方法,如函数、导数、积分等。

2. 分析初中数学和高中数学之间的联系和延伸,引导学生理解并掌握新的数学知识。

三、练习
1. 给学生提供一些高中数学的练习题,让他们尝试应用新知识解决问题。

2. 引导学生讨论解题方法和策略,培养他们的思维能力和逻辑推理能力。

四、总结
1. 结合本节课的内容,总结初中高中数学的衔接和延伸关系。

2. 引导学生思考数学学习的重要性和方法,鼓励他们持续提高自己的数学能力。

五、作业布置
布置相关练习题和思考题,巩固本节课的内容并扩展学生的数学思维。

教学反思:
通过本节课的教学,学生可以更好地理解初中高中数学之间的联系和延伸关系,提高解题能力和思维逻辑。

同时,也可以帮助学生明确数学学习的重要性和方法,激发他们对数学学习的兴趣和热情。

希望学生能够认真学习,勇于思考,不断提高自己的数学水平。

数学高一初高中衔接课教案

数学高一初高中衔接课教案

数学高一初高中衔接课教案
学科:数学
年级:高一
时间:1课时
教学目标:学生能够了解初中数学和高中数学的衔接关系,理解高中数学的学习内容与初中数学的基础知识之间的联系。

教学重点:初中数学和高中数学的衔接点和基础知识的巩固。

教学难点:高中数学的学习内容与初中数学的基础知识之间的联系。

教学内容及过程安排:
一、引入(5分钟)
通过举例引导学生思考,初中数学中哪些知识点是高中数学的基础,如何进行衔接。

二、解决问题(15分钟)
1. 初中数学和高中数学的主要区别和联系是什么?
2. 举例说明高中数学的学习内容与初中数学的基础知识之间的联系。

三、拓展应用(20分钟)
1. 要怎样巩固初中数学的基础知识,才能更好地学习高中数学?
2. 为什么高中数学的学习如此重要?
四、总结(10分钟)
让学生总结本节课的学习内容,为今后的学习做好铺垫。

五、作业布置(5分钟)
布置相关作业,巩固本节课所学内容。

教学安排:板书、讲解、示范、练习
教学手段:教师讲解、学生讨论、小组合作、互动答疑
教学后记:通过本节课的学习,使学生初步了解初中数学和高中数学的衔接关系,为将来的学习打下基础。

高中教科研课题:《初高中教学衔接》课题研究方案

高中教科研课题:《初高中教学衔接》课题研究方案

教师课题申报\高中教师课题申报《初高中教学衔接》课题研究方案一、课题提出的背景1.贯彻《国家中长期教育改革和发展纲要》和落实国家新课程改革的背景按照我国202X年“进入人力资源强国”的战略目标,《国家中长期教育改革和发展纲要》对基础教育课程建设、提高教育质量提出了重要任务。

明确要求“调整教材内容、科学设计课程难度”,“深入研究、确定不同教育阶段学生必须掌握的核心内容”。

202X年、202X年先后启动义务教育、高中课程改革,进一步指明了基础教育改革、发展的目标方向。

结合我市教育教学实际以及高考模式和走向,及时做好初高中教学衔接工作尤其紧迫和必要。

2.我市初高中教学的现实背景202X年,我市进入义务教育课程改革以后,教学方式发生了巨大变化,教学质量明显提高(近年来学生的中考成绩大幅度提高就是很好的印证)。

可初中毕业生升入高中后,他们却普遍表现出对高中教学的不同程度的不适应现象,对高中学习感觉力不从心,成绩下滑,于是茫然失措,丧失了新阶段学习的信心和兴趣。

教师则产生了对初中教学的怀疑,互相埋怨、指责,带来许多负面影响。

尽管新课程改革实施已多年,义务教育阶段的课标也在全国范围内的广泛应用,可是初高中教学相对独立,各自独立完成自己的教学任务,大部分教师对初中学生及其学情缺乏了解,以至于初高中教学部分内容出现脱节,初高中教学在学生的学法上、教材的使用上、教师的教法上还存在很多不同,造成课程改革实施中教学行为的盲目性。

如何改善高中学生学习困难的问题,使学生尽快的适应高中教学;高中教师怎样做好教学的衔接,是我们当前迫切需要解决的问题。

二、课题的概念界定及目的意义1.课题的概念。

“教学衔接”是教师根据学生的认知结构,依据新教材的内容、思想和方法所生成的易于学生同化的特定教学环节。

“初高中教学衔接”不但是指知识上的衔接,还有能力上的衔接,更是学习机制上的衔接。

因此,“初高中教学衔接”,是以学生原有的认知结构为基础,将学生的认知结构重新建立、扩大和重新组织,使新知识被纳入原有的认知结构,形成新的认知结构。

初高中数学衔接教程教案

初高中数学衔接教程教案

初高中数学衔接教程教案
教学目标:
1. 了解初中数学与高中数学的主要差异和联系;
2. 掌握初中数学与高中数学的衔接知识;
3. 提高学生解决数学问题的能力。

教学重点:
1. 初中数学与高中数学的主要差异;
2. 初中数学与高中数学的衔接知识。

教学难点:
1. 如何理解初中数学与高中数学的联系;
2. 如何灵活运用初中数学知识解决高中数学问题。

教学内容:
1. 初中数学与高中数学的主要差异;
2. 线性方程组在初中与高中的应用;
3. 平面向量在初中与高中的应用;
4. 一元二次方程及其应用。

教学过程:
1. 导入环节:导入初中数学知识,引出高中数学衔接;
2. 理论讲解:讲解初中数学与高中数学的主要差异,以及线性方程组、平面向量、一元二次方程的相关概念;
3. 实例演练:通过实例演练,帮助学生理解初中数学与高中数学的联系;
4. 课堂练习:让学生独立解答一些相关问题,巩固所学知识;
5. 提高拓展:让学生尝试解决一些较为复杂的问题,提高解决问题的能力;
6. 总结回顾:总结本节课学习内容,强化学生对初高中数学衔接知识的理解。

教学反思:
通过本节课的教学内容,学生应该能够逐步理解初中数学与高中数学的联系,并能够将初中数学知识灵活运用到高中数学问题中去。

教师应该根据学生实际情况灵活调整教学内容和方法,帮助学生更好地掌握数学知识。

初高中数学衔接研究报告

初高中数学衔接研究报告

初高中数学衔接教学的实验与研究研究报告平舆县第一高级中学“初高中数学衔接教学的实验与研究”课题组执笔人:韩雨濛摘要:国家教委在八十年代对初中数学教学要求和内容的调整,较大地降低了有关知识的要求,造成了初、高中数学教学的较为严重的脱节。

从高一数学老师的现状看:各校大部分是教学不足5年的青年教师,有学历,有热情,但对高一数学教材不熟悉,对初中数学教材知之更少,他们急需要有一个学习、了解初高中数学数学教材的衔接与初高中教学的差异,以便于更好的组织教学,使学生更快适应高中、一、问题的提出1.学生升入高中学习之后,无论选择理科或者文科的学习,数学课程都是必须继续学习的课程之一。

初高中数学教学内容上有很强的延续性,初中数学是高中数学学习的基础,高中数学是建立在初中数学基础上的延续与发展,在教学内容上、思想方法上,均密切相关。

因此,从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中刚开始阶段强化初高中衔接点的教学,为学生进一步深造打下基础,是高中数学教学必须研究的重要课题。

2.初高中数学教学衔接研究,主要从初高中数学教学内容、基本的数学思想方法、新课程标准对数学教学的要求,试图找出初高中数学教学衔接的相关关键点,从而为高中数学教学提出有用的建议,让高一学生尽快适应高中数学,从而进行有效的学习。

3.近年来初高中数学教学衔接作为“初高中教学衔接”这一宏观课题,在很多地方被人们提及,一些教育科研部门也作过尝试,试图寻找其间的规律与共性,但大多是从教学内容上进行简单地分类研究,也没有作为专项课题进行研究。

因为这一课题将直接影响学生高中数学学习的效果,因此有进行全面研究的重要价值。

二、选题目的与意义1.找出初高中数学教学衔接的相关关键点,从而为高中数学教学提出有用的建议,为学生适应高中数学学习进行有效地定位。

2.从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中初期阶段强化初高中衔接点的教学,为学生进一步深造打下基础。

初高中数学衔接课教案

初高中数学衔接课教案

初高中数学衔接课教案
课时安排:2课时
教学目标:
1. 让学生了解初中数学和高中数学之间的差异和联系。

2. 帮助学生适应高中数学的学习环境和方法。

3. 引导学生学会合理规划高中数学学习,做好过渡准备。

教学内容:
1. 初高中数学的不同之处:课程设置、内容难度、学习方法等。

2. 高中数学的特点:理论性强、抽象性高、整体性强等。

3. 高中数学的学习方法:理解、记忆、应用等。

教学步骤:
第一课时
1. 导入:通过对比初中和高中数学的不同之处引起学生的兴趣。

2. 概念讲解:介绍高中数学的特点和学习方法。

3. 分组讨论:让学生分组讨论初中数学和高中数学的学习方法有何不同,并总结出高中数学需要注意的事项。

4. 知识巩固:布置学生带来初中数学习题,让他们总结初中数学学习方法特点。

第二课时
1. 复习:回顾上节课的内容,检查学生对初高中数学差异的理解。

2. 练习:分析几道高中数学试题,让学生尝试解答,并引导他们使用合适的学习方法。

3. 总结:让学生总结出高中数学学习的关键是什么,如何有效提高学习效率。

4. 课堂互动:鼓励学生提出问题和分享学习心得,教师做适当点评和引导。

教学反思:
本节课为初高中数学衔接课,通过对比和讲解引导学生了解高中数学的特点和学习方法,帮助他们顺利过渡到高中数学学习。

在教学中要注重理论和实践相结合,激发学生的学习兴趣和动力,引导他们掌握高中数学学习方法,提高学习效率。

高一数学初高中衔接教案

高一数学初高中衔接教案

高一数学初高中衔接教案
教学目标:
1.了解初中数学和高中数学的学科关系以及学习内容的延续和拓展;
2.理解高中数学学习的重要性以及与日常生活和未来发展的关系;
3.培养学生对数学学习的兴趣和自信心,激发学生学习数学的积极性。

教学重点:
1.初高中数学知识的延续和拓展;
2.高中数学学习的重要性及意义。

教学难点:
1.初高中数学知识的融合和应用;
2.高中数学学习的挑战和提升。

教学内容:
1.初中数学知识回顾:代数、几何、函数、立体几何等;
2.高中数学学习介绍:微积分、线性代数、数学分析等;
3.数学学习的方法和技巧:思维导图、公式推导、问题解决等。

教学过程:
1.初中数学知识回顾:对代数、几何、函数、立体几何等知识进行系统回顾和总结,强化基础知识;
2.高中数学学习介绍:介绍微积分、线性代数、数学分析等高中数学学习内容,激发学生学习兴趣;
3.数学学习的方法和技巧:介绍思维导图、公式推导、问题解决等数学学习方法和技巧,帮助学生提高学习效率。

教学反思:
通过本节课的教学,学生对初高中数学知识的延续和高中数学学习的重要性有了更深入的了解,也培养了学生对数学学习的兴趣和自信心。

下一步,可以通过更多的案例分析和实践操作,帮助学生更好地掌握数学知识和方法,提升数学学习的效果和成就感。

初高中数学衔接课教案模板

初高中数学衔接课教案模板

初高中数学衔接课教案模板课程名称:初高中数学衔接课教学目标:1. 理解和掌握初中数学和高中数学的知识衔接关系;2. 帮助学生顺利过渡到高中数学学习;3. 提高学生的数学思维能力和解题能力。

教学内容:1. 初中数学和高中数学的知识比较;2. 初高中数学知识衔接的例题分析;3. 解答学生对初高中数学衔接问题的疑惑。

教学重点:1. 理解初中数学和高中数学的知识衔接关系;2. 掌握初高中数学知识衔接的方法和技巧。

教学难点:1. 解答学生对初高中数学衔接问题的疑惑;2. 帮助学生理清初高中数学知识的逻辑关系。

教学方法:1. 讲授法:介绍初高中数学知识衔接的基本概念和方法;2. 案例分析法:通过具体例题分析讲解初高中数学知识衔接的实际操作。

教学过程:1. 引入:通过引入一道初中数学题目,引发学生对初高中数学衔接问题的思考;2. 理论讲解:介绍初高中数学知识衔接的基本概念和原则;3. 案例分析:通过几道例题演示初高中数学知识衔接的具体操作方法;4. 互动讨论:开展学生讨论和问题解答环节,帮助学生理清初高中数学知识的逻辑关系;5. 梳理总结:总结本节课的主要内容,强化学生对初高中数学衔接知识的掌握。

教学资源:1. 教材《初中数学》和《高中数学》;2. 课件PPT和教案资料。

教学评价:1. 板书和课堂表现;2. 课后作业和练习;3. 学生提问和互动参与情况。

教学反思:1. 教学目标是否达到;2. 学生学习情况和反馈;3. 教学方法和教学资源是否适用。

教学延伸:1. 给予学生更多的练习题目,巩固和加深对初高中数学衔接知识的理解;2. 引导学生自主探索和应用初高中数学知识衔接的方法和技巧。

初高中衔接教案数学

初高中衔接教案数学

初高中衔接教案数学
教学目标:通过本节课的学习,学生能够掌握初中数学与高中数学的衔接知识,做到知识的平稳过渡,为高中数学学习打下良好的基础。

教学重点:初中数学与高中数学的衔接
教学难点:高中数学概念的深化理解
教学准备:教材、课件、板书
教学过程:
一、导入(5分钟)
老师通过精心设计的导入问题引起学生的兴趣,激发学生对数学学习的热情,并引出本节课的主题。

二、讲解初高中数学衔接的重要性(10分钟)
老师通过简单的例子和解释,说明初中数学与高中数学的衔接对学生数学学习的重要性,为学生的学习之路做好铺垫。

三、讲解初高中数学衔接知识点(20分钟)
老师系统讲解初中数学与高中数学衔接的一些重要知识点,比如函数、方程、不等式等概念的延伸拓展,帮助学生理解初中数学和高中数学之间的联系和衔接。

四、练习与讨论(15分钟)
老师设计一些练习题,让学生进行思考和讨论,纠正学生可能存在的错误或困惑,巩固所学知识。

五、梳理知识点(5分钟)
老师对本节课的知识点进行梳理总结,帮助学生理清思路,加深对知识点的理解。

六、作业布置(5分钟)
老师布置相应的作业,要求学生在家中对本节课所学知识进行复习和巩固。

七、课堂小结(5分钟)
老师对本节课的教学内容进行简要总结,引导学生对所学知识点进行反思和总结。

教学反思:
通过本节课的学习,学生对初中数学与高中数学的衔接有了初步的了解,并掌握了一些重要的知识点。

但需要注意的是,教师在课堂上应注重引导学生主动学习,激发学生的学习兴趣,培养学生的自主学习能力,使学生能够更好地适应高中数学学习的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学衔接校本教研教材目录引入乘法公式第一讲因式分解1.1 提取公因式1.2. 公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于x的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c ac ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b+=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

(2)=+-652x x __________________________________________________。

(3)=++652x x __________________________________________________。

(4)=--652x x __________________________________________________。

(5)()=++-a x a x 12__________________________________________________。

(6)=+-18112x x __________________________________________________。

(7)=++2762x x __________________________________________________。

(8)=+-91242m m __________________________________________________。

(9)=-+2675x x __________________________________________________。

(10)=-+22612y xy x __________________________________________________。

2、()() 3 42++=+-x x x x-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4 -1 1x y图1.1-53、若()()422-+=++x x b ax x 则 =a , =b 。

二、选择题:(每小题四个答案中只有一个是正确的) 1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x (5)44152++x x 中,有相同因式的是( ) A 、只有(1)(2) B 、只有(3)(4) C 、只有(3)(5) D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( ) A 、()()3 11-+a a B 、()()b a b a 3 11-+ C 、()()b a b a 3 11-- D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分解因式得( ) A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B 、3± C 、9± D 、3±或9± 三、把下列各式分解因式1、()()3211262+---p q q p 2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1) ()()b a b a -+-552 (2)32933x x x +++ 解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++ 课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________。

2、()()()∙-=-+-y x x y n y x m __________________。

3、()()()∙-=-+-222y x x y n y x m ____________________。

4、()()()∙--=-++--z y x x z y n z y x m _____________________。

5、()()∙--=++---z y x z y x z y x m ______________________。

6、523623913x b a x ab --分解因式得_____________________。

7.计算99992+=二、判断题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( ) 4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3 分解因式: (1)164+-a (2)()()2223y x y x --+ 解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2) ()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________。

二、判断题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x ………………………… ( )2、()()()()b a b a b a b a 43 4343892222-+=-=- ………………………………… ( ) 3、()()b a b a b a 45 4516252-+=-………………………………………………… ( ) 4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( ) 五、把下列各式分解1、()()229n m n m ++-- 2、3132-x3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-. 2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).第二讲 函数与方程2.1 一元二次方程2.1.1根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根(1)0322=-+x x (2) 0122=++x x (3) 0322=++x x }我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2ba;(3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根,.(3)由于该方程的根的判别式为Δ=a2-4×1×(a-1)=a2-4a+4=(a-2)2,所以,①当a=2时,Δ=0,所以方程有两个相等的实数根x1=x2=1;②当a≠2时,Δ>0,所以方程有两个不相等的实数根x1=1,x2=a-1.(3)由于该方程的根的判别式为Δ=22-4×1×a=4-4a=4(1-a),所以①当Δ>0,即4(1-a) >0,即a<1时,方程有两个不相等的实数根111x a=-211x a=-②当Δ=0,即a=1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a>1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -=,22b x a -=,则有1222b b b bx x a a-+--+=+==-;221222(4)444b b ac ac cx x a a a--====.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=ba-,x 1·x 2=ca.这一关系也被称为韦达定理. 特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35.所以,方程的另一个根为-35,k 的值为-7.解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35.由 (-35)+2=-5k,得 k =-7.所以,方程的另一个根为-35,k的值为-7.例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x(4-x)=-12,即x2-4x-12=0,∴x1=-2,x2=6.∴112, 6,x y =-⎧⎨=⎩或226,2.xy=⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x-12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-. (1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯- =254+6=494, ∴| x 1-x 2|=72. (2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-. (3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x=,2x =, ∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a 中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ②由①得 a <4,由②得 a <174 .∴a 的取值范围是a <4.练 习1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14(C )m <14,且m ≠0 (D )m >-14,且m ≠0 2.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 .(3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2(2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )02.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求:(1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9(2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32 (3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c =0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = .3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12x x λ=,试求λ的值. 4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2.5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图象和性质{情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3) 322-+=x x y 教师可采用计算机绘图软件辅助教学}问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.的x 2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论: 二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x+1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.图2.2-2 图2.2-1类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a +224b a)+c -24b a 224()24b b ac a x a a -=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a-时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =244ac b a-. (2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a-时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a-. 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.图2.2-3 图2.2-4例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交点为D (0,1),过这五点画出图象(如图2-5所示). 说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.函数y =ax 2+bx +c 图象作图要领:(1) 确定开口方向:由二次项系数a 决定(2) 确定对称轴:对称轴方程为ab x 2-= (3) 确定图象与x 轴的交点情况,①若△>0则与x 轴有两个交点,可由方程x 2+bx +c=0求出②①若△=0则与x 轴有一个交点,可由方程x 2+bx +c=0求出③①若△<0则与x 轴有无交点。

相关文档
最新文档