平面问题的有限元方法-8.6作业-集中力-平面问题

合集下载

弹性力学—第六章—用有限单元法解平面问题

弹性力学—第六章—用有限单元法解平面问题
- 在整体刚度矩阵中引入边界条件
1
需求解的结点还剩:
2
I III IV II 4 5 3
因此关于这六个零分量的六个平衡方程不 用建立,须将整体刚度矩阵的第1,3,7, 8,10,12以及同序列的各列去掉。最后 得到:
6
结构整体分析(10)
- 结点载荷
j
I II IV
1N/m
i
III i
m
1
I
m
j
2
例如,设单元 ij 边上受有x方向上的均布面力q,试求等效 结点载荷
载荷向结点移臵(7)
结构整体分析(1)
对于每个单元,我们已经知道了如何计算单元的劲度矩 阵以及载荷列阵:
结构整体分析(2)
根据虚功原理,我们也推导了结点力与结点位移的关系:
对于 i 点, 一个单元上的结点力为:
i 点的力平衡要求围绕 i 点的各单元产生的结点力与各单 元分配到 i 点的结点载荷相等。
3
6
结构整体分析(15)
1. 有限元法的求解步骤: 2. 划分有限元, 3. 利用已知的结点坐标以及结构的物理特性写出单元劲度 矩阵, 4. 利用整体编码与局部编码的关系写出整体刚度矩阵以及 力列阵, 5. 在整体刚度矩阵以及力列阵中将对应于零位移的行与列 划去,得到引入边界条件后的平衡方程组。 6. 求解平衡方程组,得到结点位移,并由此分析应力分布。
有限单元法的单元划分(2)

当结构具有凹槽或孔洞时,为了正确地描述应力集中效 应,必须把该处的网格画得很密。

当计算容量不允许时,可以分两次计算。第一次计算时, 将需要细化网格的目标区域的网格画得稀疏一点,甚至 和其他区域的网格大致相同,第二次计算时,将需要细 化的部分区域(区域边界上的结点位移是第一次计算后 的已知值)取出,利用第一次计算的计算结果,就可以 计算分析网格很密的目标区域了。

有限元分析——平面问题

有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1

有限单元法 第3章 弹性力学平面问题的有限元分析

有限单元法 第3章 弹性力学平面问题的有限元分析
# ! , ) ’ 0 ! # , %’ " $ # #1 ! #1 ! , , $ * ( 将应力矩阵表示为分块矩阵的形式 $ 有 %
图! ""! 桁架结构的有限元模型
在有限元法中 ! 把单元与 单 元 之 间 设 置 的 相 互 连 接 点 ! 称 为 结 点 # 如图! " " #%! " $$ 一般用号码 #!$!& 进行结 点 编 号 " 结 点 可 为 铰 结 % 固 接 或 其 他 形 式 的 连 接 " 结 点 的 设 置 % 性质及数 目 等 均 视 所 研 究 问 题 的 性 质 % 描 绘 变 形 状 态 的 需 要 和 计 算 精 度 的 要 求 等 而定 " 在有限元法中引进结点概念是至关重要的 " 有了结点 ! 才可将实际连续体看成是仅在 结点处相互连接的单元集合组成的离散型结构 ! 从而可使研究的对象转化成可以使用电子 计算机计算的数学模型 " 由单元 % 结点 % 结点连线构成的集合称为有限元模型 " 它是有限 元分析与计算的对象 "
性和连续性的要求 # 为了使位移模式尽可能地反映物体中的真实位移形态 " 它应满足下列 条件 ’ &位移模式必须能反映单元的刚体位移 # % # % &位移模式必须能反映单元的常量应变 # $ % &位移模式应尽可能地反映位移的连续性 # ! 由于有限元模型中单元之 间 仅 通 过 结 点 连 接 # 但 实 际 上 " 两 个 相 邻 的 单 元 在 整 个 交 界处 % 包括结点 & 都是相互连接 ( 相互作用的 " 所以在有限元分析中 " 选择位移模式时除 了要求单元之间在结点处有共同的结点位移值外 " 还应尽可能反映在单元之间公共交界处 的变形协调 #

结构力学第六章平面应力问题的有限单元法

结构力学第六章平面应力问题的有限单元法

结构力学第六章平面应力问题的有限单元法引言平面应力问题是结构力学中的重要内容之一。

为了求解这类问题,目前广泛应用的方法之一是有限元方法。

有限元方法通过将复杂的问题离散为多个简单的有限元单元,在每个单元上进行计算,最后得到整个问题的近似解。

本文将介绍平面应力问题的有限单元法的基本原理,并讨论其在结构力学中的应用。

有限单元法概述有限单元法是一种通过将连续问题离散为有限数量的简单单元,再通过求解这些单元的位移和应力来近似求解原始问题的方法。

在平面应力问题中,我们通常将结构物在平面上分割为多个有限单元,并在每个单元上进行力学分析。

有限单元法的基本思想是,先在每个单元上假设位移场的近似形式,然后将位移场的近似形式与力学原理相结合,得到每个单元上的平衡方程。

通过求解这些平衡方程,我们可以得到每个单元上的位移场和应力场。

在有限元分析中,我们通常选择线性三角形单元或矩形单元作为平面应力问题的有限单元。

这些单元通常具有简单的几何形状和计算形式,便于计算机求解。

平面应力问题的有限单元法步骤平面应力问题的有限单元法通常包括以下几个步骤:1.离散化 - 将结构物划分为多个有限单元。

在平面应力问题中,我们通常选择三角形或矩形作为单元。

2.选取近似函数 - 在每个单元上选择位移场的近似函数形式,通常选择多项式形式。

3.建立单元刚度矩阵 - 通过应用平衡方程和力学原理,建立每个单元上的刚度矩阵。

4.组装总刚度矩阵 - 将所有单元的刚度矩阵组装成总刚度矩阵。

要注意,由于每个单元的自由度不同,需要将刚度矩阵根据单元的连接关系进行组装。

5.施加边界条件 - 根据实际情况,对总刚度矩阵和载荷向量进行修正,将边界条件考虑在内。

6.求解位移场 - 通过求解线性代数方程组,得到每个单元上的位移场。

7.计算应力场 - 根据位移场,计算每个单元上的应力场。

应用案例为了进一步说明平面应力问题的有限单元法的应用,以下是一个简单的应用案例。

假设有一块矩形薄板,长为L,宽为W。

有限元分析 第二章 平面问题的有限元方法

有限元分析 第二章 平面问题的有限元方法
当采用有限元方法求解时,第一步是将平板离散成有 限个小单元。
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6

有限元平面问题

有限元平面问题

[]()1,2111121=∴---++==i i i jk i j k i i k k j j i kkj j i i y x N y x y x y x y x y x y x y x y x y x A即:()()()1,,,===k k k j j j i i i y x N y x N y x N (由i,j,k 轮换性知) 同理可证:()()0,,==k k i j j i y x N y x N (作业:证明:()()k j i j i y x N j j i ,,0,=≠=)因此()()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧===⎩⎨⎧≠===⇒======1,,0,,0,,1,00,,1,,0,0,,0,,1,k k k j j k ii k jii k k j j j j i i j k k i j j i i i i y x N y x N y x N j i j i j N y x N y x N y x N y x N y x N y x N δ (2-12)即形函数在自己节点上为1,在其余节点上为0。

2. 在单元上任意一点,三个形函数之和为1,即()()()1,,,=++y x N y x N y x N k j i 。

证明:()()()()()()()[]y c c c x b b b a a a Ay c x b a y c x b a y c x b a Ay x N y x N y x N k j i k j i k j i k k k j j j i i i k j i ++++++++=++++++++=++2121,,,⎪⎩⎪⎨⎧-=-=-=j i k i k j k j i y y b y y b y y b ⎪⎩⎪⎨⎧-=-=-=ij k k i j j k i x x c x x c x x c ()()()()()()()()()()()()1,,,002=++∴=-+-+-=++=-+-+-=++=-+-+-=++y x N y x N y x N x x x x x x c c c y y y y y y b b b A y x y x y x y x y x y x a a a k j i i j k i j k k j i j i i k k j k j i i j j i k i j k j k k j k j i (2-13)由此可见,三个形函数中只有2个是独立的,即第三个可由其余两个表示。

第6章 用有限元法解平面问题

第6章  用有限元法解平面问题

20世纪50年代,平面问题的FEM建立,并应用 于工程问题。
1960年提出了FEM的名称。 20世纪60年代后,FEM应用于各种力学问题和 非线性问题,并得到迅速发展。
• 1970年后,FEM被引入我国,并很快地得到应用 • 和发展。
导出方法
4. FEM的主要导出方法
应用静力方法或变分方法导出。
5.本章介绍平面问题的FEM 仅叙述按位移求解的方法。 且一般都以平面应力问题来表示。
2. FEM的特点
(1)具有通用性和灵活性。
简史
(2)对同一类问题,可以编制出通用程序, 应用计算机进行计算。 (3)只要适当加密网格,就可以达到工程 要求的精度。
3. FEM简史
FEM是上世纪中期才出现,并得到迅速发展 和广泛应用的一种数值解法。 1943年柯朗第一次提出了FEM的概念。
简史
1956年,特纳等人提出了FEM。
d Νδ 。
e
求解方法
• (2)应用几何方程,由单元的位移函数d, e • 求出单元的应变,表示为 ε Bδ 。
(3)应用物理方程,由单元的应变 ε , 求出单元的应力,表示为 σ S δ e。 (4)应用虚功方程,由单元的应力 求出单元的结点力,表示为
σ

F ( Fi F j Fm kδ 。
§6-1
基本量和基本方程的 矩阵表示
采用矩阵表示,可使公式统一、简洁, 且便于编制程序。 本章无特别指明,均表示为平面应力 问题的公式。
基本物理量
基本物理量: 体力: f ( f x 面力: f ( f x
f y )T 。
fy) 。
T
T
T
位移函数: d (u ( x, y ) , v ( x, y )) 。 应变: ε ( ε x ε y γ xy ) 。 应力:

第二讲平面问题有限元课件

第二讲平面问题有限元课件

➢ 该平板的总位能表达式可写成
3
p
e p
e1
3 e1
1 aeTK eae 2
3
a eT Pfe
e1
3
a eT Pse
e1
3 1 a eT K e a e 3 a eT P e
e1 2
e1
1 a1T K 1a1 a 2T K 2a 2 a3T K 3a3 a1T P1 a 2T P 2 a3T P3 2
v
1 2
ai
bix ci yvi
aj
bj x cj y
vj
ak
bk x ck yvk
式中:
ai
xj xk
yj , yk
1
bi
1
yj , yk
1 ci 1
xj xk
ai a j ak
11 1
bi b j bk
xi x j xk
ci c j ck
yi y j yk
形函数
Ni
1 2
ai
bi
x
ci
y
(i, j,k)
u Niui N ju j Nkuk Niui v Nivi N jv j Nkvk Nivi
d
u v
Ni I
NjI
Nk I e Ne
I 二阶单位阵,[N] 形函数矩阵
形函数的性质
1. 形函数 N(i xi , yi ) 1 N(i x j , y j ) 0 j i
序号为下标,以所属单元序号为上标;
T
P1 p11x p11y p12 x p12 y p13x p13 y
T
P2
p
2 1x
p
2 1

第2章 弹性力学平面问题有限单元法(1-3节)

第2章 弹性力学平面问题有限单元法(1-3节)

第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

有限元分析与应用 第4讲、平面问题有限元法

有限元分析与应用 第4讲、平面问题有限元法

Ni + N j + Nm = 1
上式表明了插值函数的刚体位移特性,因为若单元发生刚 体位移,如x方向有刚体位移Uo,则单元内及结点上处处应有位 移Uo,即,Ui=Uj=Um=Uo,
由式(c)有
u = Niui + N j u j + N mum = (Ni + N j + N m )u0 = u0
图2 形函数的函数图
图3 3结点三角形单元面积比计算示意图
4、如图3所示,形函数为单元内P点与对边围成的面积与三角形 面积之比,即
Ni =
APjm Aijm
APij APmi ,Nj = , Nm = Aijm Aijm
用面积比Li(Li =Ni )表示,同理可有Lj、Lm。面积比Li, Lj, Lm可以确定单元内任意一点的位置,P(x,y)可以写成 P( Li, Lj, Lm ),因此称为面积坐标,对于构造三角形单元 的形函数非常方便。 Li, Lj, Lm只有两个是独立的,有Li+Lj+ Lm=1。
(b)
1 (aiui + a j u j + amum ) 2∆ 1 (biui + b j u j + bmum ) β2 = 2∆ 1 (ciui + c j u j + cmum ) β3 = 2∆ 1 (aiυi + a jυ j + amυm ) β4 = 2∆ 1 (biυi + b jυ j + bmυm ) β5 = 2∆ 1 (ciυi + c jυ j + cmυm ) β6 = 2∆
其中,[N]称为形函数矩阵.
位移插值函数(形函数)性质
1、在结点上的插值函数值为: 0 i ≠ j N i (x j , y j ) = δ ij = 1 i = j 即 N i ( x i , y i ) = 1, N i (x j , y j ) = N i ( x m , y m ) = 0 换句话说,结点的形函数值在自身结点上为1,而在其他结点上 为0。其他两个形函数也具有同样的性质。 2、在单元中任一点的插值函数之和等于1,即

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)
其中,
Ni (ai bi x ci y) / 2A。 (i, j, m)
第六章 用有限单元法解平面问题
应变
应用几何方程,求出单元的应变列阵 :
ε ( u v v u )T x y x y
ui
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
--单元对结点的 作用力,与 Fi 数值 相同,方向相反,作 用于结点。
Fiy vi
Fix i
ui
Fiy
y v j Fjy i
Fix
j
uj
F jx
vm Fmy
um
m Fmx
o
x
第六章 用有限单元法解平面问题
求解方法
(5)将每一单元中的各种外荷载,按虚功 等效原则移置到结点上,化为结点荷 载,表示为
第六章 用有限单元法解平面问题
FEM的概念
§6-2 有限单元法的概念
FEM的概念,可以简述为:采用有限自由度的离 散单元组合体模型去描述实际具有无限自由度的 考察体,是一种在力学模型上进行近似的数值计 算方法,其理论基础是分片插值技术与变分原理。
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析; 3.整体分析。
第六章 用有限单元法解平面问题
FEM
第六章 用有限单元法解平面问题
概述 1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。 首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

弹性力学平面问题有限元法

弹性力学平面问题有限元法

度之间相关的是应力在其作用截面的法线方向和
z
C
τ zx +
∂τ zx dz ∂z ∂τ yz σx ∂τ xz dy τ yz + τ xz + dx ∂y ∂x fz τxy τyx ∂σ y fy fx σy + dy ∂τ xy τxz σy ∂y τ xy + dx ∂τ yx ∂x ∂σ x τ yx + dy σx + dx ∂y ∂x τ B
yz
σz +
∂σz dz ∂z ∂τ zy dz τ zy + ∂z
P
τzy
τzx
A
σz
o
y
x
正六面单元体的取法
经过物体内任一点如P 经过物体内任一点如P点取出一个微小的正六面 体,它的棱边分别平行于三个坐标轴而长度分别 为: PA = ∆x, PB = ∆y, PC = ∆z。将每个面上的应力分 解为一个正应力和两个切应力。 解为一个正应力和两个切应力。正应力用 σ 表 表示。 示,切应力用 τ 表示。 应力下标的含意: 应力下标的含意:
物理方程的表达形式
以应力表示应变
以应变表示应力
τxy 1 εx = σx −v(σy +σz ) γ xy = E G τ yz 1 ε y = σy − v(σx +σz γ yz = E G τxz 1 εz = σz −v(σx +σy ) γ xz = E G
σx =λθ +2Gεx τxy =Gγxy σy =λθ +2Gεy τyz =Gγ yz σz =λθ +2Gεz τxz =Gγxz
θ = εx + ε y + εz

平面问题有限元解法(公式推导讲解)

平面问题有限元解法(公式推导讲解)
位移边界条件:
应力边界条件:
若在su部分边界上给定了面力 和 ,则由平衡条件得出平面应力问题的应力(或面力)边界条件为:
其中,l,m是边界面外法线的方向余弦。
*
圣维南原理
在求解弹性力学问题时,应力分量、形变分量和位移分量必须满足区域内的三套基本方程,还必须满足边界上的边界条件。但是,要使边界条件得到完全满足,往往遇到很大的困难。
有限单元法的分析步骤如下: 物体离散化 单元特性分析 单元组集,整体分析 求解未知节点的位移 由节点的位移求解各单元的位移和应力
*
有限元单元模型中几个重要概念
单元 网格划分中每一个小的块体 节点 确定单元形状、单元之间相互联结的点 节点力 单元上节点处的结构内力 载荷 作用在单元节点上的外力 (集中力、分布力) 约束 限制某些节点的某些自由度 弹性模量(杨式模量)E 泊松比(横向变形系数)μ 密度
由于(d)图中,面力连续分布,边界条件简单,应力容易求得。其它三种情况,应力难以求得。把d情况下的应力解答应用到其它三个情况,虽不能满足两端的应力边界条件,但仍然可以表明离杆端较远处的应力状态,没有显著的误差。 图e,构件右端有位移边界条件, ,d情况的解答,不能满足位移边界条件,但e图右端的面力,一定是合成为经过截面形心的力F。所以把图d情况的解答应用于图e时,仍然只是在靠近两端处有显著的误差,而在离两端较远之处,误差可以不计。
按位移求解的方法,称为位移法。它以位移分量为基本未知函数。
按应力求解的方法,称为应力法。它以应力分量为基本未知函数。
*
按位移法求解平面问题
平面问题中,取位移分量u和v为基本未知函数。 从方程中消去形变分量和应力分量:
将几何方程代入上式
利用平衡微分方程和边界条件,导出用位移表示的平衡微分方程:

平面问题的有限元分析

平面问题的有限元分析

图12-9 图12-8
图12-10
(3)设置实常数 对于“Triangle 6node 2”单元,不需要定义实常数 (4)设置材料属性 运行主菜单Main Menu> Preprocessor> Material Props >Material Models(见图12 -11),弹出“材料属性” 对话框(见图12-12)。 在“材料属性”对话框右侧依 次双击选择Structural > Linear> Elastic> Isotropic,弹 出“弹性模量、泊松比参数设 置”对话框(见图12-1 3)。填写数据后,单击 【OK】按扭,完成设置,如 图12-14所示。SAVE.
平面问题的有限元案例
——————厚壁圆筒承受压力载 荷
例题:
某厚壁圆筒承受压力载 荷如图1所示,压力 p=10Mpa,圆筒内径 Ri=1400mm圆筒外径 R0=1500mm,材料的弹性 模量E=2.1×105Mpa, 泊松比u=0.3。采用平面 问题的有限元法求解圆 筒沿半径方向的径向应 力和图12-30
5.结果分析
(1)位移云图 运行主菜单Main Menu > General Postproc >Read Results >First Set (见图12-32),在运行Main Menu > General Postproc >Plot Results >Contour Plot >Nodal Solu(见图12-33),弹出 “Contour Nodal Solution Data”对 话框(见图12-34).选择结 点位移,左边框选“DOF solution”, 右边框选“USUM”,即选择总的结 点位移,另选择“Def+undeformed” 复选框.图形窗口出现变形前后的 结构图,并显示位移数值云图(见 图12-35).

平面问题有限元

平面问题有限元

aj = xm yi − xi ym = 0
cj = xi − xm = a
am = xi yj − xj yi = a2 bm = yi − yj = −a
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
• 据弹性力学几何方程得 单元的应变分量
∂u α2 ∂x εx ∂v ε = εy = = α6 ∂y γ α + α 5 xy ∂u + ∂v 3 ∂x ∂y
INm δ j δ m
ui v i Nm 0 uj 0 Nm vj um δi vm
[I]是单位矩阵, 是单位矩阵, 是单位矩阵 [N]称为形函数矩阵, 称为形函数矩阵, 称为形函数矩阵 Ni只与单元节点坐标有关,称为单元 只与单元节点坐标有关, 的形状函数
1 v = [(ai + bx + ci y)vi + (aj + bj x + cj y)vj + (am + bmx + cm y)vm] i 2A 3/12/2011
3-2 平面问题的常应变 三角形)单元 平面问题的常应变(三角形 单元 三角形

1 下标i, , 轮换 轮换) Ni = (ai + bx + ci y) (下标 ,j,m轮换) i 2A
边界不协调产生重迭
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
例题:图示等腰三角形单元,求其形函数矩阵 。 例题:图示等腰三角形单元,求其形函数矩阵[N]。
ci = xm − xj = 0

有限元平面问题

有限元平面问题

平面应力 H =
(5)单元刚度方程
K e ⋅ δ e = Pe
讨论1:平面三节点三角形单元的节点位移和 坐标变换
由于该单元的节点位移是以整体坐标系中的X方向位移(ui)和Y 方向位移(vi)来定义的,所以没有坐标变换的问题。
讨论2:平面三节点三角形单元的应变矩阵和应力矩 阵为常系数矩阵
单元的位移场为线性关系,由几何函数矩阵Be可知,由于△ 是常系数,因而Be、Se为常系数矩阵,不随X、Y的变化, 即这种单元在单元内任意一点的应变和应力都相同,因此, 三节点三角形单元称为常应变单元。在应变梯度较大的部 位,单元划分应适当密集,否则将不能真实反映应变的变化 而导致误差较大。
由节点位移条件可求得待定系数:
1 a1 = uj xj yj 2Δ um xm ym 1 a3 = 1 xj uj 2Δ 1 xm um 1 xi ui
ui xi yi
1 a2 = 1 uj yj 2Δ 1 u m ym 1 xi yi 2Δ = 1 x j y j 1 xm ym
1 ui
yi
1 a4 = vj xj yj 2Δ vm xm ym 1 a6 = 1 xj vj 2Δ 1 xm vm 1 xi vi
第四章
连续体平面问题
杆梁结构系统由于本身存在有自然的连接关系 即自然节点,所以他们的离散化均叫做自然离 散,这样的计算模型对原始结构具有很好的描 述,而连续体结构不同,它本身内部不存在有 自然的连接关系,而是以连续介质的形式进行 物质间的相互关联,所以,必须人为地在连续 体内部和边界上划分节点,以分片(单元)连 续的形式来逼近原来复杂的几何形状,这种离 散过程叫做逼近性离散。
N(x,y)为形状函数:
⎡ Ni 0 N j 0 N m 0 ⎤ N ( x, y ) = ⎢ ⎥ ⎢ ⎣ 0 Ni 0 N j 0 N m ⎥ ⎦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个受到集中力P 作用的结构,泊松比ν=61,m N P y 16=,t=1cm ,试按平面应力问题计算,采用三角形单元,求出节点位移。

解:
如图所示,划分三角形单元为四部分,并进行单元坐标编号,编程进行求解
单元①的刚度矩阵为:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=333231232221
131211
1K K K K K K K K K K ()3,2,1===m j i 其中子矩阵表达式为:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r s r s r s r s r s r s r rs b b v c c c b b c b c c b c c v b b Et K 21212121)1(42ννννν()m j i s r ,,,= E E E E E Et 2,,22210944.110944.121)611(401
.0)1(4--==⨯≈⨯⎪⎭⎫ ⎝⎛-⨯⨯=∆
-ν 调用 Triangle2D3Node_Stiffness 函数,求出单元刚度矩阵:
)3,2,1(0.2143 0 0 0.2143- 0.2143- 0.2143 0 0.5143 0.0857- 0 0.0857 0.5143- 0 0.0857- 0.5143 0 0.5143- 0.0857 0.2143- 0 0 0.2143 0.2143 0.2143- 0.2143- 0.0857 0.5143- 0.2143 0.7286 0.3000- 0.2143 0.5143- 0.0857 0.2143- 0.3000- 0.7286 '1===⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=m j i E K
同理,K 2,,K 3 ,K 4分别为:
)3,4,2(0.5143 0 0.5143- 0.0857 0 0.0857- 0 0.2143 0.2143 0.2143- 0.2143- 0 0.5143- 0.2143 0.7286 0.3000- 0.2143- 0.0857 0.0857 0.2143- 0.3000- 0.7286 0.2143 0.5143- 0 0.2143- 0.2143- 0.2143 0.2143 0 0.0857- 0 0.0857 0.5143- 0 0.5143 '2===⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=m j i E K )5,4,3( 0.2143 0 0.2143- 0.2143- 0 0.2143 0 0.5143 0.0857- 0.5143- 0.0857 0 0.2143- 0.0857- 0.7286 0.3000 0.5143- 0.2143- 0.2143- 0.5143- 0.3000 0.7286 0.0857- 0.2143- 0 0.0857 0.5143- 0.0857- 0.5143 0 0.2143 0 0.2143- 0.2143- 0 0.2143 '3===⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=m j i E K
)6,5,3(0.7286 0.3000 0.5143- 0.2143- 0.2143- 0.0857- 0.3000 0.7286 0.0857- 0.2143- 0.2143- 0.5143- 0.5143- 0.0857- 0.5143 0 0 0.0857 0.2143- 0.2143- 0 0.2143 0.2143 0 0.2143- 0.2143- 0 0.2143 0.2143 0 0.0857- 0.5143- 0.0857 0 0 0.5143 '4===⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=m j i E K
调用Triangle2D3Node_Assembly函数,求出总体刚度矩阵和节点位移:
调用Triangle2D3Node_Stress函数,求出应力,S1(S x),S2(S y),S3(S xy):S1=[-4408.6,-734.8,3591.4]T
S2=[4408.6,-640.5,408.6]T
S3=[1890.7,-1060.1,2109.3]T
S4=[-1890.7,2109.3,1890.7]T
程序代码:
三角形单元总程序:
关于刚度,刚度集合及应力的function函数:求刚度矩阵程序:
求刚度总体矩阵程序:
求应力程序:
end
Stress=D*B*u。

相关文档
最新文档