回归分析的基本思想及其初步应用 精品教案

合集下载

回归分析的基本思想及其初步应用教学设计教案

回归分析的基本思想及其初步应用教学设计教案

I教学准备1. 教学目标1、能根据散点分布特点,建立不同的回归模型;了解有些非线性模型通过转化可以转化为线性回归模型2、了解回归模型的选择,体会不同模型拟合数据的效果2. 教学重点/难点教学重点:通过探究使学生体会有些非线性模型通过等量变换、对数变换可以转化为线性回归模型教学难点:如何启发学生“对变量作适当的变换”(等量变换、对数变换),变非线性为线性,建立线性回归模型3. 教学用具多媒体4. 标签教学过程一、复习引入【师】问题1:你能回忆一下建立回归模型的基本步骤?【师】提出问题,弓I导学生回忆建立回归模型的基本步骤(选变量、画散点图、选模型、估计参数、分析与预测)【生】回忆、叙述建立回归模型的基本步骤【板演/PPT】⑴确定硏究对象’明确哪个变量是解释变量’哪个变量是预扌倉量;⑵画岀确定好的解释主变量和陨报变量的散点图:观察它们之间的关系(如是否存在线性关系等t⑶由经验确定回归方程逸浏我们观察到数据呈线性关系;则选用线性回归方稿=昭心Q肢一定规则估计回归方程中的参数(如最刃匸乘法);Sj得出结果后分析残差图是否有异常(个别数据对应残差过大’或残差呈现不随机的规律性等等丄若存在异常贝I检查数据果否有误或模型是否合适等一【师】问题2.能刻画回归模型效果的类别有哪些?它们各有什么特点?【生】回忆思考【板演/PPT】刻画回归效果的方式(1)残差图法作图时纵坐标为残差,横坐标可以选为的样本编号,或身高数据,或体重的估计值等,这样作出的图形称为残差图•在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高.(2)残差平方和法残差平方和〉.,残差平方和越小,模型拟合效果越好.(3)利用R2刻画回归效果;_; R2表示解释变量对于预报变量变化的贡献率. R2越接近i-l于1,表示回归的效果越好.二、新知介绍(1) 回归模型选择比较不同模型拟合效果【师】我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,棉花种植中经常会遇到一种虫害,就是红铃虫,为有效采取防止方法,有必要对红铃虫的产卵数和温度之间的关系进行研究,如图我们搜集了红铃虫的产卵数y和温度x之间的7组观测数据如下表:【板书/PPT】觀度严 C 21 23 25 27 29 32 35产卵数和个7 11 21 24 66 115 325【师】试着建立y与x之间的回归方程【生】类比前面所学过的建立线性回归方程分步骤动手实施【师】教师巡视指导【板书/PPT】解:1)作散点图以 y=0.367t-202.543所因为t=x2,即y 关于x 的二次回归方程为 y=0.367t2-202.543 。

3.1.1回归分析的基本思想及其初步应用教案

3.1.1回归分析的基本思想及其初步应用教案

3. 1.1回归分析的基本思想及其初步应用【教学目标】1.了解回归分析的基本思想方法及其简单应用. 2.会解释解释变量和预报变量的关系. 【教学重难点】教学重点:回归分析的应用. 教学难点:a 、b 公式的推到. 【教学过程】一、设置情境,引入课题引入:对于一组具有线性相关关系的数据112233(,),(,),(,),,(,).n n x y x y x y x y 其回归直线方程的截距和斜率的最小二乘法估计公式分别为:11n i i x x n ==∑ 11ni i y y n ==∑ (,)x y 称为样本点的中心。

如何推到着两个计算公式? 二、引导探究,推出公式从已经学过的知识,截距a 和斜率b 分别是使21(,)()niii Q y x αββα==--∑取最小值时,αβ的值,由于212212211(,)[((]{[(2[([(][(]}[(2[([(](ni i i ni i i i i nni i i i i i Q y x y x y x y x y x y x y x y x y x y x y x y x y x y x n y x αββββαβββββαβαβββββαβα=====-----=---+-----+--=---+-----+--∑∑∑∑)+))])])))])]))因为 所以2212222111222221122111[([(]()2()()()(()()[()()](()[]()()()ni i i nn nii i i i i i nni i i i ni i i i nni i i i i i Q y x y x n y x x x x x y y y y n y x x x y y x x y y n y x x x y y x x x x αββββαβββαβαβ==========---+--=----+-+------=--+---+---∑∑∑∑∑∑∑∑∑(,))])))1n=∑在上式中,后两项和,αβ无关,而前两项为非负数,因此要使Q 取得最小值,当且仅当前两项的值均为0.,既有通过上式推导,可以训练学生的计算能力,观察分析能力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出。

1.1.2回归分析的基本思想及其初步应用 教案

1.1.2回归分析的基本思想及其初步应用 教案

第 1 页 1.1.2 回归分析的根本思想及其初步应用教学要求:通过典型案例的探究 ,进一步了解回归分析的根本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知 ,预报变量〔体重〕的值受解释变量〔身高〕或随机误差的影响.2.为了刻画预报变量〔体重〕的变化在多大程度上与解释变量〔身高〕有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:〔1〕总偏差平方和:所有单个样本值与样本均值差的平方和 ,即21()n i i SST y y ==-∑.残差平方和:回归值与样本值差的平方和 ,即21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和 ,即21()ni i SSR y y ==-∑.〔2〕学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和 ,即222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时 ,残差平方和越小 ,那么回归平方和越大 ,此时模型的拟合效果越好;④对于多个不同的模型 ,我们还可以引入相关指数22121()1()n i i i ni i y y R y y ==-=--∑∑来刻画回归的效果 ,它表示解释变量对预报变量变化的奉献率. 2R 的值越大 ,说明残差平方和越小 ,也就是说模型拟合的效果越好.2. 教学例题:例2 关于x 与Y 有如下数据:x 2 4 5 6 8 y 30 40 60 5070为了对x 、Y 两个变量进行统计分析 ,现有以下两种线性模型:6.517.5y x =+ ,717y x =+ ,试比拟哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和 ,也可分别求出两种模型下的相关指数 ,然后再进行比拟 ,从而得出结论.。

教学设计2:1.1 回归分析的基本思想及其初步应用(二)

教学设计2:1.1 回归分析的基本思想及其初步应用(二)

回归分析的基本思想及其初步【教学目标】:(1)知识与技能:了解回归模型的选择;进一步理解非线性模型通过变换转化为线性回归模型;体会不同模型拟合数据的效果。

(2)过程与方法:从实例出发,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,通过学习相关指数,用相关指数来刻画回归的效果,进而归纳出回归分析的一般步骤,并对具体问题进行回归分析,用于解决实际问题。

(3)情感态度与价值观:任何事物都是相对的,但又有一定的规律性,我们只要从实际出发,不断探求事物的内在联系,就会找出其中的规律性,形成解决实际问题的方法和能力。

【教学重点】:1、加深体会有些非线性模型通过变换可以转化为线性回归模型;2、了解在解决问题的过程中寻找更好的模型的方法。

【教学难点】:1、了解常用函数的图像特点,选择不同的模型建模;2、通过比较相关指数对不同的模型进行比较。

【课前准备】:课件【教学过程设计】:练习与测试1. 在两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( A )A .模型1的相关指数2R 为98.0B .模型2的相关指数2R 为80.0C .模型3的相关指数2R 为50.0D .模型4的相关指数2R 为25.02. 已知两个变量的回归模型为x y 22⋅=,则样本点的(1,4.4)的残差是_____________________【答案】0.43. 残差平方和用数学符号表示为___________________,它代表了随机误差的效应;解释变量的效应值称为回归平方和,可以用相关指数2R 来刻画回归的效果,其计算公式是___________________。

显然,2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好。

【答案】4. 在研究硝酸纳的可溶性程度时,对不同的温度观测它在水中的溶解度,得观测结果如下表所示: 则由此得到的回归直线的斜率是____________。

3.1回归分析的基本思想及其初步应用教学设计

3.1回归分析的基本思想及其初步应用教学设计

3.1回归分析的基本思想及其初步应用(第1课时)一、教学内容与教学对象分析学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

二、学习目标1、知识与技能通过本节的学习,了解回归分析的基本思想,会对两个变量进行回归分析,明确建立回归模型的基本步骤,并对具体问题进行回归分析,解决实际应用问题。

2、过程与方法本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R 的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤。

3、情感、态度与价值观通过本节课的学习,首先通过实际问题了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心。

加强与现实生活的联系,以科学的态度评价两个变量的相关系。

培养学生运用所学知识,解决实际问题的能力。

三、教学重点、难点教学重点:熟练掌握回归分析的步骤;各相关指数、建立回归模型的步骤。

教学难点:求回归系数a ,b ;相关指数的计算、残差分析。

四、教学策略:教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:多媒体辅助教学五、教学过程:(一)、复习引入:回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。

对于一组具有线性相关关系的数据:(11,x y ),(22,x y ),…,(,n n x y ),我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:121()()()niii nii x x y y bx x ==--=-∑∑ (1)ay bx =- (2)其中1111,n ni i i i x x y y ====∑∑,(,x y )成为样本点的中心.回归分析的基本步骤:(1)画出两个变量的散点图.(2)求回归直线方程.(3)用回归直线方程进行预报.下面我们通过案例,进一步学习回归分析的基本思想及其应用.举例:例1.从某大学中随机选取8名女大学生,其身高和体重数据如表编号12345678身高/cm 165165157170175165155170体重/kg4857505464614359求根据女大学生的身高预报体重的回归方程,并预报一名身高为172cm 的女大学生的体重.解:由于问题中要求根据身高预报体重,因此选取身高为自变量x ,体重为因变量y .作散点图(图3.1一1)从图3.1一1中可以看出,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归方程来近似刻画它们之间的关系.根据探究中的公式(1)和(2),可以得到ˆˆ0.849,85.712ba ==-.于是得到回归方程084985.712y x =-.因此,对于身高172cm 的女大学生,由回归方程可以预报其体重为084917285.71260.316y =⨯-=(kg ).ˆ0.849b=是斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加0.849位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱?在必修3中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为()()niix x y y r --=∑当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r 的绝对值大于0.75时认为两个变量有很强的线性相关关系.在本例中,可以计算出r =0.798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.显然,身高172cm 的女大学生的体重不一定是60.316kg ,但一般可以认为她的体重接近于60.316kg .图3.1一2中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示:y bx a e =++,(3)这里a 和b 为模型的未知参数,e 是y 与ˆy bx a =+之间的误差.通常e 为随机变量,称为随机误差,它的均值E (e )=0,方差D (e )=2()D e σ=>0.这样线性回归模型的完整表达式为:2,()0,().y bx a e E e D e σ=++⎧⎨==⎩(4)在线性回归模型(4)中,随机误差e 的方差越小,通过回归直线ˆybx a =+(5)预报真实值y 的精度越高.随机误差是引起预报值 y 与真实值y 之间的误差的原因之一,大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中 a和b 为截距和斜率的估计值,它们与真实值a 和b 之间也存在误差,这种误差是引起预报值 y 与真实值y 之间误差的另一个原因.思考:产生随机误差项e 的原因是什么?一个人的体重值除了受身高的影响外,还受许多其他因素的影响。

回归分析的基本思想及其初步应用 说课稿 教案 教学设计

回归分析的基本思想及其初步应用  说课稿  教案  教学设计

教学目标知识与技能从相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.过程与方法在发现直接求回归直线方程存在缺陷的基础上,引导学生去发现解决问题的新思路——进行回归分析,进而介绍残差分析的方法和利用R2来表示解释变量对于预报变量变化的贡献率.情感、态度与价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,掌握处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识解决实际问题的能力.教学中适当地利用学生的合作与交流,使学生在学习的同时,体会与他人合作的重要性.重点难点教学重点:从残差分析、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;教学难点:了解评价回归效果的两个统计量:相关指数、残差和残差平方和.教学过程引入新课上表是上一节课我们从某大学选取8名女大学生其身高和体重数据组成的数据表,在上一节课中我们通过数据建立了回归直线方程,并根据方程预测了身高为172 cm的女大学生的体重.当时,我们提到根据回归直线方程求得的体重数据,仅是一个估计值,其与真实值之间存在着误差,为了综合分析身高和体重的关系,我们引入了线性回归模型y=bx+a+e 来表示两变量之间的关系,其中e为随机变量,又称随机误差.线性回归模型y=bx+a+e 增加了随机误差项e,因变量y的值由自变量x和随机误差e共同确定.假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上.但是,在图中,数据点并没有完全落在回归直线上.这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了,即自变量x只能解释部分y的变化.同学们考虑一下,随机变量e的均值是多少?方差又是多少?活动设计:学生思考回答问题.学情预测:学生回答E(e)=0,D(e)=σ2>0.教师提问:能否通过D(e)来刻画线性回归模型的拟合程度?学情预测:随机误差e的方差越小,通过回归直线预报真实值y的精度越高.随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差.设计意图:说明研究随机误差e的必要性,通过研究随机误差e可以分析预报值的可信度.提出问题:既然可以用随机变量e的方差来衡量随机误差的大小,即通过方差σ2来刻画预报变量(体重)的变化在多大程度上与随机误差有关,那么如何获得方差σ2呢?学生活动:学生独立思考,小组合作交流讨论.活动结果:可以采用抽样统计的思想,通过随机变量e的样本来估计σ2的大小.设计目的:复习抽样统计思想,以便通过随机变量e的样本来估计总体.探究新知提出问题:既然e 表示了除解释变量以外其他各种影响预报值的因素带来的误差,那么如何获得e 的样本来计算σ2呢?学生活动:分组合作讨论交流.学情预测:由函数模型y ^=b ^x +a ^和回归模型y =bx +a +e 可知e =y -y ^,这样根据图表中女大学生的身高求出预报值,再与真实值作差,即可求得e 的一个估计值.教师:由于在计算回归直线方程时,利用公式求得的b ^和a ^为斜率和截距的估计值,它们与真实值a 和b 之间存在误差,因此y ^是估计值,所以e ^=y -y ^也是一个估计值.由上可知,对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为 e i =y i -bx i -a ,i =1,2,…n ,称其估计值e ^i =y i -y ^i 为相应于点(x i ,y i )的残差.将所有残差的平方加起来,即∑i =1ne ^2i ,这个和称作残差平方和.类比样本方差估计总体方差的思想,可以用 σ^2=1n -2∑i =1n e ^ 2i =1n -2∑i =1n(y i-y ^ i )2(n>2) 作为σ2的估计量,通常,σ^ 2越小,预报精度越高.这样,当我们求得回归直线方程后,可以通过残差来判断模型拟合程度的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.设计目的:通过问题诱思,引入残差概念. 理解新知提出问题:对照女大学生的身高和体重的原始数据,结合求出的回归直线方程,求出相应的残差数据.学生活动:独立完成. 活动结果:样的散点图称作残差图).学生活动:分组合作,共同完成. 活动结果:残差图提出问题:观察上面的残差图,你认为哪几个样本点在采集时可能存在人为的错误?为什么?学生活动:分组讨论. 活动结果:第一个和第六个样本点在采集过程中可能存在错误,因为其他的样本点基本都集中在一个区域内,只有这两个样本点的残差比较大,相对其他样本点来说,分布得较为分散.提出问题:如何从残差图来判断模型的拟合程度? 学生活动:独立思考也可相互讨论.活动结果:因为σ^2越小,预报精度越高,即模型的拟合程度越高,而σ^2越小,e ^的取值越集中,故若残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,且带状区域的宽度越窄,说明拟合精度越高,回归直线的预报精度越高.教师:在统计学上,人们经常用相关指数R 2来刻画回归的效果,其计算公式是:R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2提出问题:分析上面计算相关指数R 2的公式,如何根据R 2来判断模型的拟合效果? 学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:因为对于确定的样本数据而言,∑i =1n(y i -y )2是一个定值,故R 2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.提出问题:在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率,R 2越接近1,表示回归的效果越好,即解释变量和预报变量的线性相关性越强,试计算关于女大学生身高与体重问题中的相关指数R 2.学生活动:学生独立计算获得数据. 活动结果:R 2≈0.64.根据R 2≈0.64就可得出“女大学生的身高解释了64%的体重变化”,或者说“女大学生的体重差异有64%是由身高引起的”.由此就不难理解为什么预报体重和真实值之间有差距了.设计目的:结合图象,让学生直观感受残差图在刻画回归模型拟合效果方面的应用,体会残差分析和相关指数的意义.提出问题:根据前面得到的回归方程,能否预测一名美国女大学生的体重?建立回归模型后能否一劳永逸,在若干年后还可以使用,或者适用于多年以前的女大学生体重预测?学生活动:讨论交流总结发言.活动结果:在使用回归方程进行预报时要注意: (1)回归方程只适用于我们所研究的样本的总体; (2)我们建立的回归方程一般都有时间性;(3)样本取值的范围会影响回归方程的适用范围;(4)不能期望回归方程得到的预报值就是预报变量的精确值.提出问题:结合我们刚学习的概念,现在能否将建立回归模型的步骤补充完整? 学生活动:讨论交流,合作完成.活动结果:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程). (4)按一定规则(如最小二乘法)估计回归方程中的参数.(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,或残差呈现不随机的规律性,等等).若存在异常,则检查数据是否有误,或模型是否合适等.设计意图:设计问题,让学生讨论分析,得出使用回归方程进行预报需注意的问题,并让学生完善建立回归模型的步骤.在这个过程中,教师不宜做太多引导,要放手给学生,让学生讨论,充分参与进来.运用新知例1一个车间为了规定工时定额,需确定加工零件所花费的时间,为此进行了10次试(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差; (2)你认为这个模型能较好地刻画零件数和加工时间的关系吗? 分析:首先根据散点图粗略判断变量是否具有线性相关性,判断是否可以用线性回归模型来拟合数据,然后通过残差e ^1,e ^2,…,e ^n 来判断模型拟合的效果,判断原始数据是否存在可疑数据.解:(1)根据表中数据作出散点图如下:散点图由散点图可知变量之间具有线性相关关系,可以通过求线性回归方程来拟合数据. 根据公式可求得加工时间对零件数的线性回归方程为y ^=0.668x +54.96.残差数据如下表:残差图由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好,但需注意,由残差图也可以看出,第4个样本点和第5个样本点残差较大,需要确认在采集这两个样本点的过程中是否有人为的错误.点评:由散点图判断两个变量的线性相关关系,误差较大,利用残差图可以较好地评价模型的拟合程度,并能发现样本点中的可疑数据.【变练演编】例2求出y 对x 的回归方程,并说明拟合效果的好坏.思路分析:先根据散点图判断两个变量是否线性相关,若相关,求出回归直线方程,然后通过相关指数的大小来评价拟合效果的好坏.解:作出散点图:从作出的散点图可以看出,这些点在一条直线附近,可用线性回归模型来拟合数据.由数据可得x =18,y =45.4,由计算公式得b ^=-2.35,a ^=y -b ^x =87.7.故y 对x 的回归方程为y ^=-2.35x +87.7,列表:所以∑i =15(y i -y ^i )2=8.3,∑i =15(y i -y )2=229.2.相关指数R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2≈0.946.因为0.964很接近1,所以该模型的拟合效果很好.变式1:若要分析是否在上述样本的采集过程中存在可疑数据,应如何分析? 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:可以画出残差图来进行分析.变式2:既然利用残差图和相关指数都能够评价回归模型的拟合效果,能否总结一下两种方法各自的特点?活动成果:利用残差图可以直观展示拟合的效果,而且还可以发现样本数据中的可疑数据;而相关指数是把对拟合效果的评价转换为数值大小的判断,易于量化处理,并能在数量上表现解释变量对于预报变量变化的贡献率.设计意图:进一步熟悉判断拟合效果的方法以及各自的特点. 【达标检测】1.分析下列残差图,所选用的回归模型效果最好的是()ABC D 2.下列说法正确的是( )①回归直线方程适用于一切样本和总体;②回归直线方程一般都有时间性;③样本的取值范围会影响回归直线方程的适用范围;④根据回归直线方程得到的预测值是预测变量的精确值.A .①③④B .②③C .①②D .③④3.在研究气温和热茶销售杯数的关系时,若求得相关指数R 2≈__________,表明“气温解释了85%的热茶销售杯数变化”或者说“热茶销售杯数差异有85%是由气温引起的”.答案:1.D 2.B 3.0.85.课堂小结学生回顾本节课学习的内容,尝试总结,然后不充分的地方由学生相互补充,最后在老师的引导下,用精炼的语言进行概括:1.判断变量是否线性相关的方法以及各自的特点; 2.在运用回归模型时需注意的事项; 3.建立回归模型的基本步骤. 设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程. 补充练习 【基础练习】1.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( )A .①②B .②③C .①③D .①②③2.甲、乙、丙、丁四位同学各自对A ,B 两变量做回归分析,分别得到散点图与残差平方和∑i =1n(y i -y ^i )2如下表115106124103哪位同学的实验结果体现拟合A ,B 两变量关系的模型拟合精度高?( ) A .甲 B .乙 C .丙D .丁 3.关于x 与y 为了对x ,y 两个变量进行统计分析,现有以下两种线性模型:甲:y ^=6.6x +17.5,乙:y ^=7x +17.试比较哪一个模型拟合效果更好.答案或提示:1.D 2.D3.解析:设甲模型的相关指数为R 21,则R 21=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1551 000=0.845;设乙模型的相关指数为R 22,则可求得R 22=0.82,因为R 21>R 22,所以甲模型的拟合效果更好.【拓展练习】 4.假设某种农作物基本苗数x 与有效穗数y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗数. (3)计算各组残差;(4)求R 2,并说明随机误差对有效穗数的影响占百分之几? 解:(1)散点图如图:(2)由图可以看出,样本点呈条状分布,有比较好的线性相关关系,因此可用线性回归方程来建立两个变量之间的关系.设线性回归方程为y ^=b ^x +a ^,由数据可以求得:b ^≈0.291, a ^=y -b ^x =34.67.故所求的线性回归方程为y ^=0.291x +34.67. 当x =56.7时,y ^=0.291×56.7+34.67=51.169 7. 估计有效穗数为51.169 7.(3)各组数据的残差分别是e ^1≈0.37,e ^2≈0.72,e ^3≈-0.5,e ^4≈-2.22,e ^5≈1.61. (4)残差平方和:∑i =15(y i -y ^i )2=8.425 8,又∑i =15(y i -y )2=50.18,∴R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-8.425 850.18≈0.832.即解释变量(农作物基本苗数)对有效穗数的影响约占了83.2%,所以随机误差对有效穗数的影响约占1-83.2%=16.8%.。

高中数学新人教版A版精品教案《3.1 回归分析的基本思想及其初步应用》

高中数学新人教版A版精品教案《3.1 回归分析的基本思想及其初步应用》

《回归分析的基本思想及其初步应用(1)》教案
教学过程【设计意图】对残差从计算的角度有直观的认识,也为后面的知识学习做好准备
【教师引导】画残差图
【学生小组讨论】通过残差图得到残差的作用
1、直观地看出数据是否有误;
2、分布均匀在水平的带状区域,说明模型较为合适;
3、带状区域越窄,模型越合适,模型拟合程度越高,预报精度越高。

【教师引导】我们已经从图形的角度,利用残差图直观地来判断一个模型的拟合程度,数形结合是高中数学一个非常重要的思想方法,下面将从“数”的角度精
确地来表述模型的拟合程度。

相关系数
()
()()




=
=
=
=
-
-
=
-
-
-
=
n
i
i
n
i
i
n
i
i
n
i
i
i
y
y
e
y
y
y
y
R
1
2
1
2
1
2
1
2
2
ˆ
1
ˆ
1
分析:1、R²越大,模型的拟合效果越好;R²越小,模型的拟合效果越差
2、R²越接近于1,表示回归的效果越好
165 160 175 155 170
体重/g 58 52 62 43 60
残差
i
eˆ 3。

《3.1.2回归分析的基本思想及其初步应用》教学案

《3.1.2回归分析的基本思想及其初步应用》教学案

《3.1.2回归分析的基本思想及其初步应用》教学案【教学目标】1. 了解相关系数r ;2. 了解随机误差;3. 会简单应用残差分析【教学重难点】教学重点:相关系数和随机误差教学难点:残差分析应用.【教学过程】一、设置情境,引入课题上节例题中,身高172cm 女大学生,体重一定是60kg 吗?如果不是,其原因是什么?二、引导探究,发现问题,解决问题1 $0.84985.712y x =-对于0.849b=$是斜率的估计值,说明身高x 每增加1个单位,体重就 ,表明体重与身高具有 的线性相关关系. 2 如何描述线性相关关系的强弱?()()ni ix x y y r --=∑ (1)r >0表明两个变量正相关;(2)r <0表明两个变量负相关;(3)r 的绝对值越接近1,表明相关性越强,r 的绝对值越接近0,表明相关性越弱.(4)当r 的绝对值大于0.75认为两个变量具有很强的相关性关系.3 身高172cm 的女大学生显然不一定体重是60.316kg ,但一般可以认为她的体重接近于60.316kg .①样本点与回归直线的关系②所有的样本点不共线,而是散布在某一条直线的附近,该直线表示身高与体重的关系的线性回归模型表示y bx a ε=++e 是y 与$y bx a =+的误差,e 为随机变量,e 称为随机误差.③E (e )=0,D (e )= 2σ>0.④D (e )越小,预报真实值y 的精度越高.⑤随机误差是引起预报值$y 与真实值y 之间的误差之一.⑥$,a b $为截距和斜率的估计值,与a ,b 的真实值之间存在误差,这种误差也引起$y 与真实值y 之间的误差之一.4 思考产生随机误差项e 的原因是什么?5 探究在线性回归模型中,e 是用$y 预报真实值y 的误差,它是一个不可观测的量,那么应该怎样研究随机误差?如何衡量预报的精度?①2()D e σ=来衡量随机误差的大小.②µi i i e y y =- ③µµ$i i i i i e y y y bx a =-=--$ ④µ$22111(,)(2)22n i e Q a b n n n σ===>--∑$$ ⑤$(,)Q a b $称为残差平方和,µ2σ越小,预报精度越高. 6 思考当样本容量为1或2时,残差平方和是多少?用这样的样本建立的线性回归方程的预报误差为0吗?7 残差分析①判断原始数据中是否存在可疑数据;②残差图 ③相关指数µ22121()1()n i i i n ii y y R y y ==-=--∑∑ ④R 2越大,残差平方和越小,拟合效果越好;R 2越接近1,表明回归的效果越好. 8 建立回归模型的基本步骤:①确定研究对象,明确哪个变量时解释变量,哪个变量时预报变量.②画出确定好的解释变量和预报变量得散点图,观察它们之间的关系;③由经验确定回归方程的类型;④按一定规则估计回归方程中的参数;⑤得出结果后分析残差图是否异常.三、典型例题例1 下表是某年美国旧轿车价格的调查资料,今以x 表示轿车的使用年数,y 表示响应的年均价格,求y 关于x 的回归方程减,但不在一条直线附近,但据此认为y 与x 之间具有线性回归关系是不科学的,要根据图的形状进行合理转化,转化成线性关系的变量间的关系.解:作出散点图如下图可以发现,各点并不是基本处于一条直线附近,因此,y 与x 之间应是非线性相关关系.与已学函数图像比较,用$µµbx a y e +=来刻画题中模型更为合理,令$ln z y =$,则$z bx a =+$$, 题中数据变成如下表所示:拟合,由表中数据可得0.996,0.75r r ≈->,认为x 与z 之间具有线性相关关系,由表中数据的$0.298,8.165,b a ≈-≈$所以0.2988.165z x =-+$,最后回代$ln z y =$,即$0.2988.165x y e -+=四、当堂练习:1 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A 模型1的20.98R =B 模型2的20.80R =C 模型3的20.50R =D 模型4的20.25R =答案 A五、课堂小结1 相关系数r 和相关指数R 22 残差分析y。

教学设计3:1.1 回归分析的基本思想及其初步应用(一)

教学设计3:1.1 回归分析的基本思想及其初步应用(一)

回归分析的基本思想及其初步应用【教学目标】:(1)知识与技能:了解求线形回归方程的两个计算公式的推导过程,、回归平方和;了解随机误差产生的原因;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。

(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。

(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。

【教学重点】:1.了解判断刻画模型拟合效果的方法——相关指数和残差分析;2.通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。

【教学难点】:1.了解随机误差产生的原因,用残差平方和衡量回归方程的预报精度;2.了解判断刻画模型拟合效果的方法——相关指数和残差分析。

【教学过程设计】:练习与测试1.下面4 个散点图中,不适合用线性回归模型拟合其中两个变量的是(A )A.B.C .D .2. 将非线性模型x e y 32=进行适当变形使之线性化。

【答案】2ln 32ln ln 3ln +=⇒+=x z e x y3. 已知回归方程35.0log 21.1ˆ2-=x y ,则样本点P (4,2.71)的残差为________________。

【答案】()56.015.271.235.04log 2.171.2ˆˆ2=-=--=-=y y e4. 已知线性相关的两变量x ,y 的三个样本点A (0,0),B (1,3),C (4,11),若用直线AB 作为其预测模型,则点C 的残差是________。

【答案】x y AB 3ˆ=,12ˆ=C y,1ˆ=C e 。

5. 若一组观测值(x 1,y 1)、(x 2,y 2)、…、(x n ,y n )之间满足y i =bx i +a +e i (i =1、2. …n)若e i 恒为0,则R 2为【答案】16. 已知线性相关的两变量x ,y 的三个样本点A (0,0),B (1,3),C (4,11),若用直线AB 作为其预测模型,则其相关指数=2R ________。

回归分析的基本思想及其初步应用 精品教案

回归分析的基本思想及其初步应用 精品教案

回归分析的基本思想及其初步应用
【教学目标】
1.知识目标
认识随机误差;认识残差。

2.能力目标
(1)会使用电脑画散点图、求回归直线方程;
(2)能正确理解回归方程的预报结果。

3.情感目标
通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神。

培养学生运用所学知识,解决实际问题的能力。

教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。

【教学重点】
回归分析的基本方法、随机误差e的认识、残差
【教学难点】
回归分析的基本方法
【教学方法】
启发式教学法。

回归分析的基本思想及其初步应用优秀教学设计

回归分析的基本思想及其初步应用优秀教学设计

由上述计算可得到
并向学生指出: r 1,且 r 越接近于 1,相关程度越大; r 越接近于 0,相关程度
越小.
根据上述结论,引导学生提出如下问题:
当 r 与 1 接近到什么程度时表明 y 与 x 之间具有线性相关关系?
为解决上述问题,一般采取以下方法: 3.(板书)线性相关关系检验方法 (1)说明线性相关关系检验方法的思想及前提. (2)检验的具体方法. ①根据公式计算相关系数 r 的值;
②在附表中查出与显著性水平 0.05 和自由度 n 2 相应的相关系数临界值 r0.05 ;
③检验所得结果:若 r r0.05 ,则 y 与 x 之间线性相关关系不显著;若 r r0.05 ,则 y
与 x 之间存在线性相关关系.
(3)具体例子:计算本节水稻产量与施化肥量中有关数据进行相关性检验,并指出检
n
(xi x)( yi y)
r
i 1
n
n
(xi x)2 ( yi y)2
i 1
n1
n
xi yi nxy

r
ቤተ መጻሕፍቲ ባይዱi 1
n
(
xi2 nx 2 )( n
yi2

2
ny )
i 1
n1
叫做变量 y 与 x 之间的样本相关系数(简称相关系数),用它来衡量它们之间的线性相关程
度.
由学生计算本节前面水稻产量与施化肥量的相关系数,即
7
xi yi 7xy
r
i 1
(
7
xi2

2
7x
)(
7
(
yi2

7
2
y

1.1回归分析的基本思想及其初步应用第1课时 选修1-2精品教案

1.1回归分析的基本思想及其初步应用第1课时  选修1-2精品教案

§1.1 回归分析的基本思想及其初步(一)【学情分析】:教学对象是高二文科学生,学生已经初步学会用最小二乘法建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。

回归分析是数理统计中的重要内容,在教学中,要结合实例进行相关性检验,理解只有两个变量相关性显著时,回归方程才具有实际意义。

在起点低的班级中注重让学生参与实践,结合画图表的方法整理数据,鼓励学生通过收集数据,经历数据处理的过程,从而认识统计方法的特点,达到学习的目的。

【教学目标】:(1)知识与技能:回忆线性回归模型与函数模型的差异,理解用最小二乘法求回归模型的步骤,了解判断两变量间的线性相关关系的强度——相关系数。

(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程。

(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。

【教学重点】:1、了解线性回归模型与函数模型的差异;2、了解两变量间的线性相关关系的强度——相关系数。

【教学难点】:1、了解线性回归模型与一次函数模型的差异;2、了解偏差平方和分解的思想。

【课前准备】:课件【教学过程设计】:(学生思考、讨论。

)问题二:统计方法解决问题的基本过程是什么?提出问题,引导学生回忆用最小二乘法求回归直线方程的方法。

(由学生回忆、叙述)回归分析的基本过程:⑴画出两个变量的散点图;⑵判断是否线性相关⑶求回归直线方程(利用最小二乘法)⑷并用回归直线方程进行预报的解题步骤二、例题选讲问题三:思考例1:从某大学中随机选取8名女大学生,其身高和体重数据如表所示。

求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。

编号12345678身高/cm165165157170175165155170体重/kg4857505464614359题目中表达了哪些信息?师:读例1的要求,引导学生理解例题含义。

回归分析的基本思想及其初步应用精品教案

回归分析的基本思想及其初步应用精品教案

回归剖析的基本思想及其初步应用【教课目的】1.知识目标认识随机偏差;认识残差。

2.能力目标(1)会使用电脑画散点图、求回归直线方程;(2)能正确理解回归方程的预告结果。

3.感情目标经过本节课的学习,增强数学与现实生活的联系,以科学的态度评论两个变量的有关性,理解办理问题的方法,形成谨慎的治学态度和持之以恒的修业精神。

培育学生运用所学知识,解决实质问题的能力。

教课中适合地利用学生合作与沟通,使学生在学习的同时,领会与别人合作的重要性。

【教课重点】回归剖析的基本方法、随机偏差e的认识、残差【教课难点】回归剖析的基本方法【教课方法】启迪式教课法【教课过程设计】教课过程双边活动设计说明教师活动学生活动创建情境:发问:身高和体重之间是察看思虑并从学生感兴趣的供给六名篮球明星什么关系?我们怎样来研回答篮球明星下手,的图片,让学生猜最高究这类关系。

层层深入,引入最重的人,进而引出本提出将要研究的问题课题。

课主题。

“今年级男生身高与体重之间的关系”。

复习回首:1、在学生小组议论的学生小组讨经过有效的复习一、将前面 1、2 问题改时候,教师合时参加论 1、2 两个让学生为后边新为:议论。

问题。

经过小知识的解说打下1、两个变量之间有哪2、教师演示用计算机组议论,使得优秀的基础。

几种关系?进行回归剖析的方学困生也能2、进行线性回归剖析法。

对从前的知的一般步骤是什么。

识有必需的二、学生回答完问题后,认识。

教师用计算机演示一遍操作。

问题体现:1、要修业生小组议论统1、小组议论回归剖析的先决例 1.统计 10 名高三女计方案。

并对学生提出并设计一条件是统计数据生的身高体重数据,汇的方案做出评论个统计 10 不可以有错误而且总后求出依据身高预告2、找学生代表登台操作。

名女生身切合统计规律,体重的回归方程,并随高体重数因此让学生设计机检查一名高三女生的据的方方案能让学生参身高,而后预告体重。

案。

与知识产生的全2、认真察看过程,切合课改登台操作理念。

数学教案:回归分析的基本思想及其初步应用第三课时

数学教案:回归分析的基本思想及其初步应用第三课时

第三课时教学目标知识与技能能根据散点分布特点,建立不同的回归模型;知道有些非线性模型通过变换可以转化为线性回归模型;通过散点图及相关指数比较不同模型的拟合效果.过程与方法通过将非线性模型转化为线性回归模型,使学生体会“转化"的思想;让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观通过案例的解决,开阔学生的思路,培养学生的探索精神和转化能力,并通过合作学习,培养学生的团队合作意识.重点难点教学重点:通过探究使学生体会有些非线性模型运用等量变换、对数变换可以转化为线性回归模型;教学难点:如何启发学生“对变量作适当的变换(等量变换、对数变换)",变非线性为线性,建立线性回归模型.错误!错误!我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,在棉花的种植过程中,病虫害的防治是棉农的一项重要任务,如果处置不当就会造成棉花的减产.其中红铃虫就是危害棉花生长的一种常见害虫,在1953年,我国18省曾发生红铃虫大灾害,受灾面积300万公顷,损失皮棉约二十万吨.如图就是红铃虫的有关图片:红铃虫喜高温高湿,适宜各虫态发育的温度为25~32 ℃,相对湿度为80%~100%,低于20 ℃和高于35 ℃卵不能孵化,相对湿度60%以下成虫不产卵.冬季月平均气温低于-4。

8 ℃时,红铃虫就不能越冬而被冻死.为采取有效防治方法,有必要研究红铃虫的产卵数和温度之间的关系.现收集了红铃虫的产卵数y和温度x之间的7组观测数据列于下表:(1)试建立y与x之间的回归方程;并预测温度为28 ℃时产卵的数目.(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?学生活动:类比前面所学过的建立线性回归模型的步骤,动手实施.活动结果:(1)画散点图:通过计算器求得线性回归方程:错误!=19.87x-463.73。

回归分析的基本思想及其初步应用 精品教案

回归分析的基本思想及其初步应用 精品教案

回归分析的基本思想及其初步应用一、教学目标:1.明确两个变量具有相关关系的意义;2.知道回归分析的意义;3.知道回归直线、回归直线方程、线性回归分析的意义;4.掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;5.培养学生形成运用数据进行推断的能力;6.让学生体会从特殊到一般的辩证思想方法.二、教学重点:了解线性回归的基本思想和方法;教学难点:线性回归的基本思想方法和计算.三、教学用具:幻灯机或多媒体四、教学过程:1.引入新课S 先引入函数关系再引入相关关系间由正方形面积S与其边长x之间的函数关系2x (确定关系)引入一块农田的水稻产量与施肥量之间的关系(非确定关系),从而引入新授内容.2.(板书)相关关系与回归分析(1)相关关系进一步分析水稻产量与施肥量的关系,得出相关关系的概念.(板书)自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.相关关系与函数关系的异同点:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.引导学生列举现实生活中相关关系的例子.(2)回归分析(板书)对具有相关关系的两个变量进行统计分析的方法叫回归分析.通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性.(3)散点图(板书)表示具有相关关系的两个变量的一组数据的图形,叫做散点图. 散点图形象地反映了各对数据的密切程度. 3.回归直线方程(1)求回归直线方程的思想方法先引导学生观察散点图的特征,发现各点大致分布在一条直线的附近.并问学生,类似图中的直线可画几条?显见,可画出不止一条类似的直线.那么,其中的哪一条直线最能代表变量x 与y 之间的关系呢?引导学生分析,最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为a bx y +=∧,其中a 、b 是待定系数. 则 ),,2,1.(n i a bx y i i =+=∧.于是得到各个偏差 ),,2,1).((n i a bx y y y i i i i =+-=-∧.显见,偏差∧-i i y y 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和2222211)()()(a bx y a bx y a bx y Q n n --++--+--=表示n 个点与相应直线在整体上的接近程度.记 ∑=--=ni iia bx y Q 12)((向学生说明∑=ni 1的意义).上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值(课前布置学生看阅读材料).即⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====..)())((2121121x b y a x n x xy n y x x x y y x x b ni i ni i i n i i n i i i其中∑∑====ni i n i i y n y x n x 111,1.在此基础上,给出回归直线方程、回归直线、线性回归分析的概念.最后,向学生指出,对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.(2)回归直线方程的求法提问:列表计算的优点是什么?故可得到,2573075.43.399,75.430770003.399307871752≈⨯-=≈⨯-⨯⨯-=a b 从而得回归直线方程是.25775.4+=∧x y最后请一位学生画出回归直线,并求出35=x 时,y 的估计值.例 一个工厂在某年里每月产品的总成线y (万元)与该月产量x (万件)之间有如下(1)画出散点图;(2)求月总成本y 与月总产量x 之间的回归直线方程. 讲解上述例题时,(1)可由学生完成;对于(2),可引导学生列表,按∑∑∑===→→→→→→→12112121212i ii i i i ii i i i y x y xy x y x y x 的顺序计算,最后得到.974.0,215.1≈≈a b 即所求的回归直线方程为.974.0215.1+=∧x y若条件允许,可借助几何画板向学生演示本题,即画出散点图,并求出回归直线方程.讲解上述例题后,要求学生完成下面问题:(1)画出散点图;(2)试求腐蚀深度y 对时间t 的回归直线方程. 略解:(1)散点图.呈直线形.(2)经计算可得∑∑∑========11111121112.13910,5442,36750,45.19,36.46i i i i ii iy t y t y t.3.036.46113675045.1936.4611139101111221112111≈⨯-⨯⨯-=⨯-⨯-=∑∑==tt tyyt b i i i ii.542.536.463.045.19≈⨯-=-=t b y a故所求的回归直线方程为.542.53.0+=∧t y让学生做课后练习题. 4.课堂小结本节课要求准确理解相关关系的概念,并在此基础上,了解回归分析与散点图的含义,了解回归直线方程推导的思路,会利用a 、b 的公式求出回归直线方程,利用回归直线方程去估值.六、布置作业: 教科书第1题.。

高中数学选修1-2《回归分析的基本思想及其初步应用》教案

高中数学选修1-2《回归分析的基本思想及其初步应用》教案

高中数学选修1-2《回归分析的基本思想及其初步应用》教案教学目标:1.了解回归分析的基本概念和方法,学会使用回归分析方法对一些实际问题作出预测和分析。

2.能够正确理解和使用回归分析的基本统计量,包括相关系数、判定系数和残差等。

3.能够理解和描述回归分析的假设条件和前提条件,掌握回归分析的模型建立过程,并能正确应用到实际问题中。

教学重点:1.回归分析的基本概念和方法。

2.回归分析的统计量及其含义。

3.回归分析的模型建立过程。

教学难点:1.应用回归分析方法对实际问题进行预测和分析。

2.掌握回归分析模型的建立方法。

教学方法:1.讲授法2.实例分析法3.互动式教学法教学内容:第一节回归分析的基本概念和方法1.回归分析的概念和意义。

2.回归分析的基本模型和方程式。

3.单变量和多变量回归分析的区别和应用。

4.回归分析的基本假设条件和前提条件。

第二节回归分析的统计量及其含义1.相关系数的概念和计算方法。

2.判定系数的定义和计算方法。

3.残差的概念和含义。

4.其他相关统计量的应用。

第三节回归分析的模型建立过程1.数据的收集和清理。

2.变量的筛选和筛选标准。

3.模型的构建和检验。

4.模型的应用和预测。

教学方式:1.讲授。

通过讲解回归分析的概念、方法、统计量和模型建立过程等内容,让学生了解回归分析的基本概念和方法,为后续的案例分析打下基础。

2.案例分析。

通过实例分析法,将回归分析的理论知识与实际问题相结合,并引导学生从实际问题中理解和掌握回归分析的方法和应用。

3.互动式教学。

引导学生在互动交流中,理解和掌握回归分析的基本概念和方法,加深对回归分析的理解和认识。

教学评估:教师根据学生在课堂上的表现和课下的练习情况,对学生进行综合评价。

主要考核内容包括:学生对回归分析的概念和方法的理解程度、学生对回归分析应用的掌握情况、学生对回归分析的模型建立和检验能力、学生的综合分析和判断能力等。

据此评价学生的成绩,并作出相应的教学反思和改进。

1.1-回归分析的基本思想及其初步应用

1.1-回归分析的基本思想及其初步应用

课题:1.1 回归分析的基本思想及其初步应用一、教材分析:回归分析是高中阶段较难的一个内容,它属于统计学部分。

学生在学过必修三《两个变量的线性关系》的基础上,为学习本节做了很好的铺垫,在教学中从这个基础出发,逐渐展开,分析对比,扩展出必修三中两变量分析过程中没有的“通过误差分析判断是否需要重新建模”这步,通过完善已学内容完成新课教学,从实质上降低本节内容难度。

二、教学目标:1.知识与技能通过典型案例的探究,了解回归分析的基本思想,会对两个变量进行回归分析,明确解决回归模型的基本步骤,并对具体问题进行回归分析以解决实际应用问题.了解最小二乘法的推导,解释残差变量的含义,了解偏差平方和分解的思想,了解判断刻画模型拟合效果的方法——相关指数和残差分析.掌握利用计算器求线性回归直线方程参数及相关系数的方法.2.过程与方法通过收集数据作散点图,分析散点图,求回归直线方程,分析回归效果,利用方程进行预报.3.情感、态度与价值观培养学生利用整体的观点和互相联系的观点来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心,加强与现实生活的联系,以科学的态度评价两个变量的相互关系.三、教学重点重点:回归分析的基本方法、随机误差e的认识、残差图的概念、用残差及R2来刻画线性回归模型的拟合效果.四、教学难点难点:回归分析的基本方法、残差概念的理解及拟合效果的判定、非线性回归向线性回归的转化.五、教学准备1、课时安排:1课时2、教具选择:电子白板六、教学方法:本节课采取探究式教学,把“关注知识”转向“关注学生”,在教学过程中,把“给出知识”的过程转变为“引起活动,让学生探究知识的过程”,把“完成教学任务”转向“促进学生发展”,让学生成为课堂上的真正主人.七、教学过程:1、自主导学:阅读课本2—9页回答下列问题:(学生课前预习后提出疑惑,老师解答) 一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:转速x (转/秒) 16 14 12 8 每小时生产有缺 陷的零件数y (件)119851.在平面直角坐标系中作出散点图. 【提示】2.从散点图中判断x 和y 之间是否具有相关关系? 【提示】 有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数? 可以.根据散点图作出一条直线,求出直线方程后可预测. (1)回归直线方程: y ^=b ^x +a ^,其中:b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^x ,x =1n ∑i =1nx i ,y =1n ∑i =1ny i .(2)变量样本点中心:(x ,y ),回归直线过样本点的中心.(3)线性回归模型:y =bx +a +e ,其中e 称为随机误差,a 和b 是模型的未知参数,自变量x 称为解释变量,因变量y 称为预报变量. 2、合作探究 (1)分组探究探究点1 回归分析的基本思想 和 探究点2 回归分析的初步应用R2=1-∑i=1nyi-y^i2∑i=1nyi-y2,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归的效果越好(2)教师点拨回归分析的过程:(1)随机抽取样本,确定数据,形成样本点;(2)由样本点形成散点图,判断是否具有线性相关关系;(3)由最小二乘法确定线性回归方程;(4)由回归方程观察变量的取值及变化趋势.3、巩固训练(1)、关于变量y与x之间的回归直线方程叙述正确的是( )A.表示y与x之间的一种确定性关系B.表示y与x之间的相关关系C.表示y与x之间的最真实的关系D.表示y与x之间真实关系的一种效果最好的拟合(2)、有下列说法:①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程y^=b^x+a^,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确命题的个数是( )A.1B.2C.3D.4(3)、已知某种商品的价格x(元)与需求量y(件)之间的关系有如下一组数据:求y关于x【思路探究】回归模型拟合效果的好坏可以通过计算R2来判断,其值越大,说明模型的拟合效果越好.4、拓展延伸(1)、某运动员训练次数与运动成绩之间的数据关系如下:(1)(2)求出线性回归方程;(3)作出残差图,并说明模型的拟合效果;(4)计算R2,并说明其含义.(2)、下表为收集到的一组数据:(1)作出x与(2)建立x与y的关系,预报回归模型并计算残差;(3)利用所得模型,预报x=40时y的值.5、师生合作总结1.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差e^1,e^2,…,e^n来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析.2.我们还可以用相关指数R2来反映回归的效果,其计算公式是:R2=1-∑i =1ny i -y ^i 2∑i =1ny i -y2.八、课外作业下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x3456y 2.5 34 4.5(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤. 九、板书建立回归模型的基本步骤:(1)确定解释变量和预报变量;(2)画散点图,观察是否存在线性相关关系; (3)确定回归方程的类型,如y =bx +a ; (4)按最小二乘法估计回归方程中的参数;(5)得结果后分析残差图是否异常,若存在异常,则检查数据是否有误,或模型是否合适.十、教学反思:本节课学习了用最小二乘法求出y 关于x 的线性回归方程,但大多数学生不会理解公式中符号代表什么意思,所以教学效果不是很好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归分析的基本思想及其初步应用
【教材分析】
学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容。

在“回归分析的基本思想及其初步应用”这一节中进一步介绍回归分析的基本思想及其初步应用。

这部分内容共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第二课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用。

本节课是第一课时的内容。

【教学目标】
知识和技能:认识随机误差,认识残差以及相关指数根据散点分布特点,建立线性回归模型了解模型拟合效果的分析工具——残差分析
过程与方法:经历数据处理全过程,培养对数据的直观感觉,体会统计方法的应用。

通过一次函数模型和线性回归模型的比较,使学生体会函数思想。

情感、态度与价值观:
通过案例分析,了解回归分析的实际应用,感受数学“源于生活,用于生活”,提高学习兴趣教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。

【教学重难点】
重点:
1.了解回归模型与函数模型的区别
2.了解任何模型只能近似描述实际问题
3.了解模型拟合效果的分析工具——残差分析和相关指数r方
难点:理解相关指数r方的含义
【教学过程】
一、创设情境
通过学生感兴趣的篮球明星的身高体重表格,引出两个问题。

身高和体重之间有怎样的关系?如何来研究他们之间这种关系?通过这两个问题的提出,自然而然的把学生的注意力转移到回顾必修三学过的相关知识上,然后师生一起对已经学过的知识进行回顾。

必修3是高二上学期学的,而选修1-2是高二下学期学的,之间相隔时间太久,所以先由师生共同进行篮球明
星的身高预测体重的回归分析的操作。

二、问题呈现
提出问题,能否用篮球明星身高预测体重的回归方程来预测一名高三女生的身高体重?目的是让学生讨论得出回归方程只适用于我们所研究的样本的总体的结论,同时也为后面给出例1做出铺垫。

教材上的例1是给出七名女大学生的身高和体重数据进行回归分析,在这里对这道例题改为现场让学生代表用抽样调查的方法统计10名女生的身高体重数据来进行线性回归分析。

这样做,数据来源于学生自己,可以极大的提高学生的兴趣和求知欲。

同时,也对必修3学过的抽样调查进行了潜移默化的学习,学生在采集的时候,教师做必要的引导。

数据采集完成以后,由学生自己画出散点图并进行线性回归分析。

然后让学生计算一名身高为168cm的高三女生的预测体重。

提出探究1,身高为168cm的高三女生,体重一定是预测体重吗?如果不是,你能解释一下原因吗?
对于探究1,先让学生思考,并小组讨论,最后由学生讨论得到正确答案,实际上61.65是身高为175cm的高三男生的平均体重的估计值,而不一定是某位身高为175cm的男生的真实体重。

也就是说,用这个回归方程不能给出每个身高175cm的高三男生的体重的预测值,只能给出他们平均体重的预测值。

这也是教学重点之一。

在探究1的基础上,教师进一步的提出身高体重散点图并不是在一条直线上,而是在一条直线附近,从而给出线性回归模型以及随机误差项e的概念。

并提出探究2,有学生讨论随机误差项e产生的原因。

在学生理解随机误差项e以后,教师提出探究3,在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个不可观测量,那么应该怎样研究随机误差呢?这个问题是本堂课的一个难点。

由教师用动态图像演示并讲解残差概念。

事实上,e不可观测的原因是因为,e=y-(bx+a),而我们不知道身高对体重的影响到底怎样,也就是bx+a的真实值我们无从得知,我们只能用y估来近似的估计它,从而e我们也可以用e估来估计它,这就是残差。

掌握了残差概念以后,教师提出探究4,:如何发现数据中的错误?如何衡量模型的拟合效果?这个问题由教师引导学生,师生共同来完成。

事实上,残差的绝对值特别大的点,很可能是错误数据。

同时,如果模型选用合适,残差点应该比较均匀的分布在一条水平带状区域内。

但由于我们采集的数据只有10组,所以水平带状区域不明显,正因为这样,我后面提出了例2来帮助学生理解。

掌握了以上知识以后,我设计了例2,选用我校期中考试426名理科学生的语数外成绩为
背景,创设了这个情景。

这个设计的好处是,第一、数据来自于我们身边,能充分调动学生积极性,并且能更深刻的体现本章的题目统计案例。

第二、我们说残差点如果比较均匀的分布在一条水平带状区域内,那么模型选取较为合适,数据量太少,6.7个点,显然不明显。

第三、大数据量的处理,更能体现计算机的优越性。

本节内容是新课标教材的新增内容,目的是通过案例介绍一些统计方法,让学生体会运用统计方法解决实际问题的基本思想,因此本节更看重的是回归的统计思想,考虑到是新增内容,在高考中可能有所体现,但所涉及的数据计算应该不会很繁琐,以选择、填空的形式出题的可能性较大。

所以在此处设计了4道选择、填空的练习题。

最后小结部分由教师引导学生一起进行。

通过对一次函数模型和线性回归模型的比较,教师点出回归分析的基本思想就是对于生活中大量存在的不确定现象,是可以通过具有确定性的函数模型来近似的刻画的。

然后由学生来回顾进行线性回归分析的一般步骤。

最后布置作业。

本节课结束。

【教法学法分析】
通过创设情境——运用已有知识——发现新问题——启发引导——合作交流——得到新知识。

整个活动过程,学生始终是学习活动的主体,教师是组织者、引导者、合作者。

【教学反思】
1.本节课的两个例题中的数据都来自于学生自己的真实生活,这样的案例真实可靠,更具有说服力。

2.教学中没有以练习为主,而是定位在知识形成过程的探索,引导学生体验数学中的理性精神。

相关文档
最新文档