电力电子技术电力电子技术的定义电力电子技术是一门
电力电子技术概述

电力电子技术概述电力电子技术是一门研究电力系统中电能的控制与转换的学科,它涉及到电力电子器件、电力电子电路、电力电子系统以及与之相关的控制策略和应用领域等方面。
本文将概述电力电子技术的起源、应用领域、主要器件和电路拓扑结构,以及未来发展趋势。
一、电力电子技术的起源与发展电力电子技术源于20世纪60年代的美国,当时希望能够利用电子器件来实现电力的调节、控制和转换。
最早应用于变频调速装置、静态无功补偿装置、电能质量改善装置等,逐渐发展成为一个独立的技术领域。
电力电子技术的发展也受益于电子器件的进步,如功率半导体器件的改进和智能控制技术的应用。
二、电力电子技术的应用领域1. 变频调速技术:电力电子技术在工业生产中的一个重要应用领域就是变频调速技术。
通过改变电机的输入电压和频率,可以实现对电机转速的精确控制。
变频调速器广泛应用于印刷机械、纺织机械、化工设备等领域,提高了生产效率和节能效果。
2. 静态无功补偿技术:电力电子技术可以实现对电力系统中无功功率的补偿控制,提高电力系统的功率因数和稳定性。
静态无功补偿装置主要应用于电力系统中的无功功率补偿和谐波抑制,有效改善了电能质量,降低了线损和电流谐波。
3. 新能源发电技术:电力电子技术在新能源领域的应用也日益广泛。
光伏逆变器、风力发电控制器等电力电子装置将新能源转换为交流电能,并通过电网进行输送和利用。
这种技术可以实现对新能源发电的有效控制和管理,推动了可再生能源的利用。
4. 电力系统调节和控制:电力电子技术在电力系统调节和控制中扮演着重要角色。
通过电力电子器件和控制策略,可以实现对电力系统的电压、频率、质量等方面的调节和保护。
这对于电力系统的稳定运行具有重要意义。
三、电力电子技术的主要器件和电路拓扑结构1. 功率半导体器件:电力电子技术的基础是功率半导体器件,主要包括二极管、晶闸管、MOSFET、IGBT等。
这些器件具有承受高压和高电流的特点,并能实现高效率的电能转换。
阮新波电力电子技术教学课件

数字化与智能化
采用数字化控制技术,实现电 力电子设备的智能化管理和优 化控制。
绿色化与可持续发展
关注环保和可持续发展,推动 电力电子技术的绿色化进程。
37
THANKS
感谢观看
REPORTING
2024/1/29
38
3
电力电子技术的定义与发展
定义
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
发展历程
自20世纪50年代晶闸管问世以来,电力电子技术经历了多次变革,从最初的整 流器时代到逆变器时代,再到如今的变频器时代,技术不断升级,应用领域也 不断扩展。
2024/1/29
4
电力电子技术的应用领域
13
半控型器件
01
工作原理及特性
2024/1/29
02
驱动电路与保护电路
03
主要参数与选型
14
04
应用举例
全控型器件
2024/1/29
01
电力场效应晶体管(Power MOSFET)
02
工作原理及特性
驱动电路与保护电路
03
15
全控型器件
主要参数与选型
1
应用举例
2
3
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)
2024/1/29
22
有源逆变电路
工作原理
有源逆变电路是指将直流电能转换为交流电能,同时需要外部能源来驱动开关器件工作
的电路。其工作原理是通过控制开关器件的通断,将直流电源逆变为交流电源。
特点
有源逆变电路具有输出电压稳定、波形质量好、可控性强等优点。但需要外部能源驱动 ,效率相对较低,且成本较高。
电力电子技术

电力电子技术电力电子技术是一门研究电能的调节、转换和控制的技术学科,其应用领域广泛,包括电力系统、电力传输、电力转换、电力调节等方面。
本文将介绍电力电子技术的基本概念、发展历程以及应用领域。
电力电子技术是指利用半导体电子器件来实现电能的调节、变换和控制的技术。
它是电力工程学科中的一门重要分支,其发展与应用日益广泛,对现代电力系统的稳定运行和高效能利用起着至关重要的作用。
电力电子技术的发展可以追溯到20世纪60年代。
那时半导体器件的出现,特别是可控硅管的问世,为电力电子技术的发展提供了坚实的基础。
可控硅管具有很好的开关特性和控制能力,能够对电能进行精确的调节。
随着电力电子技术的不断发展,越来越多的半导体器件被成功应用于电力系统中,如双向可控硅管、IGBT、MOS管等。
电力电子技术在电力系统中的应用非常广泛。
其中最主要的应用之一是直流输电技术。
直流输电技术可以有效地解决交流输电中的电流损耗和电压稳定性等问题,提高输电效率和稳定性。
电力电子技术在直流输电中扮演着重要的角色,能够实现输电过程中的功率调节、电流控制、电压稳定等功能。
除了直流输电,电力电子技术还广泛应用于交流输电系统的无功补偿。
无功补偿是为了改善电力系统中的功率因数,提高系统的稳定性和效率。
电力电子技术通过控制无功补偿装置中的电子器件,实现对电力系统中的无功功率的调节和控制。
无功补偿技术不仅能够提高电力系统的稳定性,还能够减少电能损耗,提高电能利用率。
此外,电力电子技术还应用于交流电机的调速控制。
传统的交流电机调速方法主要通过改变电源的频率和电压来实现,但这种方法效果有限且成本较高。
电力电子技术通过控制电机输入端的电压和频率,实现对电机转速的精确控制,提高电机系统的效率和控制精度。
这种调速方法被广泛应用于电动汽车、电梯、机床等领域。
总之,电力电子技术是电力工程中不可或缺的重要技术,在电力系统的稳定运行和高效利用中发挥着重要作用。
随着科技的不断发展,电力电子技术在实际应用中将进一步完善和拓展。
(2024年)电力电子技术第5版王兆安课件

该方式通过调制信号(如正弦波)与高频载波(如三角波)进行比较生成PWM脉冲。优 点是生成的PWM脉冲频率高、波形好且易于实现实时控制。缺点是对于非线性负载的适 应性较差。
32
07
电力电子系统的设计与应用
2024/3/26
33
电力电子系统的设计原则与方法
2024/3/26
设计原则
确保系统稳定性、高效性、可靠性和 安全性;满足特定应用需求;优化成 本和性能。
2024/3/26
6
02
电力电子器件
2024/3/26
7
不可控器件
电力二极管(Power Diode)
结构和工作原理
伏安特性
2024/3/26
8
不可控器件
主要参数
晶闸管(Thyristor)
结构和工作原理
2024/3/26
9
不可控器件
伏安特性和主要参数
派生器件
2024/3/26
10
半控型器件
2024/3/26
36
感谢您的观看
THANKS
2024/3/26
37
26
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路的输出电压波形为矩 形波或正弦波,其特点是输出电压幅 值和频率可调,适用于对输出电压要 求较高的场合。
电流型逆变电路
电流型逆变电路的输出电流波形为矩 形波或正弦波,其特点是输出电流幅 值和频率可调,适用于对输出电流要 求较高的场合。
2024/3/26
工业自动化
应用于电机驱动、电源供 应、过程控制等领域,提 高生产效率和能源利用率 。
35
电力电子系统的发展趋势与挑战
发展趋势
电力电子技术课后题答案

0-1. 什么是电力电子技术 ?电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。
国际电气和电子工程师协会( IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。
”0-2. 电力电子技术的基础与核心分别是什么?电力电子器件是基础。
电能变换技术是核心.0-3. 请列举电力电子技术的 3 个主要应用领域。
电源装置 ; 电源电网净化设备 ; 电机调速系统 ; 电能传输和电力控制 ; 清洁能源开发和新蓄能系统 ; 照明及其它。
0-4. 电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型AD-DC整流电 ;DC-AC逆变电路 ;AC-AC 交流变换电路 ;DC-DC直流变换电路。
常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。
0-5. 从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。
可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。
集成电晶闸管及其应用:大功率整流器。
自关断器件及其应用:各类节能的全控型器件问世。
功率集成电路和智能功率器件及其应用:功率集成电路( PIC),智能功率模块( IPM)器件发展。
0-6. 传统电力电子技术与现代电力电子技术各自特征是什么?传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般为相控型,控制技术多采用模拟控制方式。
现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽调制型,控制技术采用 PWM 数字控制技术。
0-7. 电力电子技术的发展方向是什么?新器件:器件性能优化,新型半导体材料。
高频化与高效率。
集成化与模块化。
数字化。
绿色化。
1-1. 按可控性分类,电力电子器件分哪几类?按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。
《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
电力电子技术

拓扑结构
常见的升降压型DC/DC变换器拓 扑结构包括Buck-Boost电路、
Zeta电路等。
应用领域
升降压型DC/DC变换器在需要宽 范围电压输入的场合中得到了广 泛应用,如电动汽车充电桩、工
业自动化设备、通信设备等。
2024/1/28
19
05交流-Leabharlann 流变换技术2024/1/28
20
交流调压电路原理及分类
分类
根据控制信号的性质,交流调功电路可分为 模拟控制交流调功电路和数字控制交流调功 电路。
2024/1/28
22
交流电力电子开关及应用
交流电力电子开关
是一种能够控制交流电通断的开关器件,具 有快速、可靠、节能等优点。常见的交流电 力电子开关有晶闸管、双向晶闸管、可关断 晶闸管等。
2024/1/28
拓扑结构
应用领域
升压型DC/DC变换器在太阳能发电、 风力发电等新能源领域,以及电动汽 车、电动自行车等交通工具中得到了 广泛应用。
常见的升压型DC/DC变换器拓扑结构 包括Boost电路、Sepic电路等。
2024/1/28
18
升降压型DC/DC变换器
工作原理
升降压型DC/DC变换器结合了降 压型和升压型变换器的特点,可 以实现输入电压的升降压转换。
电力电子技术
2024/1/28
1
目录 CONTENTS
• 电力电子技术概述 • 电力电子器件 • 整流与逆变技术 • 直流-直流变换技术 • 交流-交流变换技术 • 电力电子技术应用实例分析
2024/1/28
2
01
电力电子技术概述
2024/1/28
3
定义与发展历程
电力电子技术第五版(王兆安)课件

VS
漏抗对整流器换相的影响
漏抗的存在使得换相过程变得复杂,可能 导致换相失败或产生过大的换相过电压。
整流电路的谐波和功率因数
谐波
整流电路输出的非正弦波形含有丰富的谐波 成分,对电网和负载造成不良影响。
功率因数
整流电路的功率因数通常较低,因为谐波和 无功功率的存在使得视在功率大于有功功率 。提高功率因数的方法包括采用功率因数校 正电路和采用高功率因数的整流器等。
用效率。
交通运输
电动汽车、高铁、航空器等交 通工具的电力驱动系统大量采
用电力电子技术。
工业自动化
电机驱动、电源供应、自动化 控制等方面广泛应用电力电子
技术,提高生产效率。
信息技术
数据中心、云计算等领域需要 高效、可靠的电源供应,电力 电子技术发挥着重要作用。
课程目标与学习方法
课程目标
掌握电力电子技术的基本原理、分析方法、设计方法和实验 技能,具备从事电力电子技术应用和研究的初步能力。
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路以电压源作为输入,通过控制开关元 件的通断,得到所需的交流输出电压。其特点是输出 电压波形质量高,但需要较大的滤波电感。
电流型逆变电路
电流型逆变电路以电流源作为输入,通过控制开关元 件的通断,得到所需的交流输出电流。其特点是输出 电流波形质量高,但需要较大的滤波电容。
BIG DATA EMPOWERS TO CREATE A NEW ERA
电力电子技术第五版(王兆
安)课件
• 电力电子技术概述 • 电力电子器件 • 整录
CONTENTS
01
电力电子技术概述
BIG DATA EMPOWERS TO CREATE A NEW
电力电子技术概述

电力电子技术概述电力电子技术是指在电力系统中应用电子元器件和电子技术,从而实现对电能的调节、变换和控制的一门技术。
它在现代电力系统中扮演着重要的角色,对于提高电力传输、转换和利用效率起到至关重要的作用。
本文将概述电力电子技术的基本原理、应用领域和未来发展趋势。
一、基本原理电力电子技术的基本原理是通过应用晶体管、二极管、开关等电子元件,实现对电能的调节和控制。
通过改变电压、电流的形状、频率和幅值来实现对电能的变换。
电力电子技术的核心是开关技术和变换技术。
1. 开关技术:开关技术是指通过控制开关的通断状态,来控制电流和电压的变化。
常见的开关元件有晶体管、功率开关管等。
通过合理的开关控制,可以实现电流的调节、电压的变换等功能。
2. 变换技术:变换技术是指通过变换电流和电压的形状、频率和幅值,将电能从一种形式转换为另一种形式。
常见的变换技术有直流-直流变换、直流-交流变换等。
通过变换技术,可以将电能从电网中提取出来,或者将直流电能转换为交流电能。
二、应用领域电力电子技术在多个领域广泛应用,其中包括能源转换、电力传输和利用、电动汽车等。
1. 能源转换:电力电子技术在可再生能源领域发挥着重要作用。
通过电力电子技术,可以将太阳能、风能等可再生能源转换为电能,从而实现清洁能源的利用。
2. 电力传输和利用:电力电子技术在电力系统中的传输和利用环节起着关键作用。
通过电力电子技术,可以实现高压交流输电与变频无级调速控制,提高电力传输效率和系统稳定性。
3. 电动汽车:电力电子技术在电动汽车领域的应用不断增加。
通过电力电子技术,可以实现电动汽车的充电与放电控制、能量回馈、效率提升等功能,推动电动汽车的发展与普及。
三、未来发展趋势随着能源需求的不断增长和环境问题的日益突出,电力电子技术将在未来得到更广泛的应用和发展。
1. 高效能源转换:未来电力电子技术将更加注重能源转换的高效率。
通过研究和改进电力电子器件的性能,提高能源转换效率,减少能源损失,从而推动清洁能源的大规模利用。
电力电子技术第5版pdf-2024鲜版

无源逆变电路常用于一些对输出波形要求不高的场合,如小功率电源 、照明等。
2024/3/28
23
逆变电路的应用与特点
应用领域:逆变电路在新能源发电、电动汽车、UPS、 电力拖动等领域有着广泛的应用,是实现电能高效转换 和利用的关键技术之一。 能够实现直流电能与交流电能之间的转换;
具有较高的转换效率和功率因数;
UPS主要由整流器、逆变器、蓄电池组和静态开关等组成,根据工作方式可分为在 线式、后备式和在线互动式三种类型。
2024/3/28
UPS广泛应用于计算机、通信、数据中心、医疗设备等领域,保障关键负载在市电 异常时的正常运行。
35
变频调速器
变频调速器是一种通过改变电机供电频率来实现电机速度调节的装置,广泛应用于风机、水泵、压缩 机等负载的节能控制。
晶闸管
一种具有三个PN结的四层结构的大功率半导体器件,可以承受高电压和大电流,具有开 关速度快、寿命长等优点。在交流电力电子开关中广泛应用。
可关断晶闸管(GTO)
具有自关断能力的一种晶闸管,可以通过门极负脉冲或阳极电流下降来实现关断。GTO具 有高电压、大电流、高开关速度等优点,适用于高压、大功率的交流电力电子开关。
环保意识的提高将推动电力电子技术向绿色化方向发展,减少对环境 的影响,提高能源利用效率。
集成化
随着集成电路技术的不断发展,电力电子技术的集成度将不断提高, 实现更小的体积和更高的可靠性。
6
02
电力电子器件
2024/3/28
7
不可控器件
工作原理
利用PN结的单向导电性
特点
结构简单、价格低廉、工作可靠
源的转换、储存和并网等功能。
5
电力电子技术的未来趋势
电力电子技术

1.2 电力电子技术的主要内容
电力电子装置
电力电子装置是由各类电力电子电路 组成的装置,用于大功率电能的变换 和控制,又称变流装置。它包括整流 器、逆变器、直流变流器、交流变流 器、各类电源和开关、电机调速装置、 直流输电装置、感应加热装置、无功 补偿装置、电镀电解装置、家用电器 变流装置等。
子学和电力学的主要关系
1.1 什么是电力电子技术
电力电子技术与控制理论 控制理论广泛用于电力电子技术中,它使电力电子装置和系
统的性能日益优越和完善,可以满足人们的各种需求
电力电子技术可以看作弱电控制强电的技术,是弱电和强电 之间的接口,而控制理论则是实现这种接口的强有力的纽带 控制理论和自动化技术是密不可分的,而电力电子装置又是 自动化技术的基础元件和重要支撑技术
1.3 电力电子技术的发展状况
电力电子技术的诞生是以1957年美国通用电气公司研制出第一 个晶闸管为标志的 晶闸管出现的前期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管。它能在真空中对电子流进行控制, 并应用于通信和无线电,从而开了电子技术之先河。 20世纪30年代到50年代,水银整流器迅猛发展,它广泛地 应用于电化学工业、电气铁道的直流变电,以及轧钢用直流电 动机的传动中,甚至用于直流输电。在这一时期,把交流变为 直流的方法除水银整流器外,还有发展更早的电动机—直流发 电机组,即变流机组 1947年美国著名的贝尔实验室发明出了晶体管,晶体管的 问世则引发了电子技术的一场革命
电力电子技术
东北大学
1 什么是电力电子技术 1.2电力电子技术研究的内容 1.3电力电子技术的发展状况 1.4电力电子技术的应用
1.1 什么是电力电子技术
电力电子技术总结

电力电子技术总结1. 引言电力电子技术是应用于能量转换、控制与调节的一门关键技术。
随着能源需求的不断增加和环境保护意识的增强,电力电子技术在电力系统、可再生能源和电动汽车等领域中的应用越来越广泛。
本文将对电力电子技术的基本原理、应用领域以及未来发展趋势进行总结和分析。
2. 电力电子技术概述电力电子技术是利用半导体器件和电磁元器件将电能转化为所需的形式,并进行各种功能的控制和调节的技术。
它包括直流/交流变换、能量调节、频率调节、电力质量改善等方面。
电力电子技术广泛应用于电力系统、工业控制和电动交通等领域。
主要的电力电子器件有晶闸管、功率场效应管、不可控硅、可控硅等。
这些器件通过电压和电流的控制来实现电能的转换和调节。
同时,电力电子技术也离不开控制电路、滤波电路和保护电路等配套技术。
3. 电力电子技术的应用3.1 电力系统电力电子技术在电力系统中的应用非常广泛。
它可以提供稳定的电压和频率,并对电力质量进行改善。
使用电力电子技术的设备,如交流输电系统、变压器和静止无功补偿装置,可以提高电力系统的稳定性、效率和可靠性。
3.2 可再生能源随着可再生能源的快速发展,电力电子技术在太阳能光伏、风能和潮汐能等领域的应用越来越重要。
通过电力电子转换器,可以将不稳定的可再生能源转化为稳定的电能,以满足电网的需求。
此外,电力电子技术还可以实现能量回馈和储能,提高可再生能源的利用效率。
3.3 电动交通电动汽车作为一种清洁能源车辆,正逐渐成为未来交通运输的主流。
电力电子技术在电动汽车中起到关键作用,包括电池充电器、电机驱动器和能量回馈装置等。
借助电力电子技术,电动汽车可以实现高效、安全和可持续的能源利用。
4. 电力电子技术的发展趋势4.1 高效能量转换未来的电力电子技术将更加注重能量转换的效率,以减少能源浪费和减少对自然资源的依赖。
高效能量转换器件的研发,如功率场效应管和新型半导体材料,将成为发展的重点。
4.2 多能源互联随着多能源系统的普及,电力电子技术也将面临更多的挑战。
电力电子技术与应用

电力电子技术与应用电力电子技术是指利用半导体器件和电磁元件等电子器件,对电力进行高效、稳定的转换与控制的技术领域。
它在现代电力系统和电力设备中扮演着至关重要的角色。
本文将从电力电子技术的定义、应用、发展趋势等方面进行探讨。
一、电力电子技术的定义电力电子技术是指利用电子器件对电能进行调节、变换、控制的技术。
电力电子器件一般具有高功率、高频率、高唯一性和高可靠性等特点,主要包括晶体管、可控硅、IGBT等。
电力电子技术通过改变电路的开关状态和电源工作方式,实现电能的调整和转换,从而满足电力系统对不同形式电能的需求。
二、电力电子技术的应用1. 高压直流输电技术高压直流输电是电力电子技术的一项重要应用。
通过将交流电能转换为直流电能,再进行输送,可以有效降低输电损耗,提高电网稳定性。
高压直流输电技术在远距离、大容量输电方面具有明显优势,已广泛应用于长距离跨区域输电工程。
2. 可再生能源发电技术电力电子技术在可再生能源发电中起到了关键作用。
风力发电、光伏发电等可再生能源具有不稳定性和间歇性,而电力电子技术可以实现对可再生能源的有效调节和控制,使其能够稳定地并入电力系统。
此外,电力电子技术还可以实现电能的质量改善和功率因数校正。
3. 变频调速技术变频调速技术是电力电子技术在电机控制领域的应用。
通过电力电子器件对电机进行调节,可以实现电机转速的连续调整和转矩的精确控制。
变频调速技术广泛应用于电力、化工、交通等行业,可以实现能量的高效利用和运行的平稳可靠。
4. 无功补偿技术无功补偿是电力电子技术在电力系统中的重要应用之一。
通过电力电子器件对无功功率的生成和吸收进行调节,可以实现电网的无功功率平衡和电压稳定控制。
无功补偿技术对提高电力系统的电能质量和稳定性具有重要意义。
三、电力电子技术的发展趋势1. 高功率、高可靠性随着电力需求的增长和电力器件技术的不断进步,电力电子技术将朝着高功率、高可靠性方向发展。
电力电子器件的集成化和可靠性的提升将进一步推动电力电子技术的发展。
《现代电力电子技术》课件

电力电子技术的未来发展方向
高效化
智能化
未来电力电子技术将更加注重能效的提高 ,不断推动能源转换和利用效率的提升。
随着人工智能和物联网技术的发展,电力 电子技术将更加智能化,能够实现自适应 控制和远程监控等功能。
集成化
绿色化
未来电力电子技术将更加注重集成化设计 ,实现多功能、高集成度的电力电子系统 。
05
CATALOGUE
电力电子技术的挑战与未来发 展
电力电子技术的挑战
01
02
03
技术更新换代快
随着科技的不断进步,电 力电子技术需要不断更新 换代,以满足更高的性能 和效率要求。
节能环保压力
随着能源危机和环境问题 的日益严重,电力电子技 术在节能环保方面面临更 大的压力。
市场竞争激烈
电力电子市场参与者众多 ,竞争激烈,企业需要不 断提升技术水平和产品创 新能力。
详细描述
在DC/DC转换电路中,开关电源的作用是通过控制开关 管的通断时间来调节输出电压的大小。当输入电压通过开 关管时,通过控制开关管的占空比,可以调节输出电压的 大小,从而实现将一种直流电压转换为另一种直流电压。
总结词
DC/DC转换电路的应用
详细描述
DC/DC转换电路广泛应用于各种需要不同电压等级的场 合,如通信设备、计算机、仪器仪表等。通过DC/DC转 换电路,可以将较高或较低的电压转换为所需的稳定直流 电压,满足各种设备的用电需求。
电力电子技术的应用
电力系统
电力系统中的电力电子技术应用主要涉及发 电、输电和配电环节。通过使用电力电子设 备,如可编程逻辑控制器(PLC)和智能传 感器,可以实现电网的智能化控制和优化管 理,提高电力系统的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术第一部分一、电力电子技术的定义电力电子技术是一门利用电力电子器件、电路理论和控制技术对电能进行处理、控制和变换的学科,是现代电子学的一个重要分支,也是电工技术的分支之一。
电力电子技术是应用于电力领域的电子技术。
具体地说,就是使用电力电子器件对电能进行变换和控制的技术。
二、电力电子技术的研究内容电力电子技术的研究内容:1、电力电子器件2、变流技术3、控制技术或者说,电力电子技术的研究内容:电子学、电力学、控制理论三、与其它学科的关系1、与微电子学的关系三个相同点:(1)都分为电子器件和电子电路两大分支,二者同根同源(2)两类器件制造技术的理论基础相同;(3)制造工艺也基本相同。
两个不同点:(1)应用目的不同——前者用于电力变换,后者用于信息处理;(2)工作状态不同——在微电子技术中,器件既可以处于放大状态,也可以处于开关状态;而在电力电子技术中为避免功率损耗过大,电力电子器件总是工作在开关状态。
2、与电力学(电气工程)的关系(1)电力电子技术广泛用于电气工程中;(2)国内外均把电力电子技术归为电气工程的一个分支;(3)电力电子技术是电气工程学科中最为活跃的一个分支。
3、与控制理论的关系(1)控制理论广泛用于电力电子系统中;(2)电力电子技术是弱电控制强电的技术,是弱电和强电的接口,控制理论是这种接口的有力纽带;(3)电力电子装置是自动化技术的基础元件和重要支撑技术。
四、电力电子技术的发展历史美国通用电气公司研制出第一个工业用的普通晶闸管,标志电力电子技术的诞生1、传统电力电子技术电力电子器件以半控型的晶闸管为主,变流电路以相控电路为主,控制电路以模拟电路为主。
2、现代电力电子技术现代电力电子技术在器件、电路及其控制技术方面与传统电力电子技术相比主要有如下特点:A、集成化B、高频化C、全控化D、控制电路弱电化E、控制技术数字化3、电力电子技术的发展展望科学家预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学技术的两大支柱。
第二部分1、电力电子器件1.1、电力电子技术概述(1)基本概念A、在电气设备或电力系统中,直接承担电能的变换或者控制任务的电路被称为主电路。
B、电力电子器件是指可直接用于处理电能的主电路中,实现电能的变换或者控制的电子器件。
(2)同微电子器件相比的一般特征A、能处理电功率的能力,一般都远大于处理信息的电子器件。
B、电力电子器件一般都工作在开关状态。
C、电力电子器件往往需要由信息电子电路来控制。
D、电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。
(3)应用电力电子器件系统组成电力电子器件一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。
在主电路和控制电路连接的路径上,以及主电路与检测电路的连接上,一般需要进行电气隔离,而通过其他手段如光、磁等来传递信号(4)电力电子器件的分类按照电力电子器件能够被控制电路信号所控制的程度,可以将电力电子器件分为以下3类:A、不可控型器件——不能用控制信号来控制其通断。
这类器件主要是指晶闸管及其大部分派生器件,器件的关断完全是由其在主电路中承受的电压和电流决定的。
B、半控型器件——通过控制信号可以控制其导通而不能控制其关断。
主要是电力二极管,器件的导通和关断完全是由其在主电路中承受的电压和电流决定的。
C、全控型器件——通过控制信号既可控制其导通又可控制其关断,又称自关断器件。
目前常用的是绝缘栅双极性晶体管(IGBT)、电力场效应晶体管(电力MOSFET)和门极可关断晶闸管(GTO)。
1.2、不可控型器件——电力二极管(1)外形——螺栓型和平板型两种封装(2)结构(3)电气图形符号(4)主要参数A、额定电流——在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。
B、正向压降U F——在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。
C、反向重复峰值电压U RRM——对电力二极管所能重复施加的反向最高峰值电压。
使用时,应当留有两倍的裕量D、最高工作结温T JM——结温是指管芯PN结的平均温度,用T J表示。
T JM是指在PN结不致损坏的前提下所能承受的最高平均温度。
T JM通常在125~175 C范围之内。
1.3、半控型器件——晶闸管(SCR)(1)A、外形——螺栓型和平板型两种封装B、结构C、电气图形符号(2)导通的条件、关断的条件A、使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
即u AK>0且u GK>0。
其他可能导通的情况,参见(3)误导通的情况。
B、关断的条件:,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
简单的说就是使通过晶闸管的电流小于维持电流C、使晶闸管关断方法:a、去掉阳极正向电压b、给阳极加反向电压c、降低正向阳极电压,使通过晶闸管的电流小于维持电流(3)误导通的情况a、阳极电压升高至相当高的数值造成雪崩效应b、阳极电压上升率dudt过高,中间结电容产生位移电流c、结温较高,漏电流增大d、光触发(4)主要参数A、额定电压U TN通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。
实际选用时,额定电压要留有一定裕量,一般取额定电压为实际工作电路中可能承受到的正向阻断重复峰值电压U DRM和反向重复峰值电压U RRM的最大峰值电压,再取2~3倍的安全裕量。
B、额定电流()T AVI(参见第三部分)晶闸管在环境温度为40 C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。
C、维持电流I H维持电流I H是指使晶闸管维持导通所必需的最小电流。
一般为几十到几百毫安,与结温有关,结温越高,则I H越小。
D、擎住电流I L擎住电流I L是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。
对同一晶闸管来说,通常IL约为IH 的2~4倍。
E、通态平均电压U T(A V)当晶闸管流过正弦半波的额定电流平均值和稳定的额定结温时,元件阳极与阴极之间电压降的平均值。
F、断态电压临界上升率du dt指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。
电压上升率过大,使充电电流足够大,就会使晶闸管误导通。
G、通态电流临界上升率di dt指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。
如果电流上升太快,可能造成局部过热而使晶闸管损坏。
H、额定结温T jm晶闸管在正常工作时所允许的最高结温(器件内部)。
(5)派生器件快速晶闸管(FST)—快速晶闸管、高频晶闸管双向晶闸管(TRIAC)逆导晶闸管(RCT)光控晶闸管(LTT)1.4、全控型器件(1)电力晶体管(GTR,BJT)优点——耐高压、大电流、开关时间短、饱和压降低和安全工作区宽缺点——二次击穿、驱动功率大结构及电气图形符号:(基极b、集电极c和发射极e)电力电子电路中GTR工作在开关状态工作在截止区或饱和区。
但开关过程中,即在截止区和饱和区之间过渡时,经过放大区(2)电力场效应晶体管(Power MOSFET)电力场效应晶体管(Power MOSFET)分为结型和绝缘栅型。
通常主要指绝缘栅型场效应晶体管。
结型电力场效应晶体管一般称作静电感应晶体管(SIT)特点——用栅源电压来控制漏极电流结构及电气图形符号:(栅极G、漏极D和源极S)静态特性:截止区(GTR的截止区)饱和区(GTR的放大区)非饱和区(GTR的饱和区)电力场效应晶体管(Power MOSFET)工作在开关状态,即在截止区和非饱和区之间来回转换。
(3)绝缘栅双极晶体管(IGBT)结构及电气图形符号:(栅极G、集电极C和发射极E)静态特性:正向阻断区(GTR的截止区)有源区(GTR的放大区)饱和区(GTR的饱和区)IGBT工作在开关状态,即在正向阻断区和饱和区之间来回转换。
注:以上全控型器件的输出特性和主要参数参见P21——P311.5、电力电子器件的驱动电流驱动型器件的驱动电路:GTO和GTR是电流驱动型器件电压驱动型器件的驱动电路:电力MOSFET和IGBT是电压驱动型器件1.6、晶闸管变流装置的保护电路通常有五种保护电路:过电流保护、过电压保护、dudt保护、didt保护和门极保护1.7、缓冲电路缓冲电路又称为吸收电路,其作用是抑制电力电子器件的过电压、du dt 或者过电流和didt,降低电力电子开关器件的开关应力,将开关过程软化,减小器件的开关损耗并对器件给予可靠的保护,维护系统安全运行。
缓冲电路可分为关断缓冲电路、开通缓冲电路和复合缓冲电路。
1.8、串联与并联运行晶闸管的串联:多个器件串联以承担较大的电压晶闸管的并联:多个器件并联来承担较大的电流注:本节重点:主电路和电力电子器件的基本概念。
电力电子器件的分类和电气图形符号。
晶闸管、电力晶体管和IGBT的工作原理、开关特性、主要参数以及在选择和使用中应注意的事项。
2、变流技术2.1、交流变直流整流电路(1)单相可控整流电路主要介绍单相桥式全控整流电路基本概念:①控制角α——从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度。
②导通角θ——晶闸管在一个周期中处于通态的电角度。
③移相——改变α的大小,即改变触发脉冲出现的时刻。
④移相范围——输出电压平均值大于0所对应的α变化范围。
⑤换流(换相)——电流从一对桥臂转换到另外一对桥臂。
⑥ 相控变流装置——通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,这样的变流装置简称相控变流装置。
电阻负载 电路及波形基本数量关系整流输出电压平均值U d2222211cos 1cos 2()0.922d U U U td wt U παααωππ++===⎰故,α角的移相范围为0o ~180o 输出电流的平均值I d21cos 0.92d d U U I R R α+==流过晶闸管的电流平均值I dT211cos 0.4522dT d U I I R α+== 流过晶闸管的电流有效值I T()2222111sin sin 2222T U U I t d t R R παπαωωαπππ⎛⎫-==+⎪ ⎪⎝⎭⎰ 晶闸管承受的最大正向电压U FM222FM U U =晶闸管承受的最大反向电压U RM22RM U U =晶闸管的额定电压TN U()2232TN U U =-晶闸管的额定电流()T AV I()()1.521.57TT AV I I =- 整流电路的功率因数cos ϕ2221cos sin 22R I R P S U I παϕαππ-===+电感性负载基本数量关系 输出电压平均值U d()2221222sin cos 0.9cos d U U td t U πααωωααπ+===⎰故α的移相范围为0o ~90o 。