黑龙江哈三中2020届高三第二次模拟数学(文)试题

合集下载

2020年高考模拟试卷黑龙江哈尔滨三中高考(文科)数学模拟试卷(二) 含解析

2020年高考模拟试卷黑龙江哈尔滨三中高考(文科)数学模拟试卷(二) 含解析

2020年高考模拟试卷高考数学模拟试卷(文科)(二)一、选择题1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.4.某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是()A.125B.45C.5D.35.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数7.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上. 13.若复数z=1+i,则=.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是.16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是.三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列满足4S n=a n2+2a n+1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm 以上(含185cm)的两人作为队长,求这两人在同一组的概率.19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为P,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若三棱锥B﹣PED的体积v,求a的取值范围.20.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)【分析】通过绝对值不等式求解集合A,指数不等式的求解求出集合B,然后求解交集.解:因为集合A={x||x﹣1|<2}={x|﹣1<x<3},={x|﹣1<x<2},A∩B={x|﹣1<x<3}∩{x|﹣1<x<2}={x|﹣1<x<2}.故选:B.2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】利用等差数列的求和公式表示出S n,整理后,得到等差数列的S n为关于n的二次函数,利用配方法,即可确定数列的最大项.根据d小于0,可得此函数图象为开口向下的抛物线,函数有最大值,从而利用二次函数求最值的方法即可得出S n的最大值,即为{S n}中的最大项;反之也然.解:由等差数列的求和公式得:S n=na1+d,整理得:S n=0.5dn2+(a1﹣d)n,当d<0,∴等差数列的S n为二次函数,依题意是开口向下的抛物线,∴S n有最大值;反之,当数列{S n}有最大项时,则S n为二次函数,且图象是开口向下的抛物线,从而d <0.故选:A.3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.【分析】利用数量积和三角形的内角和定理、诱导公式即可化简,再利用三角形内特殊角的三角函数值即可得出.解:∵=(cos A,sin A),=(cos B,﹣sin B),∴=cos A cos B﹣sin A sin B=cos(A+B)=cos(π﹣C)=﹣cos C,∴,得cos C=﹣.∵0<C<π.∴.故选:B.4.某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是()A.125B.45C.5D.3【分析】已知茎叶图,读出数据114,126,128,132,代入方差计算公式,可得答案.解:已知某同学进入高二后,四次月考的数学成绩的茎叶图可得该同学四次考试成绩分别为114,126,128,132,则该同学数学成绩的平均数为=125,方差=[(114﹣125)2+(126﹣125)2+(128﹣125)2+(132﹣125)2]=45.故选:B.5.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】通过建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出异面直线所成的角.解:如图所示,分别取BC、B1C1的中点O、O1,由正三棱柱的性质可得AO、BO、OO1令两垂直,建立空间直角坐标系.∵所有棱长都为2,∴A,B(0,1,0),B1(0,1,2),C1(0,﹣1,2).∴,∴===.∴异面直线AB1与BC1所成角的余弦值为.故选:B.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数【分析】利用两角和差的正弦公式化简函数的解析式为f(x)=2sin(ωx﹣),由题意可得=,解得ω的值,即可确定函数的解析式为f(x)=2sin(2x﹣),由此求得周期,由2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间,从而得出结论.解:∵函数=2[sin(ωx﹣cosωx]=2sin(ωx ﹣),∴函数的周期为.再由函数图象相邻的两条对称轴方程为x=0与,可得=,解得ω=2,故f(x)=2sin(2x﹣).故f(x)=2sin(2x﹣)的周期为=π.由2kπ﹣≤2x﹣≤2kπ+,k∈z,可得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈z,故函数在上为单调递增函数,故选:C.7.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.【分析】作出图形,由几何概型能求出小赵和小王恰好能搭乘同一班公交车去上学的概率.解:小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,他们约定见车就搭乘,作出图形,由几何概型得:小赵和小王恰好能搭乘同一班公交车去上学的概率为:P==.故选:C.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.【分析】设抛物线的准线与x轴的交点为D,F为线段AB的中点,进而可知|AF|和|AB|,推断出AF|=|AB|,求得∠ABC,进而根据,求得p,则抛物线方程可得.解:设抛物线的准线与x轴的交点为D,依题意,F为线段AB的中点,故|AF|=|AC|=2|FD|=2p,|AB|=2|AF|=2|AC|=4p,∴∠ABC=30°,||=2p,=4p×2p cos30°=36,解得p=,∴抛物线的方程为y2=2x.故选:D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.【分析】由题意可得=2(λ﹣μ)+μ,由E、M、C三点共线,可得2λ﹣μ=1,①同理可得=,由D、M、F三点共线,可得λ+μ=1,②,综合①②可得数值,作乘积即可.解:由题意可知:E为AB的中点,F为BC的三等分点(靠近B)故===(λ﹣μ)+μ=2(λ﹣μ)+μ,因为E、M、C三点共线,故有2(λ﹣μ)+μ=1,即2λ﹣μ=1,①同理可得===,因为D、M、F三点共线,故有λ+(μ)=1,即λ+μ=1,②综合①②可解得λ=,,故实数λ与μ的乘积=故选:B.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元【分析】根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,由等比数列的通项公式可得,进而计算可得m与a4的值,即可得答案.解:根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,则有,则有a2+a4=32580,则有1﹣m=0.9,则m=0.1=10%,则有+a4=32580,解可得a4=14580,即“衰分比”为10%,丁所获得的奖金14580,故选:B.11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)【分析】依题意,可得m,n满足的约束条件,进而作出图形,利用图象即可得解.解:y′=x2+mx+m+n,依题意,y′=0的两个根为x1,x2且x1∈(0,1),x2∈(1,+∞),∴,平面区域D表示的图形如下图所示,注意到直线m+n=0与直线2m+n+1=0的交点P(﹣1,1),当函数y=log a(x+4)过点P时,即log a3=1,解得a=3,要使函数y=log a(x+4)(a>1)的图象上存在区域D内的点,由图可知,a<3,又a >1,故实数a的取值范围为(1,3).故选:B.12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.【分析】求两个曲线上不同两点的距离的最小值,显然没法利用两点间的距离公式计算,可结合函数y=e x上的点关于y=x的对称点在其反函数的图象上把问题转化为求曲线y =lnx上的点与上的点到直线y=x的距离之和最小问题,而与y=x平行的直线同时与曲线y=lnx和切于同一点(1,0),所以PQ的距离的最小值为(1,0)点到直线y=x距离的2倍.解:如图,因为y=e x的反函数是y=lnx,两个函数的图象关于直线y=x对称,所以曲线y=e x上的点P到直线y=x的距离等于在曲线y=lnx上的对称点P′到直线y =x的距离.设函数f(x)=lnx﹣1+,=,当0<x<1时,f′(x)<0,所以函数f(x)在(0,+∞)上有最小值f(1)=0,则当x>0时,除(1,0)点外函数y=lnx的图象恒在y=1﹣的上方,在(1,0)处两曲线相切.求曲线y=e x上的点P与曲线y=1﹣上的点Q的距离的最小值,可看作是求曲线y=lnx 上的点P′与Q点到直线y=x的距离的最小值的和,而函数y=lnx与y=1﹣在x=1时的导数都是1,说明与直线y=x平行的直线与两曲线切于同一点(1,0)则PQ的距离的最小值为(1,0)点到直线y=x距离的2倍,所以|PQ|的最小值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.13.若复数z=1+i,则=﹣1.【分析】利用共轭复数和复数的运算法则即可得出.解:∵复数z=1+i,∴,∴==﹣1.故答案为﹣1.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.【分析】根据题意可表示出渐近线方程,进而可知PF的斜率,设出P的坐标代入渐近线方程求得x的表达式,则P的坐标可知,进而求得中点的表达式,代入双曲线方程整理求得a和c的关系式,进而求得离心率.解:由题意设F(c,0)相应的渐近线:y=x,则根据直线PF的斜率为﹣,设P(x,x),代入双曲线渐近线方程求出x=,则P(,),则PF的中点(),把中点坐标代入双曲线方程=1中,整理求得=,即离心率为故答案为:.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是(2,3].【分析】由余弦定理求得cos C,代入已知等式可得(b+c)2﹣1=3bc,利用基本不等式求得b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.解:△ABC中,由余弦定理可得2cos C=,∵a=1,2cos C+c=2b,∴+c=2b,化简可得(b+c)2﹣1=3bc.∵bc≤,∴(b+c)2﹣1≤3×,解得b+c≤2(当且仅当b=c时,取等号).故a+b+c≤3.再由任意两边之和大于第三边可得b+c>a=1,故有a+b+c>2,故△ABC的周长的取值范围是(2,3],故答案为:(2,3].16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是[0,1].【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系,直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围.解:画出图形,不难发现直线恒过定点(﹣2,0),圆是上半圆,直线过(﹣2,0),(0,2)时,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),此时P(M)=,当直线与x轴重合时,P(M)=1;直线的斜率范围是[0,1].故答案为:[0,1].三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列满足4S n=a n2+2a n+1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)由,可知当n≥2时,,两式作差可得a n﹣a n﹣1=2(n≥2),再求出首项,代入等差数列的通项公式可得数列{a n}的通项公式;(2)把数列{a n}的通项公式代入b n=,再由裂项相消法求数列{b n}的前n项和T n.解:(1)由,可知当n≥2时,,两式作差得a n﹣a n﹣1=2(n≥2),又,得a1=1,∴a n=2n﹣1;(2)由(1)知,,∴T n=b1+b2+…+b n==.18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm 以上(含185cm)的两人作为队长,求这两人在同一组的概率.【分析】(1)根据已知中的频率分布直方图,我们分别求出180cm以上各组矩形的高度和,乘以组距即可得到高在180cm以上(含180cm)的频率,再乘以样本容量即可得到高在180cm以上(含180cm)的人数;(2)设[185,190]组中三人为a,b,c;[190,195]组中两人为m,n.列举出所有的可能性及其中满足条件的事件数,代入古典概型概率公式,可得答案.解:(1)前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82∴后三组频率为1﹣0.82=0.18,人数为0.18×50=9∴这所学校高三年级全体男生身高180cm以上(含180cm)人数1000×0.18=180人(2)设[185,190]组中三人为a,b,c;[190,195]组中两人为m,n则所有的可能性为(a,b),(a,c),(b,c),(m,n),(a,m),(a,n),(b,m),(b,n),(c,m),(c,n)…其中满足条件的为(a,b),(a,c),(b,c),(m,n)…故p=,即为这两人在同一组的概率…19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为P,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若三棱锥B﹣PED的体积v,求a的取值范围.【分析】(1)通过证明AE⊥平面BEF,利用平面与平面垂直的判定定理证明平面ABE ⊥平面BEF;(2)设PA=a,利用三棱锥B﹣PED的体积V=V B﹣CED=V E﹣BCD,求出三棱锥B﹣PED 的体积,结合V,即可求a的取值范围.【解答】证明:(Ⅰ)因为AB∥CD,CD⊥AD,AD=CD=2AB=2,F分别为CD的中点,DE=EC.∴ABCD为矩形,AB⊥BF…∵DE=EC∴DC⊥EF,又AB∥CD,∴AB⊥EF,∵BF∩EF=F,∴AE⊥平面BEF,AE⊂面ABE,∴平面ABE⊥平面BEF…(Ⅱ)∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD,又AB⊥PD,所以AB⊥面PAD,AB⊥PA,PA⊥面ABCD…三棱锥B﹣PED的体积V=V B﹣CED=V E﹣BCD,S△BCD==2,E到面BCD的距离h=V B﹣CED=V E﹣BCD=×∈…可得a.…12 分20.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.【分析】(1)求导数,利用导数的正负,即可求函数f(x)的单调区间;(2)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x恒成立转化为恒成立.构造函数,只需b≤g(x)min即可,因此又需求g(x)min.解:(1)当a=0时,f(x)=x﹣xlnx,函数定义域为(0,+∞).f'(x)=﹣lnx,由﹣lnx=0,得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣x∈(0,1)时,f'(x)>0,f(x)在(0,1)上是增函数.x∈(1,+∞)时,f'(x)<0,f(x)在(1,+∞)上是减函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x﹣xlnx,由f(x)≥bx2+2x,得(1﹣b)x﹣1≥lnx,又∵x>0,∴恒成立,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,可得,∴g(x)在(0,1]上递减,在[1,+∞)上递增.∴g(x)min=g(1)=0即b≤0,即b的取值范围是(﹣∞,0].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.【分析】(I)设圆心P的坐标为(x,y),半径为R,由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C 的方程.(II)设直线OQ:x=my,则直线MN:x=my+3,由,能求出|OQ|2,由,能求出|MN|,由此能求出|MN|和|OQ|2的比值为常数.(III)由△QF2M的面积=△OF2M的面积,能求出S=S1+S2的最大值.【解答】(本小题满分13分)解:(I)设圆心P的坐标为(x,y),半径为R由于动圆P与圆相切,且与圆相内切,所以动圆P与圆只能内切∴,∴|PF1|+|PF2|=8>|F1F2|=6…∴圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=8,2c=6,∴a=4,c=3,b2=a2﹣c2=7故圆心P的轨迹C:.…(II)设M(x1,y1),N(x2,y2),Q(x3,y3),直线OQ:x=my,则直线MN:x=my+3由,得:,∴,∴…由,得:(7m2+16)y2+42my﹣49=0,∴,∴===…∴,∴|MN|和|OQ|2的比值为一个常数,这个常数为…(III)∵MN∥OQ,∴△QF2M的面积=△OF2M的面积,∴S=S1+S2=S△OMN∵O到直线MN:x=my+3的距离,∴…令,则m2=t2﹣1(t≥1),∵(当且仅当,即,亦即时取等号)∴当时,S取最大值…(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.【分析】(Ⅰ)求出圆心坐标,和圆的标准方程,即可求圆C的极坐标方程;(Ⅱ)分别求出直线的标准方程,利用直线和圆的位置关系即可求直线l被圆C所截得的弦长.解:(Ⅰ)∵圆C的圆心是,∴x=ρcosθ==1,y=ρsinθ==1,即圆心坐标为(1,1),则圆的标准方程为(x﹣1)2+(y﹣1)2=2,x2﹣2x+y2﹣2y=0圆C的极坐标方程为:;(Ⅱ)∵直线l的极坐标方程为,∴ρsinθ+ρcosθ=1+,即,圆心到直线距离为,圆半径为.故弦长为.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.【分析】(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;(2)构造函数g(x)=f(x)﹣3,关于x的不等式a+3<f(x)恒成立⇔a<f(x)﹣3恒成立⇔a<g(x)min,先求得f(x)min,再求g(x)min即可.解:(1)∵f(x)=|2x+1|﹣|x﹣3|=,∵f(x)>0,∴①当x<﹣时,﹣x﹣4>0,∴x<﹣4;②当﹣≤x≤3时,3x﹣2>0,∴<x≤3;③当x>3时,x+4>0,∴x>3.综上所述,不等式f(x)>0的解集为:(﹣∞,﹣4)∪(,+∞)…(2)由(1)知,f(x)=,∴当x≤﹣时,﹣x﹣4≥﹣;当﹣<x<3时,﹣<3x﹣2<7;当x≥3时,x+4≥7,综上所述,f(x)≥﹣.∵关于x的不等式a+3<f(x)恒成立,∴a<f(x)﹣3恒成立,令g(x)=f(x)﹣3,则g(x)≥﹣.∴g(x)min=﹣.∴a<g(x)min=﹣。

哈尔滨市第三中学2020届高三数学第二次模拟考试试题文含解析

哈尔滨市第三中学2020届高三数学第二次模拟考试试题文含解析
C。 充要条件D. 既不充分也不必要条件
【答案】A
【解析】
【分析】
根据直线与直线的垂直,列方程 ,求出 ,再判断充分性和必要性即可。
【详解】解:若 ,则 ,解得 或 ,
即 或 ,
所以“ ”是“ 或 "的充分不必要条件.
故选:A。
【点睛】本题考查直线一般式中直线与直线垂直的系数关系,考查充分性和必要性的判断,是基础题.
【详解】解:因为 ,可知 的定义域为 ,
所以 ,则 为奇函数,
当 时, 单调递增,
根据奇函数的性质,可知 在 上单调递增,
由 ,可得 ,解得: ,
即不等式 的解集为 .
故选:C.
【点睛】本题考查对数不等式的解集,考查根据定义法判断函数的奇偶性和通过函数单调性解不等式,以及函数的基本性质的综合应用,考查运算求解能力。
故选:D
【点睛】此题考查了三角形面积公式的应用和余弦定理的应用,属于中档题.
11.在边长为2的菱形 中, ,将菱形 沿对角线 折起,使得平面 平面 ,则所得三棱锥 的外接球表面积为( )
A. B。 C. D.
【答案】C
【解析】
【分析】
由题意画出图形,由于 与 均为边长为2的等边三角形,取 中点 ,连接 , ,则 ,根据面面垂直的性质可得出 平面 ,再确定 为三棱锥 的外接球的球心,结合已知求出三棱锥外接球的半径 ,最后根据球的表面积公式求出外接球的表面积.
【点睛】本题考查椭圆的定义,以及弦长公式,考验分析问题能力以及计算能力,属中档题。
三、解答题:共70分。解答应写出必要的文字说明,证明过程或演算步骤。第17〜21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分.

黑龙江省哈尔滨市第三中学校2020届高三上学期第二次调研考试数学(文)试题(解析版)

黑龙江省哈尔滨市第三中学校2020届高三上学期第二次调研考试数学(文)试题(解析版)

黑龙江省哈尔滨市第三中学2019—2020学年度上学期高三学年第二次调研考试 数学(文)试卷本试卷共23题,共150分一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中 只有一项尾符合题目要求的。

1.集合{A x y ==.{}2,0x B y y x ==>,则A B =( )A. []0,2B. (]1,2C. []1,2D. ()1,+∞【答案】B 【解析】 【分析】计算出集合A 、B ,利用交集的定义可得出集合A B .【详解】{(){}(){}[]20200,2A x y x x x x x x ===-≥=-≤=,由于指数函数2xy =是增函数,当0x >时,0221xy =>=,则()1,B =+∞, 因此,(]1,2AB =,故选:B.【点睛】本题考查集合交集运算,同时也考查了函数的定义域与值域的求解,考查计算能力,属于基础题.2.已知()1,2OA =-uu r ,()3,OB m =uu u r,若OA OB ⊥,则m 等于( )A. 6-B. 6C.32D. 32-【答案】C 【解析】 【分析】将OA OB ⊥转化为0OA OB ⋅=,并利用向量数量积的坐标运算可求出m 的值.【详解】()1,2OA =-uu r Q ,()3,OB m =uu u r ,且OA OB ⊥,320OA OB m ∴⋅=-+=uu r uu u r ,解得32m =,故选:C.【点睛】本题考查垂直向量的坐标表示,通常将向量垂直转化为两向量数量积为零,考查计算能力,属于基础题.3.已知函数()13sin ,06log ,0xx f x x x π⎧≤⎪=⎨>⎪⎩,则()()9f f =( ) A.12B. 12-C.D. 【答案】D 【解析】 【分析】利用函数()y f x =的解析式由内到外计算出()()9ff 的值.【详解】()13sin ,06log ,0xx f x x x π⎧≤⎪=⎨>⎪⎩,()139log 92f ∴==-, 因此,()()()92sin sin 332ff f ππ⎛⎫=-=-=-=- ⎪⎝⎭,故选:D. 【点睛】本题考查分段函数值的计算,对于多层函数值的计算,需充分利用函数解析式,由内到外逐层计算,考查计算能力,属于基础题.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A. 1盏 B. 3盏 C. 5盏 D. 9盏【答案】B【解析】【详解】设塔顶的a 1盏灯, 由题意{a n }是公比为2的等比数列,∴S 7=()711212a --=381,解得a 1=3. 故选:B .5.已知4sin 65πα⎛⎫+=- ⎪⎝⎭,则cos 3πα⎛⎫-= ⎪⎝⎭( )A.45 B.35C. 45-D. 35-【答案】C 【解析】 【分析】 将角3πα-表示为326πππαα⎛⎫-=-+ ⎪⎝⎭,再利用诱导公式可得出结果. 【详解】4cos cos sin 32665ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦Q ,故选:C.【点睛】本题考查利用诱导公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于中等题.6.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(),DE AB AD R λμλμ=+∈uu u r uu u r uuu r,则λμ⋅等于( )A. 316- B.316 C.12D. 12-【答案】A 【解析】 【分析】利用平面向量的线性运算,将DE 用AB 和AD 表示,可得出λ和μ的值,由此可计算出λμ⋅的值.【详解】E 为AO 的中点,且O 为AC 的中点,所以,()111244AE AO AC AB AD ===+uu u r uuu r uuu r uu u r uuu r, ()113444DE AE AD AB AD AD AB AD ∴=-=+-=-uuu r uu u r uuu r uu u r uuu r uuu r uu u r uuu r ,14λ∴=,34μ=-.因此,1334416λμ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A.【点睛】本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题.7.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A. 向左平移8π个单位长度 B. 向右平移8π个单位长度 C. 向左平移4π个单位长度D. 向右平移4π个单位长度【答案】A 【解析】【详解】由()f x 的最小正周期是π,得2ω=,即()sin(2)4f x x π=+cos 224x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦cos 24x π⎛⎫=- ⎪⎝⎭cos 2()8x π=-, 因此它的图象向左平移8π个单位可得到()cos2g x x =的图象.故选A . 考点:函数()sin()f x A x ωϕ=+的图象与性质.【名师点睛】三角函数图象变换方法:【此处有视频,请去附件查看】8.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A. (4,1)-B. (1,4)-C. (1,4)D. (0,4)【答案】B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B.【点睛】本题考查函数不等式,通常根据函数单调性转化求解,一般不代入解析式.9.已知正项等比数列{}n a 中满足2019201820172a a a =+,若存在两项m a 、n a ,12a =,则m n +=( ) A. 4 B. 5C. 6D. 7【答案】A 【解析】 【分析】设等比数列{}n a 的公比为q ,由题中条件2019201820172a a a =+求出公比q ,再利用等比数列的通项公式以12a =可求出m n +的值.【详解】设等比数列{}n a 的公比为q ,则0q >,2019201820172a a a =+Q ,22017201720172a q a q a ∴=+,22q q ∴=+,即220q q --=,0q >,解得2q =,12a =,即214m n a a a =,所以,112111224m n a a a --⨯⨯⨯=,化简得224m n +-=,22m n ∴+-=,因此,4m n +=,故选:A.【点睛】本题考查等比数列相关量的计算,对于等比数列的问题,通常利用首项和公比进行表示,考查计算能力,属于中等题.10.ABC ∆中,2BA AC ⋅=uu r uuu r,ABC S ∆=,则A =( ) A.3πB.23π C.6π D.56π【答案】B 【解析】 【分析】设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,利用平面向量数量积的定义和三角形的面积公式将题中等式用b 、c 、A 的等式表示,可求出tan A 的值,结合角A 的取值范围,可得出角A 的值. 【详解】设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,则()cos cos 2BA AC cb A bc A π⋅=-=-=uu r uu u r,1sin 2ABC S bc A ∆==所以cos 2sin bc A bc A =-⎧⎪⎨=⎪⎩tan A =0A π<<,23A π∴=,故选:B.【点睛】本题考查平面向量数量积的定义,同时也考查了三角形的面积公式,考查计算能力,属于中等题.11.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}n f a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A. ①② B. ③④C. ①③D. ②④【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项.【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C.【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.12.锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若220a b ac -+=,则sin sin AB的取值范围是( )A. ⎛ ⎝⎭B. 2⎛ ⎝⎭C.D. ⎝⎭【答案】D 【解析】 【分析】利用余弦定理、正弦定理边角互化思想、两角差的正弦公式,并结合条件220a b ac -+=得出2B A =,根据ABC ∆为锐角三角形得出角A 的取值范围,可得出sin 1sin 2cos A B A=的取值范围. 【详解】220a b ac -+=Q ,即()2222cos 0a a c ac B ac -+-+=,化简得2cos 0a B c a -+=. 由正弦定理边角互化思想得2sin cos sin sin 0A B C A -+=,即()2sin cos sin sin 0A B A B A -++=,所以,sin cos cos sin sin 0A B A B A -+=,()sin sin cos cos sin sin A B A B A B A ∴=-=-,02A π<<Q ,02B π<<,22B A ππ∴-<-<,B A A ∴-=,2B A ∴=,ABC ∆是锐角三角形,且3C A B A ππ=--=-,所以02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩, 解得64A ππ<<cos A <<,所以,sin sin 1sin sin 22cos 32A A B A A ⎛⎫==∈ ⎪ ⎪⎝⎭, 因此,sin sin AB的取值范围是2⎝⎭,故选:D. 【点睛】本题考查余弦定理、正弦定理边角互化思想的应用,同时也考查了二倍角公式的应用,考查分析问题和解决问题的能力,属于中等题.二 填空题本题共4小题,每小题5分,共20分.13.设等差数列{}n a 的前n 项和为n S ,若359,25S S ==,则2019a = ______。

【附15套精选模拟试卷】黑龙江省哈尔滨市第三中学校2020届高三第二次模拟数学(文)试卷含解析

【附15套精选模拟试卷】黑龙江省哈尔滨市第三中学校2020届高三第二次模拟数学(文)试卷含解析

黑龙江省哈尔滨市第三中学校2020届高三第二次模拟数学(文)试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数,满足约束条件,则目标函数的取值范围是( )A .B .C .D .2.已知a ,0b >,则下列命题正确的是( ) A .若ln25aa b b=-,则a b > B .若ln25aab b=-,则a b < C .若ln52a b a b =-,则a b > D .若ln 52a b a b =-,则a b <3.已知集合{}{}1,0,1,|1A B x N x =-=∈<,则A B =U ( ) A .{}0 B .{}1,0-C .{1,-0,1}D .(),1-∞4.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( ) A .B .C .D .5.已知某几何体的三视图如图所示,则该几何体的最大边长为( )A 5B 6C 7D .26.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r,则该双曲线的离心率为( )A .5B .62C .33D 37.双曲线22221(0,0)x y a b a b-=>>的一个焦点为(, 0)F c ,若a 、b 、c 成等比数列,则该双曲线的离率e =( )A .132+B .152+C .512- D .21-8.函数2222(1)?ln 2(1)x y x x +=-+的部分图象是( )A .B .C .D .9.设实数x ,y 满足约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是( )A .[]4,1-B .33,7⎡⎤-⎢⎥⎣⎦ C .(][),31,-∞-+∞U D .[]3,1-10.已知复数()11z a i =-++(i 为虚数单位,a 为实数)在复平面内对应的点位于第二象限,则复数z 的虚部可以是( )A .12i - B .12iC .12-D .1211.已知抛物线:与直线相交于,两点,为抛物线的焦点,若,则的中点的横坐标为( )A .B .3C .5D .612.已知直线是双曲线的一条渐近线,若的最大值为1,则该双曲线离心率的最大值为( ) A .2B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

黑龙江省哈尔滨市第三中学校2020届高三数学第二次模拟试题 文

黑龙江省哈尔滨市第三中学校2020届高三数学第二次模拟试题 文

2020年哈尔滨市第三中学第二次高考模拟考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,则的元素个数为 A .0B .2C .3D .52.复数,则A .B .C .D . 3.函数的最小正周期为 A. πB. 2πC. 3πD. 4π4. 已知向量=(-1,2),=(3,1),,若,则=A .1B .2C .3D .4 5.若双曲线的一条渐近线方程为,则其离心率为 A . B . C .2D .36.已知一个空间几何体的三视图及部分数据如图所示, 则该几何体的体积是A .1 B. 32 C.2 D.37.若x 、y 满足约束条件 A .0 B .-1C .-2D .-38.函数的单调减区间为 A . B. C. D.9.在数学解题中,常会碰到形如“”的结构,这时可类比正切的和角公式.如:设是非零实数,且满足,则= A .4 B . C .2 D .10.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截 取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的 长度(单位:尺),则①②③处可分别填入的是A .B .C .D .11.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是 A . B . C . D .12. 已知点A (0,2),抛物线C 1:的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM |∶|MN |=1∶,则的值为A .14B .12 C .1 D .4 二、填空题:本大题共4小题,每小题5分. 13.已知函数,当时,函数的最大值为_________. 14.已知函数是奇函数,当的值为_________.15.已知直三棱柱的6个顶点都在球O 的球面上,若AB=,AC=,,则球O 的表面积为 . 16.在△ABC 中,已知 (a +b )∶(c +a )∶(b +c )=6∶5∶4,给出下列结论:①由已知条件,这个三角形被唯一确定; ②△ABC 一定是钝角三角形; ③sin A ∶sin B ∶sin C =7∶5∶3; ④若b +c =8,则△ABC 的面积是1532.其中正确结论的序号是 .三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:(共60分) 17.(12分)已知等差数列中,, (1)求的通项公式; (2)求的前n 项和. 18.(12分)如图所示,四棱锥S-ABCD 中,SA 底面ABCD , ,P 为线段AB 上一点, SQ=QC . (1)证明:PQ//平面SAD ;(2)求四面体C-DPQ 的体积. 19.(12分)随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到A 类工人生产能力的茎叶图(图1),B 类工人生产能力的频率分布直方图(图2).(1)问A 类、B 类工人各抽查了多少工人,并求出直方图中的x ;(2)求A 类工人生产能力的中位数,并估计B 类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);(3)若规定生产能力在[130,150]内为能力优秀,由以上统计数据在答题卡上完成下面的2×2列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表20.(12分)已知椭圆的右焦点为F ,设直线:与轴的交点为E ,过点F 且斜率为k 的直线与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线于点N ,证明:直线BN ⊥. 21.(12分)已知函数(1)当a =2时,求的单调区间;(2)当a =1时,关于的不等式在上恒成立,求k 的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以直角坐标系原点为极点,轴正方向为极轴,已知曲线的方程为,的方程为,是一条经过原点且斜率大于0的直线.(1)求与的极坐标方程;(2)若与的一个公共点为(异于点),与的一个公共点为,求的取值范围.23.[选修4-5:不等式选讲](10分)(1)证明(2)证明.2020年哈三中第二次高考模拟考试 数学(文科)试题参考答案一.选择题:13.2-sin1 14. 15. 16 ②③ 17解:设{a n }的公差为d ,则(1)a n = 2n-10, a n= -2n +10.(2)S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9). 18 解析:从而证得PQ//平面SAD ;所以四面体C-DPQ 的体积V C-DPQ =453.19解 (1)由茎叶图知A 类工人中抽查人数为25名,∴B 类工人中应抽查100-25=75(名). 由频率分布直方图得(0.008+0.02+0.048+x )×10=1,得x =0.024. (2)由茎叶图知A 类工人生产能力的中位数为122.由(1)及频率分布直方图,估计B 类工人生产能力的平均数为 x -B =115×0.008×10+125×0.020×10+135×0.048×10+145×0.024×10=133.8.(3)由(1)及所给数据得能力与培训的2×2列联表,由上表得K 2=100×(8×21-17×54)225×75×38×62=100×750225×75×38×62 ≈12.733>10.828.因此,可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关. 椭圆中的综合问题20.由题意知,F (1,0),E (5,0),M (3,0).(1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·(x 1+x 2)2-4x 1x 2 =2×⎝ ⎛⎭⎪⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即BN ⊥l .21.(1)当时,,,令,令的递增区间为,递减区间为 (2)当时,在恒成立,即,令, ①当时,,在单调递减,,不合题意,舍②当时,,在单调递减,在单调递增,其中,在为负,不合题意舍③当时,,在单调递增,,合题意综上,22.解:(1)曲线的方程为,的极坐标方程为的方程为,其极坐标方程为(2)是一条过原点且斜率为正值的直线,的极坐标方程为联立与的极坐标方程,得,即联立与的极坐标方程,得,即所以又,所以23. 证明:(1)因为(2)因为又因为所以,,当时等号成立,即原不等式成立。

2020年黑龙江省哈尔滨市高三第二次模拟考试数学(文)模拟试题word版有答案

2020年黑龙江省哈尔滨市高三第二次模拟考试数学(文)模拟试题word版有答案

D哈尔滨市第六中学高三第二次模拟考试文科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效; (4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|23,},{|3}A x x x Z B y y x =-≤≤∈==-, 则A B I 的子集个数共有( )A. 1个B. 2个C. 3个D. 4个2.若复数z 满足z (2-i)=1+7i ,则||z =( )510 C. 223. 已知2cos()423πθ-=,则sin θ=( ) A.79B. 19C. 19-D. 79-4. 在ABC ∆中,,3,||1AD AB BC BD AD ⊥==uu u r uu u r uuu r ,则AC AD ⋅=uuu r uuu r( )A.1B.2C.3D.45.我国南宋数学家秦九韶给出了求n 次多项式1110n n n n a x a x a x a --++++L 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:323210a x a x a x a +++ ()()3210a x a x a x a =+++然后进行求值.运行如图所示的程序框图,是求哪个多项式的值( ) A. 432234x x x x ++++ B. 4322345x x x x ++++C. 3223x x x +++D. 32234x x x +++ 6. 一个四棱柱的三视图如图所示,该四棱柱的体积为( )A. 12B. 24C. 36D. 487.已知函数()()sin f x A x ωϕ=+ (0,0,0)2A πωϕ>><<的部分图像如图所示,若将函数()f x 的图像上点的纵坐标 不变,横坐标缩短到原来的14,再向右平移6π个单位,所得到的函数()g x 的解析式为( ) A. ()12sin4g x x = B. ()2sin2g x x = C. ()12sin 46g x x π⎛⎫=-⎪⎝⎭ D. ()2sin 26g x x π⎛⎫=- ⎪⎝⎭8. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( ) A. [2,2]- B. (2,2) C. [1,1]- D. (1,1)-9. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A. //αβ且//l αB. αβ⊥且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l10. 若新高考方案正式实施,甲、乙两名同学要从政治、历史、物理、化学四门功课中分别选取两门功课学习,则他们选择的两门功课都不相同的概率为( ) A.16 B. 13 C. 12 D. 2311. F 是抛物线22y x =的焦点,点P 在抛物线上,点Q 在抛物线的准线上,若2PF FQ =uu u r uu u r ,则||PQ =A. 92B. 4C.72D. 3 12. 已知函数53()272f x x x x =---+,若2()(2)4f a f a +->,则实数a 的取值范围是( )A. (,1)-∞B. (,3)-∞C. (1,2)-D. (2,1)-第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分.)13.已知实数,x y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .15. 已知平面四边形ABCD 中,AB=AD=2,BC=CD, 90BCD ∠=︒,则四边形ABCD 面积的最大值为 .16. 已知函数()(1)||4f x x x a =--+有三个不同的零点,则实数a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,423,,S S S 成等差数列,且23418a a a ++=-. (1)求数列{}n a 的通项公式; (2)若n n n b a S =⋅,求123n b b b b ++++L .18.(本小题满分12分)某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯5元,售价每杯8元,未售出的冷饮降价处理,以每杯3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如果最高气温不低于25℃,那么需求量为600杯;如果最高气温位于区间[20,25),那么需求量为400杯;如果最高气温低于20℃,那么需求量为300杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据数据,得到下面的频数分布表: (1) 估计九月份这种冷饮一天的需求量不超过400杯的概率;(2) 设九月份一天销售这种冷饮的利润为Y (单位:元).当九月份这种冷饮一天的进货量为500杯时,写出Y 的所有可能值并估计Y 大于500的概率.19.(本小题满分12分)如图,四棱锥E-ABCD 中,底面ABCD 是平行四边形,M,N 分别为BC,DE 中点. (1)证明:CN//平面AEM ;(2)若ABE ∆是等边三角形,平面ABE ⊥平面BCE ,,2CE BE BE EC ⊥==,求三棱锥N AEM -的体积.20. (本小题满分12分)如图,已知椭圆C : 22221(0)x y a b a b+=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记1GF D ∆的面积为1S , OED ∆(O 为原点)的面积为2S ,试问:是否存在直线AB ,使得1212S S =?说明理由.21. (本小题满分12分)已知函数2()ln (1)1()f x x x a x x a R =---+∈ (1) 当0a =时,求()f x 的极值;(2) 当(1,)x ∈+∞时,()0f x <恒成立,求a 的取值范围.请从下面所给的22、23题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分10分)在极坐标系中,曲线1C 的极坐标方程是22(13sin )16ρθ+=,点P 是曲线1C 上的动点.点M 满足2OP OM =uu u r uuu r(O 为极点). 设点M 的轨迹为曲线2C . 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系xoy ,已知直线l 的参数方程是1(x tt y t =+⎧⎨=⎩为参数). (1)求曲线2C 的直角坐标方程与直线l 的普通方程;(2)设直线l 交两坐标轴于,A B 两点,求ABM ∆面积的最大值.23. (本小题满分10分)已知0a >, 0b >,且222a b +=. (1)若2214211x x a b+≥---恒成立,求x 的取值范围; (2)证明: ()55114a b a b ⎛⎫++≥⎪⎝⎭.二模文数答案一、选择题:DBCC DCDB DAAC二、填空题:13. 5 14. 甲 15.16.三、解答题:17.解:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.则18.解:(1)(2)当最高气温不低于25℃,那么需求量为600杯;当最高气温位于区间,那么需求量为400杯;当最高气温低于20℃,那么需求量为300杯;故当最高气温不低于20℃时,,19.(1)证明:取中点,连结.因为中,分别为中点,所以.又因为四边形是平行四边形,所以.又是中点,所以,所以.所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)解:取中点,连结,则,因为平面平面,平面平面,平面,所以平面.又由(1)知平面,所以.又因为为中点,所以.20.(1)因为、、构成等差数列,所以,所以,又因为,所以,所以椭圆的方程为.(2)假设存在直线,使得,显然直线不能与, 轴垂直.设方程为,由消去y整理得,显然.设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则,∴,整理得,解得,所以,所以存在直线满足条件,且直线的方程为.21.解:(1)时,,由解得有极小值,无极大值.(2)由的令,①当时,,在上单调增,不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时,,当时,,在上单调递增,不合题意;④当时,,当时,,在上单调递减,不符合题意;综上所述,的取值范围是22解:(1)在极坐标系中,设点.由,得,代入曲线的方程并整理,得,再化为直角坐标方程,即曲线的直角坐标方程为.直线的参数方程(为参数)化为普通方程是.(2)由直线的方程为,可知.因为点在曲线上,所以设,,则点到直线的距离即为底边上的高,所以,所以,所以,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年哈尔滨市第三中学第二次高考模拟考试文科数学注意事项1.答题前,考生先将自己的姓名、准考证号码填写清楚;2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不得折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 集合{||1|2}A x x =-<,1{|39}3x B x =<<,则A B = A .(1,2)B .(1,2)-C .(1,3)D . (1,3)-2.设S n 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则“d < 0”是“数列{}n S 有最大项”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.ΔABC 中,(cos ,sin )m A A =,(cos ,sin )n B B =-,若12m n ⋅=,则角C 为 A .3π B .23π C .6π D .56π4 某同学进入高三后,4次月考的数学成绩的茎叶图如右图,则该同学数学成绩的方差是A 125B 45C 5D 535.正三棱柱ABC —A 1B 1C 1的所有棱长都为2,则异面直线AB 1与BC 1所成角的余弦值为A .12B .14C .23D6.已知函数()sin())(0,||)2f x x x πωφωφωφ=++><,其图象相邻的两条对称轴方程为0x =与2x π=,则A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数C .()f x 的最小正周期为π,且在(0,)2π上为单调递增函数 D .()f x 的最小正周期为π,且在(0,)2π上为单调递减函数7.一个几何体的三视图及尺寸如右图所示,则该几何体的 外接球半径为A .12 BC .174D .48.过抛物线22(0)y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,直线l 与抛物线的准线的交点为B ,点A 在抛物线的准线上的摄影为C ,若AF FB =,36BA BC ⋅=,则抛物线的方程为A .26y x =B .23y x =C .212y x =D .2y =9.阅读右面的程序框图,输出结果s 的值为A .12 B C .116D .1810.在平行四边形ABCD 中,AE EB =,2CF FB =, 连接CE 、DF 相交于点M ,若AM AB AD λμ=+,则实数λ与μ的乘积为A .14B .38C .34D .4311.已知函数1)(2323++++=x n m mx x y 的两个极值点分别为x 1,x 2,且1(0,1)x ∈,2(1,)x ∈+∞,记分别以m ,n 为横、纵坐标的点(,)P m n 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图象上存在区域D 内的点,则实数a 的取值范围为A .(1,3]B .(1,3)C . (3,)+∞D .[3,)+∞12.设点P 在曲线xy e =上,点Q 在曲线11(0)y x x=->上,则||PQ 的最小值为 A.1)2e - B1)e -C.2D第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。

将答案填在答题卡的相应位置上。

) 13.若复数1z i =+,则ziz__________。

14.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,由F 向其渐近线引垂线,垂足为P ,若线段PF 的中点在此双曲线上,则此双曲线的离线率为__________。

15.已知平面区域Ω=0(,)y x y y ⎧⎫≥⎧⎪⎪⎪⎨⎨≤⎪⎪⎩⎩,直线l :2y mx m =+和曲线C:y =有两个不同的交点,直线l 与曲线C 围城的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2()[,1]2P M ππ-∈,则实数m 的取值范围是__________。

16.已知ΔABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a = 1,2cos C + c = 2b ,则ΔABC 的周长的取值范围是__________。

三、解答题(本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知正项数列满足24(1)n n S a =+。

(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和T n 。

18.(本小题满分12分)从某学校高三年级共1000名男生中随机抽取50人测量身高。

据测量,被测学生身高全部介于155cm 到195cm 之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),… ,第八组[190,195]。

下图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列。

(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm 以上(含180cm )的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm 以上(含185cm )的两人作为队长,求这两人在同一组的概率。

19.(本小题满分12分)如图,在四棱锥P —ABCD 中,P A ⊥AD ,AB ∥CD ,CD ⊥AD ,AD = CD = 2AB = 2,E ,F 分别为PC ,CD 的中点,DE = EC 。

(1)求证:平面ABE ⊥平面BEF ;(2)设P A = a ,若三棱锥B -PED 的体积,求a 的取值范围。

20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>过点,离心率12e =,若点00(,)M x y 在椭圆C 上,则点00(,)x y N a b称为点M 的一个“椭点”,直线l 交椭圆C 于A 、B 两点,若点A 、B 的“椭点”分别是P 、Q ,且以PQ 为直径的圆经过坐标原点O 。

(1)求椭圆C 的方程;(2)若椭圆C 的右顶点为D ,上顶点为E ,试探究ΔOAB 的面积与ΔODE 的面积的大小关系,并证明。

21.(本小题满分12分)已知函数2()ln (0)f x ax x x x a =+->(a ∈R )(1)若a=0,讲座函数的单调性(2)函数()f x 满足(1)2f =,且在定义域内2()2f x bx x ≥+恒成立,求实数b 的取值范围; (3)当11x y e <<<时,试比较y x 与1ln 1ln yx++的大小。

选考题:请考生从第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。

22.(本小题满分10分)选修4-1:几何证明选讲如图所示,已知P A 与⊙O 相切,A 为切点,过点P 的割线交圆于B 、C 两点,弦CD ∥AP ,AD 、BC 相交于点E ,F 为CE 上一点,且DE 2 = EF ·EC 。

(1)求证:CE ·EB = EF ·EP ;(2)若CE :BE = 3:2,DE = 3,EF = 2,求P A 的长。

23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知直线l 的极坐标方程为sin()14πρθ+=+C 的圆心是)4C π,。

(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长。

24.(本小题满分10分)选修4-5:不等式选讲设函数()|21||3|f x x x =+--。

(1)解不等式()0f x >;(2)已知关于x 的不等式3()a f x +<恒成立,求实数a 的取值范围。

2019年哈尔滨市第三中学第二次高考模拟考试数学试卷(文史类)答案及评分标准一、选择题:二、填空题:13. 1- 14. 2 15. []1,0 16. (]3,2三、解答题:17. (Ⅰ)整理得21=--n n a a ……………………………… 4分 又11=a 得12-=n a n ……………………………… 6分(Ⅱ) 由(1)知 )121121(21+--=n n b n …………………………… 8分 所以12+=n nT n …………………………………… 12分 18. (Ⅰ) 第六组08.0=p ···························2分 第七组06.0=p ··························4分 估计人数为180 ··························6分(Ⅱ) 设]190,185[组中三人为c b a ,,;]195,190[组中两人为n m ,则所有的可能性为()b a ,,()c a ,,()c b ,,()n m ,,()m a ,,()n a ,,()m b ,,()n b ,,()m c ,,()n c , ··························8分其中满足条件的为()b a ,,()c a ,,()c b ,,()n m ,···················10分 故52104==p ··················· 12分 19.(Ⅰ) ,//CD AB ,AD CD ⊥22===AB CD AD ,F 分别为CD 的中点,ABFD ∴为矩形,BF AB ⊥ ················· 2分 EF DC EC DE ⊥∴=, ,又EF AB CD AB ⊥∴,// ⊥∴=AE E EF BF , 面BEF ,⊂AE 面ABE ,∴平面ABE ⊥平面BEF ····················· 4分(Ⅱ) EF DC EC DE ⊥∴=, ,又EF PD //,PD AB CD AB ⊥∴,//又PD AB ⊥,所以⊥AB 面PAD ,PA AB ⊥,⊥PA 面ABCD ··········6分 三棱锥PED B -的体积V =BCD E CED B V V --=22221=⨯⨯=∆BCD S ,到面BCD 的距离2ah = BCD E PED B V V --==]15152,1552[32231∈=⨯⨯a a ··········· 10分可得]5152,552[∈a . ·············12 分 20. (Ⅰ)由已知⎪⎪⎩⎪⎪⎨⎧=+==+21143322222a c c b aba 得42=a ,32=b ,方程为13422=+y x ···········3分 (Ⅱ)设),(),,(2211y x B y x A ,则)3,2(),3,2(2211y x Q y x P(1)当直线l 的斜率存在时,设方程为m kx y +=⎪⎩⎪⎨⎧=++=13422y x m kx y 联立得:0)3(48)43(222=-+++m kmx x k 有⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+>-+=∆22212212243)3(44380)43(48k m x x k km x x m k ① 由以PQ 为直径的圆经过坐标原点O 可得:0432121=+y y x x · 整理得:04)(4)43(221212=++++m x x km x x k ②将①式代入②式得:22243m k =+, ··········· 6 分048,0,043222>=∆>∴>+m m k又点O 到直线m kx y +=的距离21km d +=2222222221223414334143433411m mk k m kk m k k x x k AB ⋅+=+⋅+=+-++=-+=·········· 8 分所以32322122===∆mm d AB S OAB·········· 10 分 (2) 当直线l 的斜率不存在时,设方程为m x =(22<<-m )联立椭圆方程得:4)4(322m y -=代入0432121=+y y x x 得到04)4(3322=--m m 即552±=m ,5152±=y 3212121=-==∆y y m d AB S OAB综上:OAB ∆的面积是定值3 ,又ODE ∆的面积33221=⨯⨯=,所以二者相等. ········· 12 分 21. (Ⅰ)x x f x x x x f a ln )(,ln )(,0/-=-==, 1,0)(/==x x f ···········1分)上是增函数,在(10)(,0)(),1,0(/x f x f x >∈)上是减函数在(),(+∞<∞+∈,1)(,0)(,1/x f x f x ···········4分(Ⅱ)由原式b x xx ≥--⇔ln 11 令xxx x g ln 11)(--=,可得)(x g 在(]1,0上递减,在[)+∞,1上递增∴0)1()(min ==g x g ·········7分 即0≤b ·································8分(Ⅲ)由(Ⅱ)知xxx g ln 11)(+-=在(0,1)上单调递减∴11<<<y x e时,)()(y g x g > 即yyx x ln 1ln 1+<+ ·································10分 而11<<<y x e时,0ln 1,0ln 1>+∴<<-x x ··················11分 x y x y ln 1ln 1++<∴································12分 22.(I )∵EC EF DE ⋅=2,∴C EDF ∠=∠,又∵C P ∠=∠,∴P EDF ∠=∠,∴EDF ∆∽PAE ∆∴EP EF ED EA ⋅=⋅又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅···5分 (II )3=BE ,29=CE ,415=BP PA 是⊙O 的切线,PC PB PA ⋅=2,4315=PA ·······10分 23.(Ⅰ)圆C 的极坐标方程为:)4sin(22πθρ+= ········· 5 分(Ⅱ)圆心到直线距离为1,圆半径为2,所以弦长为2 ··········· 10分·11· 24.(Ⅰ)0)(>x f 的解集为:),32()4,(+∞⋃--∞ ·········· 5分 (Ⅱ)213-<a ·········· 10 分。

相关文档
最新文档