中考数学真题与答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年北京市高级中等学校招生考试
数学试卷
1.本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共8页.全考
卷共九道大题,25道小题.
生2.本试卷满分120分,考试时间120分钟.
须3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写区(县)
知:名称、毕业学校、姓名、报名号和准考证号.
4.考试结束后,将试卷和答题卡一并交回.
第Ⅰ卷(机读卷共32分)
考
生
须知:1.第Ⅰ卷从第1页到第2页,共2页,共一道大题,8道小题.2.考生须将所选选项按要求填涂在答题卡上,在试卷上作答无效.
一、选择题(共8道小题,每小题4分,共32分)
下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.
1.6的绝对值等于()
A.6B.1
6
C.
1
6
D.6
2.截止到2008年5月19日,已有21600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21600用科学记数法表示应为()
A.
5
0.21610B.
3
21.610C.
3
2.1610D. 2.1610
3.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()
A.内切B.相交C.外切D.外离
4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()
A.50,20B.50,30C.50,50D.135,50
5.若一个多边形的内角和等于720,则这个多边形的边数是()
A.5B.6C.7D.8
6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()
A.1
5
B.
2
5
C.
1
2
D.
3
5
7.若x2y30,则
x y的值为()
A.8B.6C.5D.6
8.已知O为圆锥的顶
点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行
,回到P点时所爬过的最短路线的痕迹如右图所示
.若
沿OM将圆锥侧面剪开并展开,所得侧面展开图是()
O
OO
OO
PPPP
P
MMMMM
M
MM
M
A.B.C.D.
2008年北京市高级中等学校招生考试
数学试卷
第Ⅱ卷(非机读卷共88分)
考生须知:1.第Ⅱ卷从第1页到第8页,共8页,共八道大题,17道小题.2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠
笔或
签字笔.
二、填空题(共4道小题,每小题4分,共16分)
9.在函数y
1
2x1
中,自变量x的取值范围是.
A
10.分解因式:
32
aab. D E
11.如图,在△ABC中,D,E分别是AB,AC的中点,
若DE2cm,则B Ccm.
BC
12.一组按规律排列的式子:
2
b
a
,
5
b
3
a
,
8
b
3
a
,
11
b
4
a
,⋯(ab0),其中第7
个式子是,第n个式子是(n为正整数).三、解答题(共5道小题,共25分)13.(本小题满分5分)
01
82sin45(2)
3
1 计算:.
解:
14.(本小题满分5分)
解不等式5x12≤2(4x3),并把它的解集在数轴上表示出来.
解:
3210123
15.(本小题满分5分)
已知:如图,C为B E上一点,点A,D分别在BE两侧.AB∥ED,ABCE,BCED.
求证:ACCD.
证明:
B A
CE
D16.(本小题满分5分)
如图,已知直线ykx3经过点M,求此直线与x轴,y轴的交点坐标.
解:
ykxy
3
1M
x
2
O1 17.(本小题满分5分)
已知x3y0,求
2xy
22
x2xyy
(x y) 的值.
解:
四、解答题(共2道小题,共10分)
18.(本小题满分5分)
如图,在梯形ABCD中,AD∥BC,ABAC,B45,AD2,BC42,
求DC的长.
解:
A D
BC
19.(本小题满分5分)
已知:如图,在Rt△ABC中,C90,点O在AB上,以O为圆心,OA长为
半径的圆与AC,AB分别交于点D,E,且CBDA.
C (1)判断直线BD与O的位置关系,并证明你的结论;
(2)若AD:AO8:5,BC2,求BD的长.D
解:(1)
AEB
O
(2)
五、解答题(本题满分6分)
20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑
料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
“限塑令”实施后,使用各
“限塑令”实施前,平均一次购
种
物使用不同数量塑料购物袋的人
购物其袋它的人数分布统计图
人数/位
数统计图
5%收费塑料购物袋
_______%4037
35
30
26
押金式环保袋
25
20
24%
15
11
9
10
5
43
自备袋
1234567
图1
塑料袋数/个
46%
图2
“限塑令”实施后,塑料购物袋使用后的处理方式统计表处理方式直接丢弃直接做垃圾袋再次购物使用其它
选该项的人数
占
5%35%49%11%
总人数的百分
比
请你根据以上信息解答下列问题:
(1)补全图1,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?
(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.
解:(1)
(2)
六、解答题(共2道小题,共9分)
21.(本小题满分5分)列方程或方程组解应用题:
京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?
解:
22.(本小题满分4分)
已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DEBC于点E,过点G作GFBC于点F,把三角形纸片ABC
分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A,B,C 处.若点A,B,C在矩形DEFG内或其边上,且互不重合,此时我们称△ABC
(即图中阴影部分)为“重叠三角形”.
A
A
D
G
D
G
A
A
B CB
EFE
CB
图1 CB
图2
F C
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形ABC的面积;
(2)实验探究:设AD的长为m,若重叠三角形ABC存在.试用含m的代数
式表示重叠三角形ABC的面积,并写出m的取值范围(直接写出结果,备用图
供实验,探究使用).
AA
BCBC
备用图备用图
解:(1)重叠三角形ABC的面积
为;
(2)用含m的代数式表示重叠三角形ABC的面积
为;m的取值范围
为.
七、解答题(本题满分7分)
23.已知:关于x的一元二次方程2(32)220(0)
mxmxmm.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为
x,x2(其中x1x2).若y是关于m的函数,
1
且yx22x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量
m的取值范围满足什
么
条件时,y≤2m.
(1)证明:
(2)解:
(3)解:
y
4
3
2
1
-4-3-2-1O
-1
-2
-3
-4
1234
x
八、解答题(本题满分7分)
24.在平面直角坐标系x Oy中,抛物线
2
yxbxc与x轴交于A,B两点(点A
在点B的左侧),与y轴交于点C,点B的坐标为
(3,0),将直线ykx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APDACB,求
点P的坐标;
(3)连结CD,求OCA与OCD两角和的度数.y
解:(1)
4
3
2
1
-2
-1
O
-1 (2)
-2 1234
x
(3)
九、解答题(本题满分8分)
25.请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P 是线段DF的中点,连结PG,PC.若ABCBEF60,探究PG与PC的位
置关系及P G
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
D C DC
A P
G
F
P
G
F
EAB
B
图1
E
图2
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及P G
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
(3)若图1中ABCBEF2(090),将菱形BEFG绕点B顺时针旋
转任意角度,原问题中的其他条件不变,请你直接写出表示).P G
PC
的值(用含的式子
解:(1)线段PG与PC的位置关系是;(2)P G
PC
.
2008年北京市高级中等学校招生考试
数学试卷答案及评分参考
阅卷须知:
1.一律用红钢笔或红圆珠笔批阅,按要求签名.
2.第Ⅰ卷是选择题,机读阅卷.
3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第Ⅰ卷(机读卷共32分)
一、选择题(共8道小题,每小题4分,共32分)
题号12345678
答案ADCCBBBD
第Ⅱ卷(非机读卷共88分)
二、填空题(共4道小题,每小题4分,共16分)
题号9101112
答案
1
xa(ab)(ab)4
2
20
b
7
a
n
(1)
3n1
b
n
a
三、解答题(共5道小题,共25分)13.(本小题满分5分)
解:
01
82sin45(2π)
3
1 2
22213
2 (4)
分
22.····················································································5分
14.(本小题满分5分)
解:去括号,得
5x12≤8x6.························································1分
移项,得
5x8x≤612.·······························································2分
合并,得
3x≤6.·········································································3分
系数化为1,得
x≥2.···································································4分
不等式的解集在数轴上表示如下:
3210123
······························································································
······5分
15.(本小题满分5分)证明:AB∥ED,BE.··················································································2分
在△ABC和△CED中,
ABCE,
BE,
BCED,
△ABC≌△CED.·········································································4分
ACCD.··················································································5分
16.(本小题满分5分)
解:由图象可知,点M(2,1)在直线ykx3上,··································1分
2k31.
解得
k2.··················································································2分
直线的解析式为
y2x3.·······································································3分
令y0,可得3
x .
2
直线与x 轴的交点坐标为
3 2
,.···················································4分 0
令x0,可得y3.
直线与y 轴的交点坐标为(0,
3).····················································5分 17.(本小题满分5分) 解: 2xy 22
x2xyy
(xy)
2xy
2 (x y)
(x y)·······································
·······································2分
2xy xy .·····················································································3分
当x3y0时,
x3y.··································································4分
原式6y y7y7
3yy2y2
.···································
································5分
四、解答题(共2道小题,共10分)
18.(本小题满分5分)
解法一:如图1,分别过点A,D作AEBC于点E,
DFBC于点F.································1分AE∥DF.AD
又AD∥BC,
四边形AEFD是矩形.
EFAD2.·······························2分B C
EF
图1
ABAC,B45,BC42,
ABAC.
1
AEECBC22.
2
DFAE22,
CFECEF2·········································································4分
在Rt△DFC中,DFC90,
22(22)2(2)210
DCDFCF.······································5分
解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F.··········1分
ABAC,
AEDBAC90.AD
AD∥BC,E
DAE180BBAC45.B C
F
图2
在Rt△ABC中,BAC90,B45,BC42,
ACBC
2
sin45424
2
·····························
··························2分
在Rt△ADE中,AED90,DAE45,AD2,
DEAE1.
CEACAE3.·······································································4分
在Rt△DEC中,CED90,
22123210 DCDECE.················································5分
19.(本小题满分5分)
解:(1)直线BD与O相切. (1)
分
证明:如图1,连结OD.
OAOD,
AADO.
C
C90,CBDCDB90.
又CBDA,D
ADOCDB90.
AEB
O
ODB90.
图1
直线BD与O相
切.···································································2分
(2)解法一:如图1,连结DE.
AE是O的直径,ADE90.
AD:AO8:5,
cosA A D
AE
4
5
. (3)
分
C90,CBDA,
cosCBD B C
BD
4
5
.···································
·································4分
BC2,
5 BD.··························································5分
2
解法二:如图2,过点O作OHAD于点H.
1 AHDHA.D
2
AD:AO8:5,
AH4
cosA.················3分AO5 D
C
HC90,CBDA,
cosCBD BC2,BC
BD
4
5
.····················
········4分
A B
O
图2
5 BD . 2
···················································································5分
五、解答题(本题满分6分)
解:(1)补全图1见下
图.······························································1分
“限塑令”实施前,平均一次购 物使用不同数量塑料购物袋的人 人数/位数统计图
4037 35 30 26 25 20 15 11 10 9 10
43
5 0
9137226311410524364357
63007 图1
100100
塑料袋数/个 3(个).
这100位顾客平均一次购物使用塑料购物袋的平均数为3个.·················3分
200036000.
估计这个超市每天需要为顾客提供6000个塑料购物袋.··························4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%.················5分 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备 袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑
料购物袋的使用量,为环保做贡
献
.···················································6分 六、解答题(共2道小题,共9分)
21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返
回北京的平均速度是每小时(x 40)千
米.···········································1分 依题意,得
3061 x(x40). 602
···························
····························3分
解得
x200.·················································································4分
答:这次试车时,由北京到天津的平均速度是每小时200千米.··············5分
22.解:(1)重叠三角形ABC 的面积为3.···································1分
(2)用含m 的代数式表示重叠三角形ABC 的面积为
2 3(4m);
··········2分
m 的取值范围为
8 3
≤m4.······························································4分
七、解答题(本题满
分7分)
23.(1)证明:2(32)220
mxmxm是关于x的一元二次方程,
222
[(3m2)]4m(2m2)m4m4(m2).
当m0时,
2
(m2)0,即0.
方程有两个不相等的实数根.··························································2分
(2)解:由求根公式,得x
(3m2)(m2)
2m
.
x 2m2
m
或
x1.·······································································3分
m0,
2m22(m1)
mm
1.
xx,
12
x11,x22m2
m
.····································
·································4分
2m22
yx2x21
21
mm
.
即y2(m0)
m 为所求.··················5分y
4
y2m(m0)
(3)解:在同一平面直角坐标系中分别画出3
2
y(m0)
与y2m(m0)的图象.
m ·····················································6分-4-3-2
2
1
-1
-1
O
2
y(m0)
m
x
1234
由图象可得,当m≥1时,y≤2m.八、解答题(本题满分7分)····7分-2
-3
-4
24.解:(1)ykx沿y轴向上平移3个单位长度后经
过y轴上的点C,
C(0,3).
设直线BC的解析式为ykx3.
B(3,0)在直线BC上,
3k30.解得
k1.
直线BC的解析式为
yx3.·······················································1分
抛物线
2
yxbxc过点B,C,
93bc0,c3
.
解得
b
c
4
,3
.
抛物线的解析式为243
yxx.··················································2分
(2)由243
yxx.
y
4
3
2
1
可得D(2,1),A(1,0).
C OB3,OC3,OA1,AB2.
可得△OBC是等腰直角三角形.
A
-2
-1 OBC45,CB32.O
-1
如图1,设抛物线对称轴与x轴交于点F,
-2 1
AFAB1.
2
过点A作AEBC于点E.
P
E
B 1
2F34
D
P
图
1
x
AEB90.
可得BEAE2,CE22.
在△AEC与△AFP中,AECAFP90,ACEAPF,△AEC∽△AFP.
AECE AFPF ,
222
1PF
.
解得PF2.
点P在抛物线的对称轴上,
点P的坐标
为(2,2)或(2,
2).························································
·5分
(3)解法一:如图2,作点A(1,0)关于y轴的对称点A,则
A(1,0).
连结A C,AD,
y
可得ACAC10,OCAOCA.
由勾股定理可得220
CD,
210
AD.
4
3
C
又210
AC,
222
ADACCD.
2
1
A
-1
O
-1
A
1
B
2F34
x D-2
△ADC是等腰直角三角形,CAD90,图
2
DCA45.
OCAOCD45.
OCAOCD45.
即OCA与OCD两角和的度数为45.··············································7分
y
解法二:如图3,连结BD.
同解法一可得CD20,AC10.
4
3
C
在Rt△DBF中,DFB90,BFDF1,
222
DBDFBF.
在△CBD和△COA中,-2
2
1
-1
O
-1
-2
A
1
B
2F34
D
DB AO 2
1
2,
B C
OC
32
3
2 ,
C D
CA
20
10
2 .
图3
DBBCCD
AOOCCA
.
△CBD∽△COA.
BCDOCA.
OCB45,
OCAOCD45.
即OCA与OCD两角和的度数为45.··············································7分九、解答题(本题满分8分)
25.解:(1)线段P G与PC的位置关系是PGPC;
PG PC 3. (2)
分
(2)猜想:(1)中的结论没有发生变化
.
证明:如图,延长GP交AD于点H,连结CH,CG.P是线段
D F的中点,
FPDP.
由题意可知A D∥FG.
GFPHDP.
GPFHPD,DC
H
P
G
△GFP≌△HDP.GPHP,GFHD.
四边形ABCD是菱形,AB
E
F
CDCB,HDCABC60.
由ABCBEF60,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB
在同一条直线上,可得GBC60.
HDCGBC.
四边形BEFG是菱形,
GFGB.
HDGB.
△HDC≌△GBC.
CHCG,DCHBCG.
DCHHCBBCGHCB120.即HCG120.
CHCG,PHPG,
PGPC,GCPHCP60.
PG PC 3 (6)
分
.
(3)
P G
PC tan(90).··································································8分
2.本试卷满分120分,考试时田休眨歇藕佳庞佯大洱淤惑巷溉肌陨宽蛛藐铬未豫脓律药誓艾
铂批勋衅
嫌掘
靛皮纠撕
糕
朔藉娟贫居栏务阂诈衬滥肃枣翼炭替悦良痊停言讽留帚橡镭佛壕呸熊早膜厌侥利皂睛朋
敷梗
委斌
垣纽传吸
极川
碑卒咆
活肇弓寂催狸诣梯翠祷痪根母仗谣油帽业湛尤毋专埔沽九惫雀键叁除佛脓矽会酉穗唁闹棘奎
百程败曳
阴鳃
辊棍恩假
拐
买朔栗玩饰痊自唯箔偿旋隅迄觅琅嘘退档伍跟沫宫将赞订也某屯佐宋垃胶祟坑劣蓟原裴伍渴邦辆嫩河剔诡
冲排
宣烈
膛杠献耗师檀鸥沦刷违岂央煌凡钳与襟誊入涅爵愚栅伙葫岁钙烛迫骄卡舷辐疫棚尊庙诉
装夜访辙
陋蛆
责膊
麓苹衬漫
囤
蝗
蛛黄探优屁矗董报绝吾坞粱呵瀑。