氮化铝基板制备.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烧结助剂的选择
AlN的烧结助剂一般是碱金属氧化物和碱土金属氧化物, 烧结助剂主要有两方面的作用:一方面形成低熔点物相, 实现液相烧结,降低烧结温度,促进坯体致密化;另一方 面,高热导率是AlN基板的重要性能,而实现AlN基板中由 于存在氧杂质等各种缺陷,热导率低于及理论值,加入烧 结助剂可以与氧反应,使晶格完整化,进而提高热导率。
表1
4种陶瓷封装材料的性能对比
AlN的典型性能
AlN晶体的晶格常数为a=0.311nm,c=0.498nm,是六方晶系纤锌矿 型共价键化合物,其结构如图1所示。AlN晶体呈现白色或灰色,常压下 分解温度为2200~2450℃,理论密度为3.26g/cm³ 。AlN具有优良的综合 性能,主要性能见表2
声子散色对热导率λ的影响关系式为:
AlN热导率与温度的关系 从式中可以看出,对于给定体系,声子平均自由程(l)是影响热导率的 关键因素,声子的平均自由程越长,热导率越高。在热传输过程中,晶体中 的缺陷、晶界、空洞、电子以及声子自身都会产生声子散射,从而降低声子 的平均自由程,进一步影响热导率。
氮化铝陶瓷的基础研究
陶瓷基板的成型主要有压膜、干压和流延 成型3种方法。其中以流延成型生产效率最高, 且易于实现生产的连续化和自动化,改善产品质 量,降低成本,实现大批量生产,生产的基板厚 度可以薄至10µm一下,厚至1mm以上。流延成 型是AlN陶瓷基板向实用化转化的重要一步,有 着重要的应用前景。
流延成型示意图
AlN粉体的合成
AlN粉体的合成方法很多,目前研究较多 的有5种方法:
铝粉直接氮化法 Al2O3碳还原法 化学气相沉淀法
溶胶—凝胶法
自蔓延高温合成法
烧结理论
氮化铝自扩散系数小,烧结非常困难。通过以下三种途 径可以获得致密的高性能氮化铝陶瓷:(1)使用超细粉; (2)热压或等静压;(3)引入烧结助剂。其中,第一种途 径受粉体性能影响较大,而且超细粉会给流延成型带来困难; 第二种途径适用于高性能块体氮化铝材料的制备,对氮化铝 流延基片与金属浆料共烧的多中陶瓷技术有很大的局限性, 不能用于电子封装;第三种途径工艺上易于实现,且适于流 延成型和无压烧结,有可能获得低成本高性能的氮化铝陶瓷 材料。
在声子—缺陷的散射中,起主要作用的是杂质氧和Al2O3.
由于AlN易于水解和氧化,表面形成一层Al2O3, Al2O3溶入AlN晶格中 产生铝空位。 Al2O3→2AlAl+3ON+VAl 此外,AlN与氧的亲和力很强,氧很容易进入氮化铝晶格中,晶格中的 氧具有高置换可溶性,容易形成氧缺陷。 AlN晶格中的缺陷与氧的浓度关系: 当【O】<0.75% O均匀分布于AlN晶格中,占据着AlN中N的位置,并 伴有Al空位。 当【O】≥0.75% Al原子位置发生改变,同时消灭Al空位,并形成一个八 面体缺陷。 在更高浓度下,将形成延展缺陷,如含氧层错、反演畴,多形体等。 氧杂质的存在严重影响AlN的导热性,氧缺陷的存在增大了声子的散射 面积截面,降低AlN的热导率。
图1
AlN的晶体结构图
氮化铝的物理化学性质
表2 AlN的主要性能
氮化铝陶瓷的基础研究
AlN导热机理
在氮化铝—系列重要性质中,最为显著的是高热导率。其主要机 理为:通过点阵或晶格震动,即借助晶格波或热波进行热传递。AlN陶 瓷为绝缘陶瓷材料,对于绝缘陶瓷材料,热能以原子震动方式传递, 属于声子导热,声子在它的导热过程中扮演着重要角色。氮化铝热导 率理论上可达320w/(m· k),但由于氮化铝中有杂质和缺陷,导致氮 化铝产品的热导率远达不到理论值。氮化铝粉末中杂质元素主要为氧、 碳,另外还有少量的金属离子杂质,在晶格中产生各种缺陷形式,这 些缺陷对声子的散射会降低热导率。
氮化铝陶瓷性能
长期以来,绝大多数大功率混合集成电路的基板材料 一直沿用Al2O3和BeO陶瓷,但Al2O3基板的热导率低,热 膨胀系数和Si不太匹配; BeO虽然具有优异的综合性能, 但其较高的生产成本和剧毒的缺点限制了它的应用推广。 因此从性能、成本和环保等因素考虑,二者已不能满足现 代电子功率器件和发关注的新一代先进陶瓷,在多方面都有着广泛的应用前景, 尤其是其具有高热导率、低介电常数、低介电损耗、优良 的电绝缘性,与硅相匹配的热膨胀系数及无毒性等优点, 使其成为高密度、大功率和高速集成电路基板和封装的理 想材料。
烧结工艺
目前AlN较常用的烧结工艺一般有5种,即热压 烧结、无压烧结、放电等离子烧结(SPS)、微波 烧结和自蔓延烧结。
烧结助剂对导热率的影响
Y3Al5O12(3:5)

YAlO4(1:1)

Y4Al2O9(4:2)
烧结AlN陶瓷使用的烧结助剂主要有Y2O3、 CaO、Yb2O3、Sm2O3、Li2O3、B2O3、CaF2、 YF3、CaC2等或它们的混合物。 选择多元复合烧结助剂,往往能获得比单 一烧结助剂更好的烧结效果。某些烧结助剂 还能在相对低温下(通常为1600~1700 ℃ ) 发挥助烧结作用。找到合适的低温烧结助剂, 实现AlN低温烧结,就可以减少能耗、降低成 本,便于进行连续生产。
因此,氧杂质的存在严重影响AlN的热导率,是热导率降低的主要因素
氮化铝水解
氮化铝与水有着很高的反应活性,与水发生反应生 成Al(OH)3,反应机理如下:
向氮化铝中加入有机羧酸,有机羧酸包裹在氮化 铝颗粒表面,阻碍了水分子向氮化铝粉体表面侵蚀, 提高氮化铝的抗水解能力。
AlN陶瓷基板材料的制备
基板制备工艺的过程
烧结
由于AlN粉体对氧的亲合力很强,部分氧会固溶于AlN点阵中,从而 形成铝空位;
Al2O3→2Al+3ON+VA
产生的铝空位散射声子,会降低声子的平均自由程,从而导致导热 率下降。因此,制约AlN陶瓷导热率的主要因素是氧杂质及晶界相的含量。 既要达到致密烧结、降低杂质含量、减少晶界相的含量,又要简化工艺、 降低成本,在AlN陶瓷的烧结过程中关键要做到:—是选择适当的烧结助 剂;二是选择适当的烧结工艺。
相关文档
最新文档