高中物理稳恒电流真题汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理稳恒电流真题汇编
一、稳恒电流专项训练
1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:
(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l
= 【解析】 【分析】
细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】
解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:
1
2
2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E
I R
=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2
22
23mgR
v B l = 【点睛】
能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.
2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有
“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:
(1)流过灯泡的电流
(2)固定电阻的发热功率
(3)电动机输出的机械功率
【答案】(1)2A(2)7V(3)12W
【解析】
(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值
可得流过灯泡的电流为:=2A
(2)根据热功率公式,可得固定电阻的发热功率:=12W
(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V
电动机消耗的功率:=18W
一部分是线圈内阻的发热功率:=4W
另一部分转换为机械功率输出,则=14W
【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
3.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.
(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.
a.己知带电粒子电荷量均为g,粒子定向移动所形成的电流强度为,求在时间t内通过某一截面的粒子数N.
b.直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l所示,在距粒子源l1、l2两处分别取一小段长度相等的粒子流I .已知l l:l2=1:4,这两小段粒子流中所含的粒子数分别为n1和n2,求:n1:n2.
(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂 直于水柱的横截面可视为圆.在水柱上取两个横截面A 、B ,经过A 、B 的水流速度大小分别为v I 、v 2;A 、B 直径分别为d 1、d 2,且d 1:d 2=2:1.求:水流的速度大小之 比v 1:v 2.
(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l 远远大于细管内的横截面积S 2;重力加速度为g .假设 水不可压缩,而且没有粘滞性.
a .推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:
b .在上述基础上,求:当液面距离细管的高度为h 时, 细管中的水流速度v .
【答案】(1)a. Q It N q q
=
= ;b. 21:2:1n n =;(2)2
21221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】 【分析】 【详解】 (1)a.电流Q I t
=
,
电量Q Nq = 粒子数Q It N q q
== b.根据2v ax =
, 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =
极短长度内可认为速度不变,根据x v t
∆=∆, 得12:2:1t t =
根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.
也即:2
··
4
v d π
处处相等 故这两个截面处的水流的流速之比:22
1221::1:4v v d d ==
(3)a .设:水面下降速度为1v ,细管内的水流速度为v .
按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.
所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:
液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:2
1002
mgh mv +=+ 解得:2v gh =
4.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给
导体棒一个平行与导轨的初速度,此时可控电阻的阻值为
,在棒运动过程中,通过可控
电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。
(1)求可控电阻R 随时间变化的关系式; (2)若已知棒中电流强度为I ,求
时间内可控电阻上消耗的平均功率P ;