场效应管(FET)的工作原理总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结型场效应管的工作原理
N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。
N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。
转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。 ()|D gs ds u i f u ==常数
在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为
2()(1)GS
D DDS GS off u i I u =-
2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。
()|D s gs d u i f u ==常数
GS 0
1
2
3
4
5
1.v GS对沟道电阻及i D的控制作用
图2所示电路说明了v GS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压v DS=0。当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压称为夹断电压,用V P表示。
上述分析表明,改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。
2.v DS对i D的影响
设v GS值固定,且V P (为|v GD| ),即加到该处P+N结上的反偏电压最大,这使得沟道两侧的耗尽层从源极到漏极逐渐加宽,沟道宽度不再均匀,而呈楔形,如图3(a)所示。 在v DS较小时,它对i D的影响应从两个角度来分析:一方面v DS增加时,沟道的电场强度增大,i D随着增加;另一方面,随着v DS的增加,沟道的不均匀性增大,即沟道电阻增加,i D应该下降,但是在v DS较小时,沟道的不均匀性不明显,在漏极附近的区域内沟道仍然较宽,即v DS对沟道电阻影响不大,故i D随v DS 增加而几乎呈线性地增加。随着v DS的进一步增加,靠近漏极一端的P+N结上承受的反向电压增大,这里的耗尽层相应变宽,沟道电阻相应增加,i D随v DS上升的速度趋缓。 当v DS增加到v DS=v GS-V P,即v GD=v GS -v DS=V P(夹断电压)时,漏极附近的耗尽层即在A点处合拢,如图3(b)所示,这种状态称为预夹断。与前面讲过的整个沟道全被夹断不同,预夹断后,漏极电流i D≠0。因为这时沟道仍然存在,沟道内的电场仍能使多数载流子(电子)作漂移运动,并被强电场拉向漏极。若v DS继续增加,使v DS>v GS-V P,即v GD<V P时,耗尽层合拢部分会有增加,即自A点向源极方向延伸,如图3(c),夹断区的电阻越来越大,但漏极电流i D却基本上趋于饱和,i D不随v DS的增加而增加。因为这时夹断区电阻很大,v DS的增加量主要降落在夹断区电阻上,沟道电场强度增加不多,因而i D基本不变。但当v DS增加到大于某一极限值(用V(BR)DS表示)后,漏极一端P+N结上反向电压将使P+N结发生雪崩击穿,i D会急剧增加,正常工作时v DS不能超过V(BR)DS。 从结型场效应管正常工作时的原理可知:①结型场效应管栅极与沟道之间的P+N结是反向偏置的,因此,栅极电流i G≈0,输入阻抗很高。②漏极电流受 栅-源电压v GS控制,所以场效应管是电压控制电流器件。③预夹断前,即v DS 较小时,i D与v DS间基本呈线性关系;预夹断后,i D趋于饱和。 P沟道结型场效应管工作时,电源的极性与N沟道结型场效应管的电源极性相反。 金属-氧化物-半导体场效应管 结型场效应管的输入电阻虽然可达106~109Ω,但在要求输入电阻更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015Ω。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。 MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽型两种,二者的区别是增强型MOS管在栅-源电压v GS=0时,漏-源极之间没有导电沟道存在,即使加上电压v DS(在一定的数值范围内),也没有漏极电流产生(i D=0)。而耗尽型MOS管在v GS=0时,漏-源极间就有导电沟道存在。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图1(a)、(b)分别是它的结