北理工随机信号分析实验报告
北京理工大学信号与系统实验报告
![北京理工大学信号与系统实验报告](https://img.taocdn.com/s3/m/40f5692865ce05087732132e.png)
实验1 信号的时域描述与运算一、实验目的1、掌握信号的MATLAB表示及其可视化方法。
2、掌握信号基本时域运算的MATLAB实现方法。
3、利用MATLAB分析常用信号,加深对信号时域的理解。
二、实验原理1、连续时间的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除若干个不连续点外,在任何信号都有意义。
在MATLAB中,连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
向量表示法:严格意义上来说,MATLAB并不能处理连续时间信号,都必须是用信号等时间间隔采样后的采样值来近似表示的,采样时间间隔足够小的时候,这些采样值就可以近似地表示出连续时间信号。
例如:>>t=0:0.01:10;>>x=sin(t);此时利用plot(t,x)命令即可绘制上述信号的时域波形。
符号对象表示法:连续时间信号先用表达式表示出来,然后采用符号表达式来表示信号。
例如:>>sym t;>>x=xin(t);此时利用ezplot(x)命令即可绘制上述信号的时域波形。
常用的信号产生函数:2、连续时间信号的时域运算对连续时间信号的运算包括量信号想家、相乘、微分、积分以及位移反转、尺度变换(尺度伸缩)等1)相加和相乘信号的相加和相乘指两个信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“•”来计算,此时要求表示两信号的向量时间范围和采样间隔相同,采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
2)微分和积分对于向量表示发表示的连续时间信号,可以用过数值计算的方法计算信号的微分和积分。
这里由时间向量[t1,t2,…,t N]和采样值向量[x1,x2,…,x N]表示的连续信号的微分是利用差分来近似求取的。
MATLAB里用diff来计算差分x(k+1)-x(k)。
连续信号的定积分可以由MATLAB的quad函数实现,调用格式为quad(‘functions_name’,a,b)其中,functions_name为被积函数名,a、b为积分区间。
《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码
![《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码](https://img.taocdn.com/s3/m/49502cd45022aaea998f0fed.png)
《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程的方差。
方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。
随机信号分析实验报告
![随机信号分析实验报告](https://img.taocdn.com/s3/m/18f801d428ea81c758f5787b.png)
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
![随机信号分析实验报告](https://img.taocdn.com/s3/m/6a46c06fa55177232f60ddccda38376baf1fe025.png)
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
北京理工大学数信实验报告
![北京理工大学数信实验报告](https://img.taocdn.com/s3/m/579c733b001ca300a6c30c22590102020640f250.png)
实验1 利用DFT 分析信号频谱一、实验目的1、加深对DFT 原理的理解。
2、应用DFT 分析信号的频谱。
3、深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境。
三、实验基础理论1.DFT 与DTFT 的关系:有限长序列的离散时间傅里叶变换(e )j X ω 在频率区间(02)ωπ≤≤ 的N 个等间隔分布的点2(0k N 1)kk N πω=≤≤-上的N 个取样值可以有下式表示:2120(e )|(n)e(k)(0k N 1)N jkn j Nkk NX x X πωπω--====≤≤-∑由上式可知,序列(n)x 的N 点DFT (k)X ,实际上就是(n)x 序列的DTFT 在N 个等间隔频率点2(0k N 1)kk N πω=≤≤-上样本(k)X 。
2.利用DFT 求DTFT方法1:由(k)X 恢复出(e )j X ω的方法如下:由流程知:11(e )(n)e[(k)W]e N j j nkn j nNn n k X x X Nωωω∞∞----=-∞=-∞===∑∑∑继续整理可得到:12()(k)()Ni k kx e X N ωπφω==-∑其中(x)φ为内插函数:sin()2()sin()2N N ωφωω=方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2N π,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号(t)a x ,按采样间隔T 进行采样,阶段长度M ,那么:1(j )(t)e(nT)e M j tj nTa a a n X x dt T x -∞-Ω-Ω-∞=Ω==∑⎰对(j )a X Ω 进行N 点频域采样,得到:2120(j )|(nT)e(k)M jkn Na a M kn NTX T x TX ππ--Ω==Ω==∑采用上述方法计算信号(t)a x 的频谱需要注意如下三个问题:(1)频谱混叠;(2)栅栏效应和频谱分辨率; (3)频谱泄露。
随机信号分析实验报告
![随机信号分析实验报告](https://img.taocdn.com/s3/m/703eb40489eb172ded63b7dd.png)
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数的产生(一)实验原理1.均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。
最简单的方法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。
加同余法虽然简单,但产生的伪随机数效果不好。
另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。
用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ My x n n 11++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。
常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。
Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。
Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。
2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。
北京理工大学信号与系统实验实验报告材料
![北京理工大学信号与系统实验实验报告材料](https://img.taocdn.com/s3/m/724b6390c8d376eeaeaa31ee.png)
实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB 表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB 实现方法。
3. 利用MATLAB 分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB 表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB 中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB 并不能处理连续时间信号,在MATLAB 中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10; >> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t); >> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形012345678910-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-6-4-20246-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)常用的信号产生函数 函数名 功能 函数名 功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波sinc sinc 函数 sawtooth 周期锯齿波或三角波 exp指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
随机信号分析实验报告
![随机信号分析实验报告](https://img.taocdn.com/s3/m/0e53878126fff705cc170ac4.png)
一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
本实验中算法都是一种估算法,条件是N要足够大。
2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。
噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。
②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。
对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。
对微弱信号检测与提取有很多方法,本实验采用多重自相关法。
多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。
即令:式中,是和的叠加;是和的叠加。
对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。
信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。
多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。
北京理工大学信号和系统实验报告
![北京理工大学信号和系统实验报告](https://img.taocdn.com/s3/m/b90c7951168884868762d63b.png)
本科实验报告实验名称:信号与系统实验实验一信号的时域描述与运算一、实验目的①掌握信号的MATLAB表示及其可视化方法。
②掌握信号基本时域运算的MATLAB实现方法。
③利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形常用的信号产生函数2.连续时间信号的时域运算-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。
随机信号分析实验百度
![随机信号分析实验百度](https://img.taocdn.com/s3/m/d7cadf6daeaad1f346933f99.png)
《随机信号分析》试验报告班级班学号姓名实验一1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布(1)Y = randn 产生一个伪随机数(2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(2)作为例子,运行结果如下:>> Y = randn(3)Y =1.3005 0.0342 0.97920.2691 0.9913 -0.8863-0.1551 -1.3618 -0.35622)rand()(1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内(2)Y = rand(m,n) 生成m×n 随机矩阵(3)Y = rand([m n]) 生成m×n 随机矩阵(4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组(5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组(6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵选择(3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.0579 0.0099 0.1987 0.19880.3529 0.1389 0.6038 0.01530.8132 0.2028 0.2722 0.74683)normrnd()产生服从正态分布的随机数(1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma可以为向量、矩阵、或多维数组。
北京理工大学《通信原理》第3章-随机信号分析
![北京理工大学《通信原理》第3章-随机信号分析](https://img.taocdn.com/s3/m/6e2b254add36a32d72758105.png)
1
2
d
A sin 0 t
2
sin
1
d
0
2
0
■ R t1 , t2 E Acos 0t1 Acos 0t2
A2 A2
2
E
1 2
cos0
cos 0
t2 t1
t2
0
t1
cos 0
周期信号和非周期信号 能量信号和功率信号 基带信号和频带信号 模拟信号和数字信号
随机信号:具有随机性,可用统计规律来描述
通信过程中要发送的信号是不可预知的,因此具有随 机性,是随机信号,但信号的统计特性具有规律性。
噪声和干扰是随机的信号; 无线信道特性(可理解为系统传递函数)也是随机变
]dt
A2 2
cos c
结论:随机相位余弦波是遍历的。
2019/11/21
20
3 高斯过程(1)
定义:任意 n 维概率密度是正态分布式
fn x1 , x2 , xn; t1 , t2 , tn
1
2 n 2 1 2
n
1
B
1
2
exp
0 P 0
()e
jt
d
■
R0 1
2
P
d
1
2
0 G
d
2019/11/21
0 G
2
f
df
17
图:功率信号与截断函数
2019/11/21
北京理工大学信号与系统实验报告
![北京理工大学信号与系统实验报告](https://img.taocdn.com/s3/m/5feca162eefdc8d377ee3224.png)
实验1 信号的时域描述与运算一、实验目的1、掌握信号的MATLAB表示及其可视化方法。
2、掌握信号基本时域运算的MATLAB实现方法。
3、利用MATLAB分析常用信号,加深对信号时域的理解。
二、实验原理1、连续时间的MATLAB表示连续时间信号指的是在连续时间围有定义的信号,即除若干个不连续点外,在任何信号都有意义。
在MATLAB中,连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
向量表示法:严格意义上来说,MATLAB并不能处理连续时间信号,都必须是用信号等时间间隔采样后的采样值来近似表示的,采样时间间隔足够小的时候,这些采样值就可以近似地表示出连续时间信号。
例如:>>t=0:0.01:10;>>x=sin(t);此时利用plot(t,x)命令即可绘制上述信号的时域波形。
符号对象表示法:连续时间信号先用表达式表示出来,然后采用符号表达式来表示信号。
例如:>>sym t;>>x=xin(t);此时利用ezplot(x)命令即可绘制上述信号的时域波形。
常用的信号产生函数:2、连续时间信号的时域运算对连续时间信号的运算包括量信号想家、相乘、微分、积分以及位移反转、尺度变换(尺度伸缩)等1)相加和相乘信号的相加和相乘指两个信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“•”来计算,此时要求表示两信号的向量时间围和采样间隔相同,采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
2)微分和积分对于向量表示发表示的连续时间信号,可以用过数值计算的方法计算信号的微分和积分。
这里由时间向量[t1,t2,…,t N]和采样值向量[x1,x2,…,x N]表示的连续信号的微分是利用差分来近似求取的。
MATLAB里用diff来计算差分x(k+1)-x(k)。
连续信号的定积分可以由MATLAB的quad函数实现,调用格式为quad(‘functions_name’,a,b)其中,functions_name为被积函数名,a、b为积分区间。
北京理工大学随机信号分析实验报告
![北京理工大学随机信号分析实验报告](https://img.taocdn.com/s3/m/e1c19fbc02d276a201292e2a.png)
北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
北京理工大学信号与系统实验报告8 调制与解调
![北京理工大学信号与系统实验报告8 调制与解调](https://img.taocdn.com/s3/m/cbafc4cb2cc58bd63186bdd0.png)
实验8 调制与解调(设计型实验)一、实验目的1) 加深理解信号调制和解调的基本原理2) 从时域和频域分析信号幅度调制和解调的过程 3) 掌握幅度调制和解调的实现方法 二、实验原理与方法 1. 调制与解调在通信系统中,信号传输之前通常需要在发送端将信号进行调制,转换成为适合传输的信号,在接收端则需要进行解调,将信号还原成原来的信息。
在实际应用中,有多种调制方法,最常用的模拟调制方式是用正弦波作为载波的幅度调制、频率调制和相位调制3种方式,其中幅度调制(AM )属于线性调制,这里重点介绍AM 调制的基本原理。
正弦幅度调制和解调的原理框图如下:x(t)为调制信号,cos(w 0t)为载波,g(t)为已调信号。
调制信号与载波信号相乘可以得到已调信号,即g(t)=x(t)* cos(w 0t) 载波频谱为00()()()P ωπδωωπδωω=-++ 有频域卷积定理g(t)=x(t)* cos(w 0t)的频谱为0011G()[X()P()][X()()]22X ωωωωωωωπ=*=-++ 在调制过程中信号的所有信息X(w)均被保留了下来,,只是被移到了较高的频率上。
为使G()ω中两个非零部分不重叠,应满足0m ωω>。
解调过程中,将g(t)乘以本振信号cos(w 0t)得r(t),本振信号的频率与调制过程中载波信号频率相同,这种方法称为同步解调。
200011(t)g(t)cos(t)(t)cos (t)(t)(t)cos(2t)22r x x x ωωω=*==+ 从频域上看,根据频域卷积定理可以求出(t)g(t)p(t)r =的频谱为00()[X(2)]/4X()/2[X(2)]/4R ωωωωωω=-+++将r(t)通过一定的低通滤波器滤除频率为02ω的分量,则可恢复出原始信号。
已调信号g(t)=x(t)* cos(w 0t)的频谱只含上下边带成分,抑制了载波分量,称为抑制载波双边带(DSB-SC )调幅;而具有s(t)=[A+x(t)]cos(w 0t)形式的已调信号频谱中包含载波和上下边带,称为双边带(DSB )调幅2. 低通滤波器的MATLAB 实现解调过程中需要使用低通滤波器恢复原始信号,MATLAB 和Simulink 都提供了强大功能用于滤波器的设计。
北理工随机信号分析实验报告
![北理工随机信号分析实验报告](https://img.taocdn.com/s3/m/4254ce7050e2524de5187ef1.png)
本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
北京理工大学信号与系统实验报告1信号的时域描述与运算资料
![北京理工大学信号与系统实验报告1信号的时域描述与运算资料](https://img.taocdn.com/s3/m/b798602b4693daef5ff73d0f.png)
实验1 信号的时域描述与运算(基础型实验)一、实验目的1.掌握信号的MATLAB表示及其可视化方法。
2.掌握信号基本时域运算的MATLAB实现方法。
3.利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理及方法1.连续时间信号的MATLAB表示连续时间信号在连续时间范围内除若干不连续点外在任何时刻都有定义,在MATLAB中的表示法包括向量表示法和符号对象表示法。
1)向量表示法MATLAB从严格意义上来说并不能处理连续时间信号,但可以通过等时间间隔采样后的采样值来近似表示,如果采样间隔足够小,则采样值就可以很好地近似表示出连续时间信号。
这种方法称为向量表示法。
表示一个连续时间信号需要用到两个向量,一个表示时间范围,另一个表示连续时间信号在相对应时间范围内的采样值。
2)符号对象表示法如果连续时间信号可以用表达式来描述,则可以采用符号对象表达法。
例:对于余弦信号,采用两种方式来表示:>> t=0:0.01:10;>> x=sin(t);>> subplot(121)>> plot(t,x)>> title('向量表示法')>> clear>> syms t>> x=sin(t);>> subplot(122)>> ezplot(x)>> title('符号对象表示法')符号对象表示法向量表示法2. 连续时间信号的时域运算连续时间信号的运算包括两信号相加、相乘、微分、积分,以及移位、反转、尺度变换等。
1) 相加和相乘信号的相加和相乘指两信号对应时刻值相加或相乘。
两个采用向量表示法的信号可以直接使用‘+’和‘*’进行运算,此时要求二者的向量时间范围以及采样间隔相同。
两个采用符号对象表示法的信号,可直接依据符号对象的运算规则运算。
北京理工大学信号与系统实验报告
![北京理工大学信号与系统实验报告](https://img.taocdn.com/s3/m/40f5692865ce05087732132e.png)
实验1 信号的时域描述与运算一、实验目的1、掌握信号的MATLAB表示及其可视化方法。
2、掌握信号基本时域运算的MATLAB实现方法。
3、利用MATLAB分析常用信号,加深对信号时域的理解。
二、实验原理1、连续时间的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除若干个不连续点外,在任何信号都有意义。
在MATLAB中,连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
向量表示法:严格意义上来说,MATLAB并不能处理连续时间信号,都必须是用信号等时间间隔采样后的采样值来近似表示的,采样时间间隔足够小的时候,这些采样值就可以近似地表示出连续时间信号。
例如:>>t=0:0.01:10;>>x=sin(t);此时利用plot(t,x)命令即可绘制上述信号的时域波形。
符号对象表示法:连续时间信号先用表达式表示出来,然后采用符号表达式来表示信号。
例如:>>sym t;>>x=xin(t);此时利用ezplot(x)命令即可绘制上述信号的时域波形。
常用的信号产生函数:2、连续时间信号的时域运算对连续时间信号的运算包括量信号想家、相乘、微分、积分以及位移反转、尺度变换(尺度伸缩)等1)相加和相乘信号的相加和相乘指两个信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“•”来计算,此时要求表示两信号的向量时间范围和采样间隔相同,采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
2)微分和积分对于向量表示发表示的连续时间信号,可以用过数值计算的方法计算信号的微分和积分。
这里由时间向量[t1,t2,…,t N]和采样值向量[x1,x2,…,x N]表示的连续信号的微分是利用差分来近似求取的。
MATLAB里用diff来计算差分x(k+1)-x(k)。
连续信号的定积分可以由MATLAB的quad函数实现,调用格式为quad(‘functions_name’,a,b)其中,functions_name为被积函数名,a、b为积分区间。
北理工信号实验报告
![北理工信号实验报告](https://img.taocdn.com/s3/m/30c1a54377c66137ee06eff9aef8941ea76e4b2f.png)
北理工信号实验报告1. 实验目的本实验旨在通过对北理工信号实验的探索与学习,加深对数字信号处理的理解。
具体目标如下:- 了解信号处理的基本概念和基本原理;- 掌握数字信号的模拟与数字转换方法;- 学会使用MATLAB进行信号处理实验。
2. 实验原理信号处理是对信号进行采样、量化和编码等操作,将连续的模拟信号转换成离散的数字信号的过程。
数字信号由一系列的采样值组成,这些采样值是模拟信号在离散时间点上的近似值。
数字信号的采样率和量化位数是决定信号质量的重要因素。
实验中采集的信号是通过模拟方式产生的,通过模拟-数字转换芯片将模拟信号转换为数字信号。
然后使用MATLAB对这些数字信号进行采样、量化、编码和解码等操作。
3. 实验内容本次实验进行了如下几个实验操作和内容:- 使用函数`sin`生成一个频率为1000Hz,振幅为2的正弦信号;- 将生成的信号进行采样操作,并绘制采样后的信号图像;- 对采样信号进行离散傅立叶变换,并绘制频谱图像;- 对频谱进行低通滤波,并绘制滤波后的频谱图像;- 对滤波后的信号进行解码,并绘制解码后的信号图像;4. 实验结果与分析通过实验,我们得到了以下结果和分析:首先,我们生成了频率为1000Hz,振幅为2的正弦信号,并进行了采样操作。
通过绘制采样后的信号图像,可以看到信号的周期性,但呈现离散的特点。
然后,我们对采样信号进行离散傅立叶变换,得到了频谱图像。
通过观察频谱图像,我们可以清晰地看到信号的频率信息。
在频谱图像中,频率为1000Hz的正弦信号对应的频率分量明显。
接下来,我们对频谱进行低通滤波,滤除高频分量。
通过绘制滤波后的频谱图像,可以观察到高频分量被滤除了,只保留了低频分量。
最后,我们对滤波后的信号进行解码,并绘制解码后的信号图像。
通过观察解码后的信号图像,我们可以看到滤波后的信号与原始信号比较接近。
解码过程可以还原数字信号为模拟信号,使得信号能够以连续的形式传输和显示。
随机信号分析实验报告(基于MATLAB语言)
![随机信号分析实验报告(基于MATLAB语言)](https://img.taocdn.com/s3/m/fc86919810a6f524ccbf85e8.png)
随机信号分析实验报告(基于MATLAB语言)随机信号分析实验报告——基于MATLAB语言姓名: _班级: _学号:专业:目录实验一随机序列的产生及数字特征估计 .. 2 实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试18 实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。
定理 1.1 若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.M ATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北理工随机信号分析实验报告————————————————————————————————作者:————————————————————————————————日期:本科实验报告实验名称:随机信号分析实验课程名称:随机信号分析实验实验时间: 任课教师: 实验地点:实验教师:实验类型: □原理验证□综合设计□自主创新学生姓名:学号/班级:组号: 学院:同组搭档:专业:成绩:实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数:1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran 0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X(x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:r and用法:x = r and(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:r andn用法:x = randn (m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。
(3)其他分布的随机序列M ATL AB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。
MATLAB 中产生随机数的一些函数3、随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。
这里我们假定随机序列 X (n)为遍历过程,样本函数为x (n),其中n=0,1,2,…,N -1。
那么,X (n)的均值、方差和自相关函数的估计为利用MATLAB 的统计分析函数可以分析随机序列的数字特征。
(1)均值函数 函数:me an 用法:m = mean(x)功能:返回按上面第一式估计X (n)的均值,其中x为样本序列x(n)。
(2)方差函数函数:var用法:sigma2= var(x)功能:返回按上面第二式估计X (n)的方差,其中x为样本序列x(n),这一估计为无偏估计。
(3)互相关函数函数:xcorr用法:c =xcorr(x,y)c = xcorr(x)c= xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X (n)的自相关。
option 选项可以设定为:'biased'有偏估计,即'unbiased' 无偏估计,即按上面第三式估计。
'coeff' m=0 时的相关函数值归一化为1。
'none' 不做归一化处理。
三、实验内容1、采用线性同余法产生均匀分布随机数1000 个,计算该序列均值和方差与理论值之间的误差大小。
改变样本个数重新计算。
num=input('num=');n=2^31;k=2^16+3;y=zeros(1,num);x=zeros(1,num);y(1)=1;for i=2:numy(i)=mod(k*y(i-1),num);endx=y/num;m=mean(x);si=var(x);plot(x,'k');xlabel('n');ylabel('x(n)');axis tight;已知理论值均值为0.5 方差为0.0833Num=1000m =0.4900>> sisi=0.0834NUM=5000mm = 0.4950 >> si si =0.0834 Num =3000 m m = 0.4833 >> si si = 0.0832 Num =5000 m m = 0.4980 >> si si =0.08332、参数为λ的指数分布的分布函数为x x e F λ--=1利用反函数法产生参数为0.5 的指数分布随机数1000 个,测试其方差和相关函数。
R=rand (1,1000); lambda=0.5;x=-log(1-R)/lambda;Dx=var(x);[Rm,m]=xcorr(x);subplot(211);plot(x,'k');xlabel('n');ylabel('x(n)');axis tight;subplot(212);plot(m,Rm,'k');xlabel('m');ylabel('R(m)');axistig ht;DxDx =4.0781理论上方差的值为1/(0.5^2)=4,实际值为4.1201,因为取样个数有限,导致存在一定偏差。
但大体相近。
3、产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差和相关函数。
x=normrnd(1,2,[1,1000]);Mx=mean(x);Dx=var(x);[Rm,m]=xcorr(x);subplot(211);plot(x,'k');xlabel('n');ylabel('x(n)');axis tight;subplot(212);plot(m,Rm,'k');xlabel('m');ylabel('R(m)');ax is tight;MxMx=1.0934 >> Dx Dx =4.1071理论上的均值为1,方差为4。
而在实验中得到的均值为1.0934,方差为 4.1071。
考虑到取样点有限,误差可以接受,理论值和实验值基本相同。
四、实验体会本次实验内容是随机序列的产生及数字特征估计,通过实验我学习和掌握随机数的产生方法,比如线性同余法,生成已知分布函数的随机数,ra nd 函数等,也实现了对随机序列数字特征的估计,初步达到了实验的预期目的。
实验二 随机过程的模拟与数字特征一、实验目的1、学习利用MATLA B 模拟产生随机过程的方法。
2、熟悉和掌握特征估计的基本方法及其MAT LAB 实现。
二、实验原理1、正态分布白噪声序列的产生MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为ra ndn 。
函数:r andn用法:x = rand n(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
如果要产生服从),(2συN 分布的随机序列,则可以由标准正态随机序列产生。
如果N (0,1),则2X ~N(,)μ+σμσ。
2、相关函数估计MATLAB 提供了函数xcorr 用于自相关函数的估计。
函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算X (n)与Y(n)的互相关,xcorr(x)计算X (n)的自相关。
option选项可以设定为:'biased' 有偏估计。
'unbiased' 无偏估计。
'coeff' m=0 时的相关函数值归一化为1。
'none' 不做归一化处理。
3、功率谱估计MATLAB 函数periodogram 实现了周期图法的功率谱估计。
函数:periodogram用法:[Pxx,w] = periodogram(x)[Pxx,w] = periodogram(x,window)[Pxx,w]=periodogram(x,window,nfft)[Pxx,f] =periodogram(x,window,nfft,fs)periodogram(...)功能:实现周期图法的功率谱估计。
其中:Pxx 为输出的功率谱估计值;f 为频率向量;w 为归一化的频率向量;window 代表窗函数,这种用法对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,下图列出了产生常用窗函数的MATLAB函数。
nfft设定FFT算法的长度;fs表示采样频率;三、实验内容1、按如下模型产生一组随机序列=-+ωx(n)0.8x(n1)(n)其中(n)ω是均值为1,方差为 4的正态分布白噪声序列。
估计过程的自相关函数和功率谱。
y=1+2*randn(1,2000); %产生均值为1,方差为4的正态分布白噪声序列x(1)=y(1);n=2000;for i=2:1:nx(i)=0.8*x(i-1)+y(i); %按题目要求产生随机序列x(n)=0.8x(n-1)+w(n) endplot(x);%画出随机序列x的图形title('x(n)');y=1+2*randn(1,2000);%产生均值为1,方差为4的正态分布白噪声序列x(1)=y(1);n=2000;fori=2:1:nx(i)=0.8*x(i-1)+y(i); %按题目要求产生随机序列x(n)=0.8x(n-1)+w(n) endsubplot(211);c=xcorr(x); %画出x的自相关函数plot(c);title('R(n)');p=periodogram(x);subplot(212);plot(p);%画出x的功率谱title('S(w)');2、设信号为其中 12.0,05.021==f f ,)(n w 为正态分布白噪声序列,试在N =256和N=1024点时,分别产生随机序列x(n),画出x(n)的波形并估计x(n)的相关函数和功率谱。