流体力学第2章分解
工程流体力学 第二章
![工程流体力学 第二章](https://img.taocdn.com/s3/m/0fcf3465a98271fe910ef9d6.png)
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k
流体力学第2章
![流体力学第2章](https://img.taocdn.com/s3/m/7ec14bcb2cc58bd63186bdb2.png)
px=pn 同理,由∑Fy=0,及∑Fz=0,可得py=pn,pz=pn,由此 可得出 px=py=pz=pn
第三节 流体的平衡微分方程式
一、 流体平衡微分方程
研究对象:边长为dx、dy、 dz的微元六面体。 原 理:∑F=0
质量力:Xρdxdydz,
Yρdxdydz, Zρdxdydz, 表面力:各表面的τ=0
ay cos gz az sin c
等压面是一簇平行的斜面。
dz a cos dy g a sin
在自由液面上,因y=0,z=0,所以积分常数 c=0,故自由液面方程为 a cos ay cos gz az sin 0 z y g a sin a cos arctan 自由液面与y方向的倾角为: g a sin
dp xdx ydy gdz
2 2
1. 流体静压力分布规律
z
dp xdx ydy gdz
2 2
p0 o
2 x2 2 y2 2r 2 p gz c gz c 2 2 2
作用在流体上的力 流体的静压力及其特性 流体的平衡微分方程式 重力场中流体静力学基本方程 压力的单位和压力的测量方法 流体的相对平衡 静止流体作用力
第一节
作用在流体上的力
作用于流体上的力按作用方式可分为表面力和质量 力两类。 一、 表面力
表面力指作用在所研究的流体表面的力。它是由所研 究流体的表面与相接触的物体的相互作用而产生的。 单位是N/m2(Pa) 。 表面力按作用方向可分为:法向压力(流体压力p)- -垂直于作用面;切向应力--平行于作用面。
流体力学第1、2、3、4章课后习题答案分解
![流体力学第1、2、3、4章课后习题答案分解](https://img.taocdn.com/s3/m/d086e203a76e58fafab0039e.png)
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解: 10000.002m V ρ==⨯=(kg ) 29.80719.614G mg ==⨯=(N )答:2L 水的质量是2 kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358 kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
汽车工程流体力学(02流体力学基本方程)
![汽车工程流体力学(02流体力学基本方程)](https://img.taocdn.com/s3/m/58bc4e5ac850ad02de804128.png)
Q udA vA
A
v
/concepts
第二章 流体力学基本方程
1. 流体运动的描述方法
2. 流体运动的基本概念
3. 连续性方程
4. 流体微团的运动分析
5. 欧拉运动微分方程
6. 流体静力学
7. 伯努利(Bernoulli)方程
u x dx x 2
3. 连续性方程(Continuity equation)
x方向dt时间内净流出质量
1 ( ux ) 1 ( ux ) M x M右 -M 左 = u x dx dydzdt u x dx dydzdt 2 x 2 x ( ux ) = dxdydzdt x
同理y方向dt时间内净流出质量
My ( uy ) y dxdydzdt
同理z方向dt时间内净流出质量
Mz ( uz ) dxdydzdt z
3. 连续性方程(Continuity equation)
根据质量守恒原理,dt时间控制体的总净流出质量,必等于 控制体内由于密度变化而减少的质量
Q udA
A
u——微元断面的速度
有时,流量用单位时间内通过某一过流断面的流体质量来表示, 称为质量流量Qm,单位(kg/s)。
Qm Q
2. 流体运动的基本概念
八、流量和断面平均流速-2
2.断面平均流速(Mean velocity) 总流过流断面上各点的流速u一般是不相等的。为了便于 计算,设想过流断面上流速v 均匀分布,通过的流量与实 际流量相同。
dx dy dz dt u x uy uz
/blogger/post_show.asp?idWriter=0&Key=0&BlogID =1252939&PostID=21323050
流体力学2章讲稿
![流体力学2章讲稿](https://img.taocdn.com/s3/m/02d4d09d6429647d27284b73f242336c1eb930a7.png)
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
流体力学第二章 流体运动学基础
![流体力学第二章 流体运动学基础](https://img.taocdn.com/s3/m/d42c8363b9d528ea80c7794b.png)
整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章
流体动力学基础2分解
![流体动力学基础2分解](https://img.taocdn.com/s3/m/bec7035819e8b8f67c1cb9f0.png)
9
4-3
伯 诺 里 方 程 及 其 应 用
应用伯诺里方程的几个要点
1 注意使用均匀流的静压方程
p1
z1
C1,
p2
z2
C2
C1、C2分别代表两个不同的过 流断面, C1 C2
10
4-3
伯 诺 里 方 程 及 其 应 用
应用伯诺里方程的几个要点
2 尽量使用已知参数比较多的均匀流或缓变流断面, 注意基准面的选择
从两张纸中间吹气,纸张是合拢还是分开?
4 对付强劲的台风为什么要关窗户? 5 龙卷风来了为什么要赶紧开门窗? 6 飞旋镖、飞板为什么能自手中飞出后又回到身边?
14
4-3
伯 诺 里 方 程 及 其 应 用
1 飞机为什么能飞起来?——机翼升力 地面效应是如何产生的?
波音747飞机的巡航速度500m/s,机翼面积约 500m2,若在机翼上下面产生2.2m/s的速度差, 则产生约340吨的升力。而飞机自重180吨、载重 66吨。
z2 8 1.5 3.5 6m p2 pa 0, v2 ?
1个未知数,1个方程,可求解速度 v2 vc
上面的方程即为补充的方程
[解] 将上面的分析过程逆行写出即可。
相对压强 hc
pc
3.5mH2O
vc2 2g
2mH 2O
•水的汽化压强
绝对压强 pv 2340 pa hv 0.234mH 2O 若不计损失,压强 hc 9.766mH 2O
4
5 6
0.62
用
孔板流量计及其流量系数
0.60
104
105
d2 d1
7 8 9 10 11
106 12
v1d1
4
流体力学第2章水静力学--用
![流体力学第2章水静力学--用](https://img.taocdn.com/s3/m/1504e6303c1ec5da50e27070.png)
由此得证,静止流体中任一点压强与作用的方位无关。 由此可知,流体静压强只是空间坐标的函数,即
p f x,y,z
且dppdxpdypdz x y z
§2-2 流体平衡微分方程
一、静止流体平衡微分方程及其积分
取泰勒级数展
在静止流体中取六面体微团dx,dy,dz,并取开坐式标的如前图两所项示。
Evaluation only. eated(w静各it止h向CA流等osp体值pyo中r性isg任e)h.一tS2l点i0d1e的9s静-f2o压0r1强.N9与EAT作sp3用o.s5的eC方Pli位teyn无Lt 关tPdr.ofile 5.2.0
1.方向特性 :证明
由液体的性质可知,静止的 液体不能承受剪切力,也不
x
dx
由静平衡关系 Fx 0有:
p1pd x dyd p z1pd x dyd X d z xd 0 ydz
2x 2x
可得:
X 1 p 0
x
eat同ed理w,i对thyCA,ozsp方py向orisg可eh得.tS:2lEYZi0dv1ea119slu-f2ppyzao0tri1o00.N9nEAoTsn流也pl3y体称o..s5静 欧eC平拉Pl衡平itey微衡nL分微t tP方分dr.程方of式程ile,。5.2.0
的数值C反op映y了rig压h强t 2的01大9小-2。019( hAspp)ose Pty Ltd.
三者关系: 1 P工程=1.0Kgf/cm2=10mH2O=98KPa 1 P标准 = 101.3KPa =760mmHg=10.336mH2O
第2章 水静力学
二 静水压强基本特性
流体静压强总是指向作用面的内法线方向 (垂直指向性)
流体力学教案第2章流体静力学
![流体力学教案第2章流体静力学](https://img.taocdn.com/s3/m/8c04e129482fb4daa58d4b6d.png)
第二章 流体静力学§2-1作用在流体上的力、表面力、质量力在运动的实际流体中任取一块流体,其体积为V ,表面积为A ,在这块流体上任取一微元面积δA ,作用在其表面上的力为δF ,分解为⎩⎨⎧切向力法向力τδδF F n ,则法向力: AF p A δδδn 0lim →= (N/m 2)切向力:AF A δδτδτ0lim →= (N/m 2)在这块流体上,取一流体微团,其体积为δV,由于地球引力的作用,产生的重力为ρg δV 。
由于流体存在加速度a,根据达朗贝尔原理,虚加的惯性力为-ρδVa。
所以,流体所受的力为:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧惯性力重力或体积力质量力一般情况不考虑和表面张力摩擦力切向应力压力法向应力表面力)()()()(στP 表面力―是指作用在流体中的所取某部份流体体积表面上的力,也就是该部分体积周围的流体(既可是同一种类的流体,也可是不同种类的流体)或固体通过接触面作用在其上的力。
质量力―是指作用在流体内部所有流体质点上并与流体的体积或质量成正比的力,又称体积力。
通常,单位质量流体的质量力用→f 表示,在笛卡尔直面坐标系中:k j i zyxf f f f →→→→++=流体静力学―研究流体处于静止状态时各种物理量的分布规律及在工程实际中的应用。
所谓流体的静止状态是指流体对选用的坐标系无相对运动的状态。
δF§2-2流体的静压强及其特性在静止的流体中,任取一块流体。
当δA →0时,p 就定义为空间某点的静压强:AP p A δδδlim→=静压强的两个特性:① 流体静压强指向作用面的内法线方向。
② 流体中任意点静压强的大小只是位置的函数,即p=f (x ,y ,z )与其作用面的方向无关,又称作静压强各向同性。
证①:流体中任意点所受的力均可分为切应力和压应力。
因总体静止,0d d =yu, 故切应力0=τ,所以,只存在法向应力,当然垂直于作用面。
又:流体在拉力作用下,要发生运动,因为静止,故只存在压应力。
流体力学第二章ppt课件
![流体力学第二章ppt课件](https://img.taocdn.com/s3/m/b452563a360cba1aa911da17.png)
P ghC A 225kN
yC
4 sin 60
11
6.6m
IC
b 12
h3
4 3
1.33m4
4m
C D
60° y
yD
yC
IC yC A
6.6
1.33 6.6 4
6.6
0.05
6.65m
yC
图解法(求解矩形平面)
1 水静压强分布图 用一定比例的线段表示压强的大小。 与作用面垂直的箭头表示压强的方向。
(H 13.6103 kg/m 3, 1103 kg/m 3 )
解题步骤
解:
已知断面1上作用着大气压, 因此可以从点1开始,通过等 , 压面,并应用流体静力学基 本方程式,逐点推算,最后 便可求得A点压强。
, 因2-2、3-3、4-4为等压面,根据静压强公式可得
p2 H g(1 2 )
p3 p2 g(3 2 )
根据力的作用方式不同
质量力:指某种力场作用在流体的每一个质点上,大小 与受作用的流体质量成正比的力。
lim X
FBX
V M m
单位质量力轴向分力
lim Y
FBY
V M m
lim Z
FBZ
V M m
单位:N/kg
表面力:是指作用于流体表面上,大小与作用表面积成 正比的力。
P
法向分力
p lim A A A
➢与两流层间的速度差du及流层的接触面积A成正比,和流层间距dy成反比。 ➢与流体种类有关。 ➢与流体的压力大小无关。
T A du dy
T A du 或 du
dy
dy
牛顿内摩擦定律
§1.3 流体的力学模型
流体力学 2解剖
![流体力学 2解剖](https://img.taocdn.com/s3/m/66fe09cd1711cc7930b71699.png)
定义:作用在流体表面上,且与表面积大小成正比 的力。
表面力分为两种:一种是沿着表面内法线方向的压 力,一种是沿着表面切向的摩擦力。
法向力(流体静压力)
切向力(平衡流体=0)
lim F dV
--第二讲
Review
1. 流体质点的概念
流体质点就是流体中宏观尺寸非常小而微观尺 寸又足够大的任意一个物理实体,也称流体微团 。
2. 连续介质的概念
假定流体是由无穷多个、无穷小的、紧密毗邻、 连绵不断的流体质点(有质量、无大小)所组成的一 种绝无间隙的连续介质。
3、流体的粘性
粘性的概念:流体运动时内部产生切应力的性质叫作
选“+”;反之选“-”。
物理意义:切应力与速度梯度成正比。
练习:P9, 7题
5. 动力粘度及运动粘度
动力粘度µ:
由 dV
dy
,得
dv / dy
,单位:帕·秒 (Pa ·s)
物理意义:单位速度梯度下的切应力。
由此可见,静止流体不呈现粘性。
运动粘度:
,
单位:米2/秒 (m2/s)
6. 流体粘度变化规律
单位质量力
在流体力学中,常用到单位质量力的概念。
单位质量流体所受的质量力称单位质量力。
fFm mFra bibliotekmam
m
am
作用在流体质点上的质量力
dFm dm am dm( fxi f y j fzk )
其中: f x、f y、f z 是单位质量力在x、y、z轴上的投影
简称单位质量分力。
2.1.2 表面力
物理意义:平衡流体中任意点的总势能(包括 位置势能和压强势能)保持不变。
6、重力场中不可压缩流体静压强分布规律
流体力学课件第二章
![流体力学课件第二章](https://img.taocdn.com/s3/m/b3bb2c13cc7931b765ce15c1.png)
2.2.2 平衡微分方程的积分
将式(2-2) 各分式分别乘以dx、dy、dz后相加,得到
p p p dx dy dz ( Xdx Ydy Zdz ) x y z
上式等号左边是压强 p(x,y,z)的全微分
dp ( Xdx Ydy Zdz ) (2 - 7)
由边界条件z=z0,p=p0,定出积分常数 c p0 gz0
代回原式,得
p p0 g ( z0 z) p p0 gh (2 - 9)
或以单位体积液体的重量除式(2-8)各项,得
p c z g g
p z c g (2 - 10)
式中 p——静止液体内某点的压强; p0——液体表面压强,自由液面压强用pa表示; h——该点到液面的距离,称淹没深度;
流体平衡微分方程的全微分式 将式(2-5)代入式(2-7),得到
dp dU p U c 积分,得 不可压缩流体在有势的质量力作用下才能静止。
2.2.3 等 压 面
压强相等的空间点构成的面(平面或曲面)称为等压 面,例如液体的自由表面。
等压面的一个重要性质是,等压面与质量力正交。
等压面上,p=常数
(2-11)
(3)平衡状态下,液体内(包括边界上)任意点压强的 变化,等值地传递到其它各点。 液体内任意点的压强
pB pA ghAB
在平衡状态下,当A点的压强增加△p,则B点的压强 变为 pB ( pA p) ghAB ( pA ghAB ) p
pB p (2 -12)
A点压强
pA pB ghAB ghAB 1000 9.8 1.5 14700 Pa
C点压强
pC pB ghBC ghBC 1000 9.8 2 19600 Pa
流体力学-第二章
![流体力学-第二章](https://img.taocdn.com/s3/m/a72ec22d4b73f242336c5f5c.png)
二、解析法 求解作用在任意平面上的液体总压力
二、解析法 求解作用在任意平面上的液体总压力 作用在dA面积上的液体总压力为 作用在 面积上的液体总压力为 作用在整个受压平面面积为A上的液体总压力为 作用在整个受压平面面积为 上的液体总压力为
作用在任意形状平面上的液体总压力大小, 作用在任意形状平面上的液体总压力大小,等于该平面的淹没 面积与其形心处静压强的乘积, 面积与其形心处静压强的乘积,而形心处的静压强就是整个受 压平面上的平均压强。 压平面上的平均压强。 总压力的方向垂直于平面,并指向平面。 总压力的方向垂直于平面,并指向平面。
ω
旋转
等压面方程
自由表面方程
第五节 一、图解法
作用在平面上的液体总压力来自液体总压力的方向垂直于矩形平面,并指向平面, 液体总压力的方向垂直于矩形平面,并指向平面,液体总压力的 作用线通过静压强分布图体积的重心。 作用线通过静压强分布图体积的重心。液体总压力作用线与矩形 平面相交的作用点D称为压力中心 称为压力中心。 平面相交的作用点 称为压力中心。
三、流体静力学基本方程的物理意义和几何意义 1. 流体静力学基本方程的物理意义
Z:单位重量流体从某一基准面算起所 : 具有的位能,因为是对单位重量而言, 具有的位能,因为是对单位重量而言, 所以称单位位能。 所以称单位位能。
:单位重量流体所具有的压能,称 单位重量流体所具有的压能, 单位压能。 单位压能。
等压面方程
三、等压面 帕斯卡定 律 等压面方程 当流体质点沿等压面移动距离ds时 质量力所作的微功为零。 当流体质点沿等压面移动距离ds时,质量力所作的微功为零。 ds 因为质量力和位移ds都不为零,所以等压面和质量力正交。 ds都不为零 因为质量力和位移ds都不为零,所以等压面和质量力正交。 这是等压面的一个重要特性。 这是等压面的一个重要特性。
经典:流体力学-第二章-水静力学
![经典:流体力学-第二章-水静力学](https://img.taocdn.com/s3/m/aad40f75f18583d04864594d.png)
压力体可分为实压力体和虚压力体
实压力体判定方法: 绘出的压力体图形与实际的水体居于受压曲面同侧(重叠),
为实压力体。方向向下。
虚压力体判定方法: 绘出的压力体图形与实际的水体分居受压曲面两侧(不重叠),
为虚压力体。方向向上。
对于复式断面,先根据压力体的三个面围出压力体,再根据上述原 则判定虚、实。
第二章流体静力学25作用在平面上的静水总压力一用解析法求任意平面上的静水总压力二用压力图法求矩形平面上的静水总压力26作用在曲面上的静水总压力一曲面上静水压力二压力体27浮力与浮潜体的稳定一浮力二潜体的平衡与稳定性三浮体的平衡及稳定性第四讲25作用在平面上的静水总压力工程实践中需要解决作用在结构物表面上的液体静压力的问题
2.合力P对Ox轴取力矩
总压力P对Ox轴的力矩为: P y D g sa ix n y S D g sa i c A n y y D
3.据力矩定理
得:
yD
Ix Sx
Ix yc A
6
yD
Ix Sx
Ix yc A
上式表明:平面上静水总压力作用点D的纵坐标yD等于受压面面积A对Ox 轴的惯性矩与静矩之比。
其中
为图形对形心轴
的静矩,其值应等于零,则得
IyIyca2A
结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小 。 在使用惯性矩移轴公式时应注意a ,b的正负号。
8
故对于本问题有: Ix Ay 2 d A A (y c a )2 d A Ay c 2 d A 2 y cA a d A a A 2 d A Ix Ic y c2 A
2.液体总压力P的铅直分力Pz:
B' F' E'A'
流体力学 第2章 流体静力学
![流体力学 第2章 流体静力学](https://img.taocdn.com/s3/m/ecee583e87c24028915fc375.png)
结论: ★ 1)仅在重力作用下,静止流体中某一点 的静水压强随深度按线性规律增加。 ★ 2)仅在重力作用下,静止流体中某一点 的静水压强等于表面压强加上流体的容重与 该点淹没深度的乘积。 ★ 3)自由表面下深度h相等的各点压强均 相等——只有重力作用下的同一连续连通的 静止流体的等压面是水平面。 ★ 4)推广:已知某点的压强和两点间的深 度差,即可求另外一点的压强值。
则作用在微元四面体上的总质量力为: 1 F d x d yd z f 6 它在三个坐标轴上的分量为:
1 Fx dxdydzf x 6
1 Fy dxdydzf y 6
1 Fz dxdydzf z 6
则作用在微元四面体上的总质量力为:
1 F d x d yd z f 6
——将上式积分,可得流体静压强分布规律
1、意义
质量力作用的方向就是压强增加的方向。 例如,静止液体,压强递增的方向就是重力作用 的铅直向下的方向。
2、变形式
即
二、等压面及其特性
pc
则有
即
dp 0
Pascal Law (连通器原理)
方法:对质量连续的静止流体,等压面为等高面;不同流体交界 面为等压面,从一个方向顺推。
z0 p0
p2 p0 ( z0 z2 )
z1
p1
z2
p2
z
p
C
表示在同一静止液体中, 不论哪一点 z p 总是一个常数。
位置水头, 计算点的 位置高度。
压强水头, 测压管液 面相当于 计算点的 高度,即 压强高度。
测压管水头, 测压管液面 相当于基准 面的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
101325 1.01325 10.332 760 1.0332
0.9869 100000
1
10.197 750.06 1.0197
0.9679 98066.5 0.9807
10
735.58
1
二、流体静压力的表示方法
流体静压力有两种表示方法:绝对压力p和相对压力pg。
OAC ABC
质 X 1 dxdydz
Y 1 dxdydz
量
6
6
力 Z 1 dxdydz
对于x轴6,∑Fx=0,则
p
y
1 2
dzdx
pn An
px
1 2
dydz
pn
An
cos(n,
x)
X
1 6
dxdydz
0
第二节 流体的静压力及其特性
px
1 2
dydz
pn An
cos(n,
x)
X
1 6
等压面具有以下两个重要特性:
特性一 在平衡的流体中,通过任意一点的等压面,必 与该点所受的质量力互相垂直。
f·dl=Xdx+Ydy+Zdz=0
二、等压面
Байду номын сангаас
特性二 当两种互不相混的液体处于平衡时,它们 的分界面必为等压面。
dp dp
1Xdx Ydy 2 Xdx Ydy
Zdz Zdz
确定等压面的原则:在静止、同种、连续的流体中 水平面是等压面。
Xdx Ydy Zdz p dx p dy p dz
x y z
dp=ρ(Xdx+Ydy+Zdz)
流体静平衡方程 式,也称压力差 公式
二、等压面
在平衡流体中,压力相等的各点所组成的面称为等 压面。
在等压面上dp=0。因流体密度ρ≠0,可得等压面微分 方程:
Xdx+Ydy+Zdz=0
(2-4)
dxdydz
0
Ancos(n,x)=1/2dydz
px
pn
1
2
dydz
X
1 6
dxdydz
0
p x pn
X
1 6
dx
0
px=pn
同理,由∑Fy=0,及∑Fz=0,可得py=pn,pz=pn,由此 可得出
px=py=pz=pn
第三节 流体的平衡微分方程式
一、 流体平衡微分方程
研究对象:边长为dx、dy、 dz的微元六面体。 原 理:∑F=0 质量力:Xρdxdydz,
z1
p1
z2
p2
c
能量意义:
z=mgz/mg-单位重量流体的位置
势能
p/γ--单位重量流体的压力能
z+p/γ--单位重量流体的总势能
几何意义
z--位置水头
p/γ --压力水头
z+p/γ--静水头
例2-2
如图2-8所示,在盛有油和水的圆柱形容器顶部加 荷重F=5788 N的活塞,已知h1=50 cm,h2=30 cm,大气压 力 pa=105N/m2 , 活 塞 直 径 d=0.4m , γ 油 =7840N/m3 , 求 B 点的压力。
设作用在流体上的质量 力只有重力,则:
X=0,
o
Y=0,
Z=-mg/m=-g
第二节 流体的静压力及其特性
当流体处于静止或相对静止时,流体的表面力称为 流体的静压力。
特性一 流体静压力的作用方向总是沿其作用面的 内法线方向
• 静止流体的应力只有内法向分量 — 静压强
➢静止流体的应力只有法向分量(流体质
解 按题意,活塞底面上的压力可按静力平衡条件 来确定
pB
pa
油h1
水h2
4F
d 2
105 7840 0.5 9800 0.3 5788 4
0.42
1.53105
(N / m2)
第五节 压力的单位和压力的测量方法
一、 压力的单位
1. 应力单位-- Pa(=N/m2), MPa, kgf/cm2
第四节 重力场中流体静力学基本方程
在重力场中:X=0, Y=0, Z=-g
dp=ρ(Xdx+Ydy+Zdz)
dp gdz dz
dz dp 0
对于不可压缩流体,γ=常数。
z p c
z1
p1
z2
p2
c
流体静力学基 本方程式
z
p
c=z0
p0
p p0 z0 z
p p0 h
流体静力学基本方程的意义
表面力按作用方向可分为:法向压力(流体压力p)-
-垂直于作用面;切向应力--平行于作用面。
lim
Fn
A0 A
lim
F
A0 A
二、 质量力
质量力是流体质点受某种力场的作用力,它的大小与流体的 质量成正比。单位牛顿(N)。
单位质量力:单位质量流体所受到的质量力。
f F Fx i Fy j Fz k X i Y j Z k mm m m
2. 液柱高度 --p=p0+γh, hp=p/γ=p0/γ+h。 常用的液柱高度单位有米水柱(mH2O)、毫米汞柱 (mmHg)等。不同液柱高度的换算关系:
p=γ1h1=γ2h2,h2=(ρ1/ρ2)h1。 3. 大气压单位
标准大 气压
帕(Pa)
巴(bar)
米水柱
毫米汞 柱
工程大 气压
atm
N/m2 105N/m2 mH2O mmHg kgf/cm2
第二章 流体静力学
研究内容:流体静力学研究流体在静止和相对静止状态 下的基本规律。
力学模型:静止是相对于坐标系而言的,不论相对于惯 性系或非惯性系静止的情况,流体质点之间肯定没有相 对运动,这意味着粘性将不起作用,所以流体静力学的 讨论不须区分流体是实际流体或理想流体。
第二章 流体静力学
第一节 第二节 第三节 第四节 第五节 第六节 第七节
作用在流体上的力 流体的静压力及其特性 流体的平衡微分方程式 重力场中流体静力学基本方程 压力的单位和压力的测量方法 流体的相对平衡 静止流体作用力
第一节 作用在流体上的力
作用于流体上的力按作用方式可分为表面力和质量 力两类。 一、 表面力
表面力指作用在所研究的流体表面的力。它是由所研 究流体的表面与相接触的物体的相互作用而产生的。 单位是N/m2(Pa) 。
Yρdxdydz, Zρdxdydz, 表面力:各表面的τ=0
左面Y:
p
1 2
p y
dy dxdz右面Y:
p
1 2
p y
dy
dxdz
p
1 2
p y
dy
dxdz
p
1 2
p y
dy dxdz
Ydxdydz
0
Y 1 p 0
y
一、 流体平衡微分方程
X
1
p x
0
Y
1
p y
0
Z
1
p z
0
流体静平衡方 程式(欧拉)
点之间没有相对运动不存在切应力)。
➢法向应力沿内法线方向,即受压的方向
(流体不能受拉)。这个法向应力称为静 压强,记作 pn(x,y,z)。
第二节 流体的静压力及其特性
特性二 在静止流体中任意一点压力的大小与作用 的方位无关,其值均相等。
表 OBC 面
力 OAB
px
1 2
dydz
pz
1 2
dxdy