简介三坐标测量仪

合集下载

光学三坐标测量仪

光学三坐标测量仪
• 用于产品的尺寸检测、形状检测和位 置检测 • 保证产品的质量和性能
光学三坐标测量仪还可以用于检测设备 的校准和认证
• 如检测量具、检测仪器等的精度和稳 定性 • 保证检测设备的质量和性能
04
光学三坐标测量仪的发展趋势
光学三坐标测量仪的技术创新
• 光学三坐标测量仪的技术创新主要表现在光学传感器、机械结构 和控制系统等方面
• 如轮廓测量、曲面测量、反向工程、机器人引导测量等
光学三坐标测量仪的测量精度
光学三坐标测量仪的测量精度主要取决于光学传感 器的精度、机械结构的稳定性和控制系统的精度
• 光学传感器的精度决定了测量数据的 准确性 • 机械结构的稳定性决定了测量过程的 稳定性 • 控制系统的精度决定了测量过程的精 确性
• 光学传感器是光学三坐标测量仪的核心部件 • 负责发射和接收光信号,并将光信号转换为电信号 • 光学传感器的类型包括激光扫描器、光学摄像头、光纤传感器等
• 机械结构是光学三坐标测量仪的支撑和移动部件 • 负责支撑光学传感器,并使光学传感器能够在空间中移动和定位 • 机械结构包括导轨、滑块、支架等部件
• 制造业对光学三坐标测量仪的需求较大,主要用于零部件的尺 寸检测、形状检测和位置检测
• 科研领域对光学三坐标测量仪的需求较小,主要用于实验数据 的采集和分析
• 质量检测领域对光学三坐标测量仪的需求较大,主要用于产品 的尺寸检测、形状检测和位置检测
• 光学三坐标测量仪的市场需求受经济发展、技术进步和行业政策 等因素的影响
• 控制系统和软件系统是光学三坐标测量仪的大脑 • 负责控制光学传感器和机械结构的运动,实现测量过程的控制 • 软件系统负责处理测量数据,计算物体的尺寸、形状和位置信息
光学三坐标测量仪的工作原理

三坐标测量仪

三坐标测量仪

三坐标测量仪三坐标测量仪三坐标测量仪是指在⼀个六⾯体的空间范围内,能够表现⼏何形状、长度及圆周分度等测量能⼒的仪器,⼜称为三坐标测量机或三坐标量床。

三坐标测量仪⼜可定义“⼀种具有可作三个⽅向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或⾮接触等⽅式传递讯号,三个轴的位移测量系统(如光栅尺)经数据处理器或计算机等计算出⼯件的各点(x,y,z)及各项功能测量的仪器”。

三坐标测量仪的测量功能应包括尺⼨精度、定位精度、⼏何精度及轮廓精度等。

机型介绍结构型式:三轴花岗岩、四⾯全环抱的德式活动桥式结构传动⽅式:直流伺服系统+预载荷⾼精度空⽓轴承长度测量系统:RENISHAW开放式光栅尺,分辨率为0.1µm测头系统:雷尼绍控制器、雷尼绍测头、雷尼绍测针机台:⾼精度(00级)花岗岩平台使⽤环境:温度(20±2)℃,湿度40%-70%,温度梯度1℃/m,温度变化1℃/h空⽓压⼒:0.4MPa-0.6Mpa空⽓流量:25L/min长度精度MPEe:≤2.1+L/350(µm)探测球精度MPEp:≤2.1µm主要特征三轴采⽤天然⾼精密花岗岩导轨,保证了整体具有相同的热⼒学性能,避免由于三轴材质不同热膨胀系数不同所造成的机器精度误差。

花岗岩与航空铝合⾦的⽐较1.铝合⾦材料热膨胀系数⼤。

⼀般使⽤航空铝合⾦材料的横梁和Z轴在使⽤⼏年之后,三坐标的测量基准——光栅尺就会受损,精度改变。

2.由于三坐标的平台是花岗岩结构,这样三坐标的主轴也是花岗岩材质。

主轴采⽤花岗岩⽽横梁和Z轴采⽤铝合⾦等其他材质,在温度变化时会因为三轴的热膨胀系数不均同⽽引起测量精度的失真和稳定。

三轴导轨采⽤全天然花岗岩四⾯全环抱式矩形结构,配上⾼精度⾃洁式预应⼒⽓浮轴承,是确保机器精度长期稳定的基础,同时轴承受⼒沿轴向⽅向,受⼒稳定均衡,有利于保证机器硬件寿命。

3.采⽤⼩孔出⽓专利技术,耗⽓量为30L/Min,在轴承间隙形成冷凝区域,抵消轴承运动摩擦带来的热量,增加设备整体热稳定性。

三坐标测量机的介绍及应用领域

三坐标测量机的介绍及应用领域

三坐标测量机的介绍及应用领域三坐标测量机(Coordinate Measuring Machine,简称CMM)是一种精密测量工具,它利用电子传感器和计算机技术,能够测量出物体各个位置的坐标,并实现对各种尺寸、形状和位置精度的测量。

三坐标测量机主要由三个坐标轴、测量头、测量软件和计算机系统组成。

它的工作原理是通过测量头的移动和定位,来测量物体上的点坐标,并将所测得的数据转化为三维坐标系内的测量结果。

三坐标测量机精度高、可重复性好,能够测量出物体的形状、尺寸、位置精度等多个参数,广泛应用于各个行业。

1.制造业:三坐标测量机可用于各种工件的质量检测、尺寸测量、表面形状检测等。

在汽车、航空、航天、机械等制造业中,三坐标测量机被广泛应用于产品研发、生产过程中的质量控制,以及维修和维护过程中的精度检测。

2.电子业:在电子产业中,三坐标测量机可用于PCB板的尺寸测量、焊接质量检测、组件的形状测量等。

它能够帮助生产商确保电子器件的准确精度和符合设计要求。

3.医疗器械:三坐标测量机可用于医疗器械的尺寸检测、表面光洁度评估、零件的装配精度检测等。

它在医疗器械的设计、生产和质量控制过程中起到了重要的作用。

4.船舶工程:三坐标测量机可用于船舶工程中的船体建模、尺寸测量、异形零件与装配件的测量等。

它能提供精确的数据支持,确保船舶工程的质量和安全。

5.航空航天业:在航空航天业中,三坐标测量机可用于飞机部件的复杂曲面测量、形状偏差分析等。

它帮助制造商确保飞机组件精度达到要求,提高航空器的安全性。

6.运动器械:三坐标测量机在运动器械行业中可用于测量设备的尺寸、角度精度、平整度等。

它对于保证运动器材的性能和安全起到了关键作用。

总之,三坐标测量机在制造业、电子业、航空航天、医疗器械、船舶工程、运动器械等领域有着广泛的应用。

它的高精度、高可靠性和高效率为各个行业提供了重要的支持和保障,能够提高产品质量、提升生产效率,为技术研发和产品改进提供了可靠的测量数据。

三坐标测量仪的工作原理

三坐标测量仪的工作原理

三坐标测量仪的工作原理三坐标测量仪的工作原理1. 引言在现代制造业中,精确度是至关重要的。

为了确保制造出的产品符合设计要求,需要使用高精度的测量仪器。

三坐标测量仪是一种常用的测量仪器,它能够通过测量物体的三个坐标轴上的点来确定物体的形状和尺寸。

本文将介绍三坐标测量仪的工作原理,探讨它的应用和未来发展。

2. 三坐标测量仪的基本构成三坐标测量仪主要由测头、工作台和计算机控制系统组成。

测头用于接触或非接触地测量物体的表面,工作台用于固定待测物体,在测量过程中可以沿三个坐标轴上的方向移动。

计算机控制系统用于控制测头和工作台的运动,并进行数据采集和分析。

3. 三坐标测量仪的工作原理当需要对一个物体进行测量时,首先将物体固定在工作台上。

测头会通过接触或非接触的方式接触物体的表面上的一些点,并记录下这些点的坐标。

通过这些坐标点的测量值,可以计算出物体的形状和尺寸。

具体而言,三坐标测量仪通过测量物体表面上的点来确定物体的形状和尺寸。

测头在与物体表面接触时,会输出一个信号,该信号会转换为电信号并传输给计算机控制系统。

计算机控制系统根据接收到的信号计算出该点的坐标,并将这些坐标存储起来。

测头在测量过程中可以沿着三个坐标轴上的方向移动。

通过测量物体不同位置上的点,可以获取更加全面的数据。

计算机控制系统会根据测量的数据进行三维重构,并使用相应的算法对数据进行处理和分析。

可以得到物体的形状和尺寸信息。

4. 三坐标测量仪的应用三坐标测量仪广泛应用于制造业中,特别是在精密加工和质量控制领域。

它可以用来测量各种形状和尺寸的物体,包括工件、模具、零件等。

通过三坐标测量仪,可以实现对产品质量的全面控制,确保产品符合设计要求并满足客户的期望。

三坐标测量仪还可以用于产品的检验和验证。

在制造过程中,通过对产品的测量和分析,可以及时发现和纠正可能存在的问题,避免出现不良品和质量问题。

5. 三坐标测量仪的发展趋势随着制造业的发展,对精度和效率的要求越来越高。

三坐标测量仪原理

三坐标测量仪原理

三坐标测量仪原理
三坐标测量仪是一种用来测量物体的形状和位置的仪器。

其原理主要基于三角测量原理和平面坐标系的定义。

三坐标测量仪由三个互相垂直的测量轴组成,即X轴、Y轴和Z轴。

每个轴上都有一个测量器件,用来测量物体在该轴上的位置。

测量过程中,首先确定一个坐标原点,通常选择物体的某个特定位置作为原点。

然后,通过移动测量仪的测量头,记录物体在每个轴上的位置。

为了进行精确测量,通常使用激光、光电传感器或机械探针等装置进行测量。

激光测量可以通过测量激光束反射时间来确定物体在每个轴上的位置,而光电传感器和机械探针则可以直接测量物体的接触位置。

测量仪中的测量器件会将测量结果传输到计算机上,并根据预设的坐标系统计算出物体在三维空间中的位置和形状。

计算机还可以根据测量数据生成三维图形或进行其他后续处理。

三坐标测量仪的主要优点是可以高精度地测量物体的形状和位置。

它广泛应用于制造业中的质量检测、工艺控制和产品设计等领域。

同时,它还可以大大提高测量的效率和精度,避免了人工测量可能带来的误差。

三坐标测量仪的原理

三坐标测量仪的原理

三坐标测量仪的原理
三坐标测量仪是一种用于测量物体三维形状和位置的精密测量设备。

它通过测量物体在三个不同坐标轴上的位置和方向,从而确定物体的空间位置和尺寸。

三坐标测量仪的原理基于光学干涉和精密机械结构。

它通常由一个底座、测量平台、测头和测量软件组成。

在测量过程中,物体被安放在测量平台上。

测头通过精密机械结构可以在三个坐标轴(X、Y、Z轴)上自由移动。

当开始测量时,测头会向物体表面移动,同时发射出一束光线。

光线首先通过一个凸透镜,并被聚焦成一束平行光。

然后光线被分成两束,一束射向物体,另一束射向参考平面(通常是一个标准平面)。

当光线射向物体表面时,部分光线会被物体表面反射回来并返回到测头。

反射光线会再次通过凸透镜,并最终汇聚成一点。

而参考平面上的光线则会直接穿过透镜。

通过比较反射光线和参考光线的相位差,测量软件可以计算出光线的路径差,从而得到物体表面与参考平面之间的距离。

由于测头可以在三个坐标轴上自由移动,所以通过不断测量物体表面的距离,可以得到物体在三维空间中的位置和形状。

测量软件会接收并处理测量数据,并生成对应的三维模型或测量报告。

这些数据可以用于分析物体的形状精度、尺寸偏差等
信息,为产品设计、制造以及质量控制提供重要参考。

综上所述,三坐标测量仪利用光学干涉和精密机械结构的原理,通过测量物体表面反射光线和参考光线的相位差,实现对物体三维位置和尺寸的精确测量。

它在工业生产、科研等领域具有重要的应用价值。

3坐标测量仪使用方法

3坐标测量仪使用方法

三坐标测量仪使用方法
一、三坐标测量仪的基本概念
三坐标测量仪是一种高精度的测量设备,可以快速、准确地测量物体的长度、宽度和高度等尺寸参数。

它通常由三个相互垂直的坐标轴和一个探测头组成,可以沿着这三个轴的方向进行测量,并输出测量结果。

二、三坐标测量仪的工作原理
三坐标测量仪的工作原理基于探测头对物体表面的接触测量。

当探测头与物体表面接触时,会产生一个电信号,该信号将被传输到控制系统进行处理。

控制系统将根据探测头在三个坐标轴上的位置,计算出物体的尺寸参数,并将其显示在显示屏上。

三、三坐标测量仪的使用方法
1. 安装和调试
在安装三坐标测量仪之前,需要确保设备安装在平稳的地面上,并且有足够的空间容纳设备。

安装完成后,需要对设备进行调试,以确保其测量精度和稳定性。

2. 测量准备
在进行测量之前,需要将被测物体放置在测量台上,并确保其稳定性。

然后,需要选择适当的测量模式和参数,以便进行准确的测量。

3. 测量操作
在开始测量之前,需要将探测头放置在物体表面上,并确保其与物体表面紧密接触。

然后,可以通过控制系统对探测头进行移动,以
获取物体的不同位置的测量数据。

4. 数据处理和分析
在完成测量之后,需要将测量数据下载到计算机上,并使用相应的软件进行数据处理和分析。

根据需要,可以生成各种图形和报表,以便更好地了解物体的尺寸和形状参数。

三坐标测量仪是一种高精度的测量设备,可以快速、准确地测量物体的长度、宽度和高度等尺寸参数。

三坐标测量机的简介

三坐标测量机的简介

第一章三坐标测量机的概述一、三坐标测量机的发展历史世界上第一台测量机是英国FERRANTI公司于1956年研制成功,当时的测量方式是测头接触工件后,靠脚踏板来记录当前坐标值,然后使用计算器来计算元素间的位置关系。

1962年菲亚特汽车公司一位质量工程师在意大利都灵创建了世界上第一家专业制造坐标测量设备的公司,即先在仍然知名的DEA(Digital Electronic Automation)公司。

随后,DEA公司先后推出了手动、机动并首先使用气浮导轨技术的测量机,也相应配备了各种测头和软件,使之成为世界上最大的测量机供应商之一。

1964年,瑞士SIP公司开始使用软件来计算两点间的距离,开始了利用软件进行测量数据计算的时代。

随后的国ZEISS公司使用计算机辅助工件坐标系代替机械对准,从此测量机具备了对工件基本几何元素尺寸、形位公差的检测功能。

随着计算机的飞速发展,测量机技术进入了CNC控制机时代,完成了复杂机械零件的测量和空间自由曲线曲面的测量,测量模式增加和完善了自学习功能,改善了人机界面,使用专门测量语言,提高了测量程序的开发效率。

从90年代开始,随着工业制造行业向集成化、柔性化和信息化发展,产品的设计、制造和检测趋向一体化,这就对作为检测设备的三坐标测量机提出了更高的要求,从而提出了新一代测量机的概念。

其特点是:1、具有与外界设备通讯的功能;2、具有与CAD系统直接对话的标准数据协议格式;3、硬件电路趋于集成化,并以计算机扩展卡的形式,成为计算机的大型外部设备。

到1992年全球就拥有三坐标测量机46100台,工业发达的欧美、日韩每6-7台机床配备一台三坐标测量机,我国三坐标测量机生产始于20世纪70年代,现在已被广泛应用在机械制造、汽车、家电、电子、模具和航空航天等制造领域,并保持快速增长。

国内外生产三坐标的厂家较多如:德国的蔡司、意大利的Cord3、日本的三丰、美国的谢菲尔德,国内的海克斯康、青岛雷顿、西安爱德华、北京航空精密机械研究所(303所)、上海机床厂、上海第三机床厂、北京二机床、北京机床研究所、天津大学和新天光学仪器厂。

三坐标测量仪的申报要素-概述说明以及解释

三坐标测量仪的申报要素-概述说明以及解释

三坐标测量仪的申报要素-概述说明以及解释1.引言1.1 概述概述:三坐标测量仪是一种高精度的三维测量设备,通过使用三个独立坐标轴来测量物体的尺寸和形状。

它可以准确地测量复杂零件的几何尺寸,为工业生产提供了重要参考数据。

本文将深入探讨三坐标测量仪的定义、原理、应用领域、技术特点以及在工业生产中的重要性。

同时,我们还将展望未来三坐标测量仪的发展趋势,为读者呈现一个全面的视角。

通过本文的阐述,读者将更好地了解三坐标测量仪在现代工业生产中的重要性和广泛应用。

文章结构部分的内容如下:1.2 文章结构本文主要包括引言、正文和结论三个部分。

在引言部分,将对三坐标测量仪进行概述,介绍文章的结构和目的,为读者提供整体的认识和阅读指引。

在正文部分,将详细介绍三坐标测量仪的定义和原理,探讨其在不同应用领域中的具体应用情况,并分析其技术特点,为读者深入了解三坐标测量仪提供详尽的信息和知识。

在结论部分,将总结三坐标测量仪的重要性,探讨其在工业生产中的作用,并展望未来三坐标测量仪的发展趋势,为读者对该领域的发展趋势和前景进行展望和思考。

1.3 目的三坐标测量仪作为一种重要的测量仪器,在工业生产中起着至关重要的作用。

本文的目的在于深入探讨三坐标测量仪的申报要素,帮助读者了解申报过程中需要提供的相关信息和材料。

通过详细介绍三坐标测量仪的定义、原理、应用领域和技术特点,使读者对三坐标测量仪有更全面的了解。

同时,通过分析三坐标测量仪在工业生产中的重要性和发展趋势,引导读者了解该领域的发展方向和前景。

希望通过本文的撰写,读者能够更加深入地了解三坐标测量仪,为日后在工业生产中的应用提供参考和帮助。

2.正文2.1 三坐标测量仪的定义和原理三坐标测量仪是一种高精度的三维测量设备,主要用于对物体的几何形状、尺寸和位置进行测量。

它通过在三个坐标轴上移动测头,实现对物体的不同位置进行测量,从而得到物体的三维数据。

三坐标测量仪的原理是利用三个互相垂直的坐标轴(X、Y、Z轴)来确定物体的位置。

三坐标测量仪

三坐标测量仪

原理
三坐标测量机就是在三个相互垂直的方向上有导向机构、 测长元件、数显装置,有一个能够放置工件的工作台(大 型和巨型不一定有),测头可以以手动或机动方式轻快地 移动到被测点上,由读数设备和数显装置把被测点的坐标 值显示出来的一种测量设备。显然这是最简单、最原始的 测量机。有了这种测量机后,在测量容积里任意一点的坐 标值都可通过读数装置和数显装置显示出来。 三坐标测 量仪测量机的采点发讯装置是测头,在沿X,Y,Z三个轴 的方向装有光栅尺和读数头。其测量过程就是当测头接触 工件并发出采点信号时,由控制系统去采集当前机床三轴 坐标相对于机床原点的坐标值,再由计算机系统对数据进 行处理。
三坐标测量仪
功能定义
三坐标测量仪又可定义“一种具有可作三 个方向移动的探测器,可在三个相互垂直 的导轨上移动,此探测器以接触或非接触 等方式传递讯号,三个轴的位移测量系统 (如光栅尺)经数据处理器或计算机等计 算出工件的各点(x,y,z)及各项功能测 量的仪器”。三坐标测量仪的测量功能应 包括尺寸精度、定位精度、几何精度及轮 廓精度等。
ห้องสมุดไป่ตู้
测量方法

接触式测量 非接触式测量 接触与非接触式并用测量
接触测量方式
常用于机加工产品、压制成型产品、金属 膜等的测量。为了分析工件加工数据,或 为逆向工程提供工件原始信息,经常需要 用三坐标测量机对被测工件表面进行数据 点扫描。
非接触式测量
对于接触式测量无法应用或者应用成本过 高的情况。例如人体模型测量,钢结构节 点坐标测量,大尺寸测量等。
应用领域
广泛的应用于汽车、电子、机械、航空、 军工、模具等行业中的箱体、机架、齿轮、 凸轮、蜗轮、蜗杆、叶片、曲线、曲面等 的测量、五金、塑胶等行业,可以对工件 的尺寸、形状和形位公差进行精密检测, 从而完成零件检测、外形测量、过程控制, 逆向工程等任务。

三坐标测量仪的相关组成及应用介绍

三坐标测量仪的相关组成及应用介绍

三坐标测量仪的相关组成及应用介绍三坐标测量仪是一种高精度的测量设备,广泛应用于制造业中,主要用于测量工件的三维尺寸和形状。

它通过运用数学、物理学和计算机科学的原理,能够精确地测量工件的长度、宽度、高度以及曲率、直线度和平面度等形状信息。

1.测量结构:三坐标测量仪具有一个稳定的测量结构,通常由一个铸件或者机械组件构成。

该结构用来支撑测量工作台、Z轴及悬臂臂等主要测量部件,并以此为基准进行测量。

2.传感器:三坐标测量仪采用高精度的传感器用来测量工件的尺寸和形状。

常见的传感器包括光学传感器、激光传感器和触发式测头等。

这些传感器能够通过扫描或接触等方式获取工件的三维坐标信息。

3.测量工作台:测量工件需要放置在测量工作台上进行测量。

测量工作台通常具有三个坐标轴,可通过手动或自动控制来移动工件。

这样可以使测量仪在三个方向上进行移动和定位。

4.控制系统:三坐标测量仪的控制系统用来控制测量过程中的针对不同工件的测量程序和参数设置。

通过控制系统,用户可以选择不同的测量方法和测量精度,并进行数据处理和结果分析。

1.制造业:三坐标测量仪在制造业中广泛应用于产品的质量控制和尺寸验证。

它能够测量各种类型的工件,如零部件、模具和机械设备等,并为产品的装配和质量检验提供准确的数据支持。

2.航空航天:航空航天行业对产品的尺寸和形状要求非常严格。

三坐标测量仪可以测量复杂的航空零部件,如涡轮叶片、机翼和舱壁等。

它可以帮助检测产品的精度和质量,并为制造过程提供正确的数据指导。

3.汽车工业:汽车行业要求零部件的尺寸和形状具有高度的一致性和精度。

三坐标测量仪可以用来测量发动机零部件、车身和底盘等。

它能够检测小到微米级别的尺寸差异,并快速准确地定位和调整产品。

4.医疗设备:医疗器械需要满足高标准的质量和精度要求。

三坐标测量仪可以用于测量和检验各种医疗产品,如人工关节、牙科设备和假体等。

它可以确保医疗设备的尺寸准确,并最大程度地减少手术风险。

三坐标测量仪教程

三坐标测量仪教程

三坐标测量仪教程三坐标测量仪是一种高精度的测量仪器,广泛应用于工业制造领域。

它可以实现对物体的三维形状和尺寸进行精确测量,并提供详细的测量数据和报告。

本文将介绍三坐标测量仪的基本原理、使用方法和注意事项。

1. 基本原理三坐标测量仪通过测量物体在三个坐标轴上的坐标值,计算出物体的三维坐标信息。

其基本原理是利用激光或探针测量物体表面的点,再通过数学算法计算出物体的形状和尺寸。

2. 使用方法2.1 准备工作在使用三坐标测量仪之前,需要进行一些准备工作:•确保测量仪的电源和电缆连接正常。

•清洁测量仪的工作平台和探测器,以确保测量的准确性。

•校准测量仪的各个轴,以保证测量结果的准确性。

2.2 执行测量执行测量的步骤如下:1.将待测物体放置在测量仪的工作平台上,并固定好。

2.打开测量仪的软件,在界面上选择测量模式和参数设置。

3.调整测量仪的探测器,在三个坐标轴上移动,使其接触到待测物体表面上的测量点。

4.点击测量按钮开始测量,测量仪会自动记录测量的坐标值。

5.移动探测器到下一个测量点,重复上述步骤,直至完成所有测量。

6.测量完成后,测量仪会生成测量报告,并显示测量结果。

2.3 数据分析测量完成后,可以将测量数据导出到计算机,并使用相应的数据分析软件进行处理。

常见的数据分析操作包括:•比较测量结果与设计要求的差异。

•统计测量数据的均值、方差等统计量。

•进行趋势分析,预测产品的品质变化。

3. 注意事项在使用三坐标测量仪时,需要注意以下事项:•避免物体表面有灰尘、油污等杂质,以免影响测量结果的准确性。

•确保测量仪的工作环境干燥稳定,避免温度、湿度等因素对测量结果的影响。

•定期校准测量仪的各个轴,以确保测量结果的准确性。

•注意安全操作,避免探测器碰撞到物体或人体。

以上是关于三坐标测量仪的基本原理、使用方法和注意事项的介绍。

通过正确使用和操作三坐标测量仪,可以提高产品的制造质量,保证产品符合设计要求。

三坐标测量仪工作原理

三坐标测量仪工作原理

三坐标测量仪工作原理
三坐标测量仪是一种用于测量物体三维形状和尺寸的精密测量设备。

它能够实现对物体的长度、宽度、高度、角度、半径等参数的测量,并能够生成与物体表面形状一致的三维模型。

三坐标测量仪的工作原理基于三个相互垂直的坐标轴,分别为X 轴、Y轴和Z轴,通过测量某一点与基准点的坐标差值,从而确定该点在三维空间中的位置。

三坐标测量仪内部包含一个高精度的测量传感器,用于探测物体表面的形状并输出其坐标数据。

当测量仪启动时,探针会移动到起点位置,并记录下该点的坐标。

随后,探针会按照预设的路径移动到待测点,并将其坐标数据与起点坐标进行比较,得出两点之间的坐标差值。

为了提高测量的准确性和稳定性,三坐标测量仪通常采用多点测量、多角度测量和多次测量的方法。

通过对同一点进行多次测量,测量仪可以减小由于传感器精度、机械系统误差等原因带来的测量误差,提高测量的可靠性。

同时,三坐标测量仪还内置了计算机系统,用于处理和分析采集到的数据。

通过对测量数据的分析和计算,三坐标测量仪可以生成物体的三维坐标数据和表面模型,并可将其转化为CAD文件或其他格式的数据输出。

总之,三坐标测量仪通过测量传感器和坐标轴的协同工作,实现对物体三维形状和尺寸的精确测量,并可生成与物体表面形
状相一致的三维模型。

它因其高精度、高效率的测量能力,被广泛应用于制造业领域的零部件测量、装配质量检验等方面。

三坐标测量仪工作原理

三坐标测量仪工作原理

三坐标测量仪工作原理
三坐标测量仪是一种用于测量物体的三维形状和位置的测量设备。

其工作原理主要包括以下几个方面:
1. 传感器测量:三坐标测量仪通过内置的传感器对被测物体进行测量。

传感器可以是光学传感器、激光传感器或机械传感器等。

传感器根据物体的形状和位置产生相应的信号。

2. 计算机控制:测量仪通过计算机控制系统控制传感器进行测量操作。

计算机接收传感器产生的信号,并通过计算对信号进行处理和分析。

3. 坐标系确定:在进行测量之前,需要将被测物体与测量仪的坐标系进行匹配。

通过将物体放置在测量仪的工作平台上,并进行坐标系校正,确保测量仪对物体的测量结果准确。

4. 三维数据采集:测量仪通过控制传感器在三个坐标轴上的移动,获取物体各个部位的三维坐标数据。

传感器可以按照设定的路径或划定的区域进行扫描,获取物体表面的数据点。

5. 数据处理:测量仪将获取的三维坐标数据传输给计算机,计算机根据数据进行图像重建和数学算法处理。

通过对数据进行处理和分析,可以获得物体的三维形状、尺寸以及位置关系等信息。

6. 结果输出:测量仪将处理后的结果通过显示器、打印机或数据接口等方式输出,供用户查看和使用。

总的来说,三坐标测量仪通过测量物体的三维坐标数据,结合计算机的数据处理和分析,可以实现对物体形状和位置的准确测量。

三坐标测量机的名称及基本结构

三坐标测量机的名称及基本结构

三坐标测量机是一种高精度的测量设备,用于检测各种复杂形状的工件尺寸、形状和位置等参数。

以下是关于三坐标测量机的详细介绍:1. 名称三坐标测量机,也称为三坐标测量仪或三坐标检测仪,英文简称CMM(Coordinate Measuring Machine)。

2. 组成三坐标测量机主要由以下几个部分组成:* 主机结构:包括底座、工作台、移动机构等,用于支撑和定位被测工件。

* 控制系统:控制机器的各个运动轴,实现精确的测量操作。

* 测头系统:包括测头、测杆和连接件等,用于接触被测工件并获取测量数据。

* 数据处理系统:对测量数据进行处理、分析和输出,生成测量报告。

3. 主机结构三坐标测量机的主机结构通常采用悬臂式、桥式、龙门式等结构形式,根据不同的测量需求进行选择。

4. 控制系统控制系统的核心是一台计算机,通过运动控制卡和控制软件实现对机器各个运动轴的控制。

控制系统可以实现高速、高精度的运动控制,保证测量的准确性和可靠性。

5. 测头系统测头系统是三坐标测量机的关键部分,用于接触被测工件并获取测量数据。

测头系统通常采用触发式测头、光学测头、激光测头等类型,根据不同的测量需求进行选择。

6. 数据处理系统数据处理系统负责对测量数据进行处理、分析和输出,生成测量报告。

数据处理系统通常采用专业的测量软件,可以对各种复杂形状的工件进行自动识别、建模和测量,提高测量的准确性和效率。

7. 测量原理三坐标测量机的测量原理是通过接触或非接触方式获取被测工件的几何信息,通过计算机对这些信息进行处理和分析,最终得到工件的尺寸、形状和位置等参数。

8. 应用领域三坐标测量机广泛应用于汽车、航空、机械制造、电子、模具等领域,主要用于检测复杂形状的零部件,如发动机零件、齿轮、模具等。

同时,在科学研究、计量检定等方面也有着广泛的应用。

9. 优势三坐标测量机具有高精度、高效率、自动化程度高等优势,能够实现高精度的测量和快速的数据处理,大大提高了检测的准确性和效率。

光学三坐标测量仪

光学三坐标测量仪

光学三坐标测量仪光学三坐标测量仪是一种高精度的测量设备,广泛应用于工业生产中的尺寸测量和形状检测。

它利用光学原理和三维坐标测量技术,能够实现对物体表面的非接触式测量,具有测量精度高、测量速度快、操作简便等特点。

下面将介绍光学三坐标测量仪的工作原理、分类、应用领域以及优缺点。

工作原理光学三坐标测量仪通过激光或LED等光源照射到物体表面,利用相机等光学传感器接收反射光,通过三维坐标测量软件对反射光进行处理,从而获取物体的三维坐标信息。

在测量过程中,通过对比被测物体与参考坐标系的三维坐标数据,可以计算出被测物体的尺寸、形状等参数。

分类根据测量原理和结构特点,光学三坐标测量仪可以分为白光干涉式、光栅编码式、视觉测量式等。

其中,白光干涉式测量仪适用于高精度表面形貌的测量,光栅编码式测量仪适用于高速、大范围的尺寸测量,视觉测量式测量仪则结合了摄像头和软件技术,适用于复杂曲面的三维形貌检测。

应用领域光学三坐标测量仪在工业制造、航空航天、汽车制造、电子产品等领域都有着广泛的应用。

在工业制造中,光学三坐标测量仪可以用于零部件的尺寸测量、形状检测、装配质量控制等。

在航空航天领域,光学三坐标测量仪可以用于飞机零部件的精密测量和表面缺陷检测。

在汽车制造中,光学三坐标测量仪可以用于汽车车身的尺寸检测和装配质量控制。

在电子产品领域,光学三坐标测量仪可以用于PCB 板的尺寸测量和组装过程的质量控制。

优缺点光学三坐标测量仪相比传统的测量设备具有许多优点,如测量精度高、非接触式测量、测量速度快、操作简便等。

但是也存在一些缺点,比如受到环境光影响较大、对被测物体表面要求高、测量范围受限等。

综上所述,光学三坐标测量仪作为一种现代化的测量设备,在工业生产中发挥着重要的作用,其高精度、高效率的测量能力受到广泛关注和应用。

三坐标测量仪测量原理

三坐标测量仪测量原理

三坐标测量仪测量原理
三坐标测量仪是一种用于测量物体形状和位置的精密测量仪器。

它使用三个相互垂直的测量轴来确定物体上各个点的坐标值。

三坐标测量仪的测量原理可以分为以下几个步骤:
1. 准备工作:首先,将待测物体放置在测量台上,并使用夹具或磁吸等方式将其固定。

确保物体稳定且不会发生移动。

2. 坐标系建立:在进行测量前,需要先建立一个三维坐标系。

可以通过工具在实际物体上标记三个参考点,并使用测量仪器进行校准,使其与标记点对应。

3. 数据采集:接下来,使用测量仪器的探测头在物体表面上移动,逐点采集数据。

探测头可以测量物体表面的几何形状,如点、线、面等。

4. 数据处理:测量仪器会将采集到的数据传输到计算机软件中,进行数据处理和分析。

软件会根据测量仪器的原理,计算出每个点的三维坐标值。

5. 结果显示:最后,将测量结果显示在计算机屏幕上。

通常会以三维图形的形式展示出来,可以清晰地看到物体的形状和位置。

三坐标测量仪的核心原理是使用探测头进行高精度的距离测量。

探测头通常采用激光干涉、光栅尺、电容式传感器等技术,可
以实现微米级的测量精度。

总之,三坐标测量仪通过建立三维坐标系、采集数据、数据处理和结果显示等步骤,能够精确测量物体的形状和位置信息。

它在制造业、精密加工、质量控制等领域具有重要的应用价值。

三坐标测量仪原理

三坐标测量仪原理

三坐标测量仪原理
三坐标测量仪是一种高精度的测量设备,可以测量复杂物体的形状、尺寸和位置等几何参数。

三坐标测量仪的原理基于三角测量原理,利用激光干涉仪技术和光电编码技术,实现测量。

三坐标测量仪通过一组激光干涉仪,测量物体的三维坐标值。

激光干涉仪是一种利用激光干涉现象进行测量的光学设备。

激光干涉仪由激光发射器、半反射镜、透镜、干涉板及光电转换器等组成。

当激光束从激光发射器发射后,经过透镜和半反射镜,射向干涉板。

干涉板具有两个平行的光学平面,光学平面间的空气由于存在微小的分子漂浮、流动导致光程长度或光路差略有变化,产生光束的相位差。

当两束光线经过干涉板后再次交叉时,干涉板将产生干涉条纹。

光电转换器采集干涉条纹的位置信息,可以计算出初始光线及反射光线之间的距离。

在三坐标测量仪中,通常需要在测试物体的表面贴上反光杆,并编码。

反光杆内部由光电编码器和反光杯组成,当反光杆发生偏移时,反光杯反射激光束,激光束到激光干涉仪的时间就可以计算出反光杆的位置信息。

三坐标测量仪通过测量不同位置的反光杆的坐标值,可以计算出物体表面的三维坐标值。

这样就可以得到物体的形状、尺寸和位置等几何参数。

综上所述,三坐标测量仪的测量原理基于激光干涉仪技术和光电编码技术,在测量时需要贴上编码的反光杆,通过测量不同位置的反光杆的坐标值,实现物体表面三维坐标值的测量。

它是一种高精度、高效、非接触式的测量手段,在制造、航空、汽车和医疗等领域有着广泛的应用。

什么是三坐标测量仪

什么是三坐标测量仪

什么是三坐标测量仪三坐标测量仪(Coordinate Measuring Machine,简称CMM)是一种常用的精密测量设备,用于精确测量和分析物体的尺寸、形状和位置。

它通过测量物体在三维坐标系中的坐标来确定其几何特征,具有高精度、高易用性和广泛的应用。

原理和构成三坐标测量仪的工作原理基于三个相互垂直的轴,分别为X、Y和Z轴。

测量仪通过移动探针在物体表面上进行接触性测量,精确测量探针的位置信息,并记录下坐标值。

三个轴的移动形成一个三维的坐标系,通过记录不同位置上的坐标值,可以准确描述物体的几何特征。

三坐标测量仪通常由以下几个主要组成部分构成:1.机架:支撑整个测量仪的结构,通常由高强度的材料制成,确保稳定性和刚性,以保证测量的精度。

2.横梁:固定在机架上,负责X轴的移动。

横梁上安装有探针,可以在X轴方向上扫描并记录测量点的坐标。

3.工作台:用于放置待测物体,可以在Y轴方向上移动,使物体可以在水平平面上进行测量。

4.立柱:垂直固定在机架上,通过Z轴的移动来调整探针的高度,以适应不同高度的物体测量。

5.控制系统:负责控制三个轴的移动,并记录探针测量点的坐标值。

应用领域三坐标测量仪在许多行业中广泛应用,在精密制造、质量控制和工程设计等领域起着重要作用。

1.制造业:在精密制造行业中,三坐标测量仪用于测量和检验零件的尺寸和形状。

它可以帮助制造商确保产品符合设计要求,并发现制造过程中的问题,提高产品的质量。

2.汽车工业:在汽车制造过程中,三坐标测量仪用于测量发动机、车身及其他关键部件的尺寸和形状。

它可以帮助汽车制造商确保产品的准确性和一致性,提高汽车的性能和安全性。

3.航空航天:在航空航天行业中,三坐标测量仪用于测量飞机零部件和航天器的尺寸和形状。

它可以帮助制造商确保飞机部件的精确配合,并确保航天器的几何特征达到设计要求。

4.医疗器械:在医疗器械制造过程中,三坐标测量仪用于测量和检验医疗器械的尺寸和形状。

三坐标测量仪的基本零件介绍

三坐标测量仪的基本零件介绍

三坐标测量仪的基本零件介绍三坐标测量仪是一种用于检测和测量三维空间内物体尺寸、形状和位置的精密仪器,其基本零件包括以下部分:
1. 主机框架:三坐标测量仪的主体结构,包括底座、立柱、横梁等部件,用于支撑和固定其他组件。

2. 测头系统:测头是三坐标测量仪的核心部件,用于接触并测量工件。

测头通常包括测针、连接杆、传感器等部件,能够将物体的尺寸和形状信息传输到测量仪的控制系统中。

3. 控制系统:控制系统是三坐标测量仪的“大脑”,负责接收和处理测头系统传递的信息,并通过计算和分析得出被测物体的精确尺寸和位置。

控制系统通常由计算机硬件、软件和电气元件组成。

4. 传动系统:传动系统是三坐标测量仪的运动机构,负责带动测头系统和工件按照预设的路径进行移动。

传动系统通常包括丝杠、导轨、伺服系统等部件,以保证运动的准确性和精度。

5. 辅助装置:辅助装置包括照明系统、冷却系统、防护罩等,用于保证三坐标测量仪的正常运行和操作人员的安全。

以上是三坐标测量仪的基本零件介绍,每个零件都有其特定的功能和作用,共同协作完成测量任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简介三坐标测量仪唐欢欢电仪10929115 摘要:三坐标测量是现代制造业中不可缺少的测量手段,其中单臂式三坐标测量仪使用广泛。

由于其结构特殊,有必要了解影响测量精度的因素。

单臂式三坐标仪器测量精度与自身的制造精度有关,还与测量环境、坐标系建立、以及被测工件的摆放和定位等因素有关。

关键字: 三坐标超精密原理三坐标测量仪的组成1、主机机械系统(X、Y、Z三轴或其它)2、测头系统;3、电气控制硬件系统;4、数据处理软件系统(测量软件);5、正向工程:产品设计--制造--检验(三坐标测量机)6、逆向工程:早期:美工设计--手工模型(1:1)--3轴靠模铣床当今:工件(模型)--维测量(三坐标测量机)--设计--制造7、逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。

广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。

8、逆向工程设备:1)测量机:获得产品三维数字化数据(点云/特征);2)曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构;3)CAD/CAE/CAM软件。

4)数控机床;9、逆向工程中的技术难点:1)获得产品的数字化点云(测量扫描系统);2)数据构建成曲面及边界,甚至是实体(逆向工程软件);3)与CAD/CAE/CAM系统的集成。

三坐标测量仪的特点1.高稳定性机床式优质铸铁基础框架.2.手动、自动两种操作方式任选.3.操作简单易懂,界面可视化程度高,应用语言广,适应范围广.4.气浮导轨,高品质测量,高精度探针,用以确保精确的测量.5.花岗岩工作平台,提升整机稳定性能,确保精确度达到(2-6)?m.三坐标测量仪的原理基本原理就是通过探测传感器(探头)与测量空间轴线运动的配合,对被测几何元素进行离散的空间点位置的获取,然后通过一定的数学计算,完成对所测得点(点群)的分析拟合,最终还原出被测的几何元素,并在此基础上计算其与理论值(名义值)之间的偏差,从而完成对被测的检验工作.三坐标测量仪的功能1.柔性定位:找正、旋转、平移及坐标存取。

2.几何元素测量:点、直线、平面、圆、圆柱、圆锥、球、相交、距离、对称、夹角。

3.形状误差定位:直线度、平面度、圆度、圆柱度。

4.位置误差评定:平行度、垂直度、平面度、倾斜度、同轴度、对称度、位置度。

5.脱机编辑系统:自学习编程、脱机编程、自检纠错功能、CAD导入系统。

三坐标测量仪的应用·生产过程,来料检验和传统质量控制·各种自由曲面零件的测量·批量和单个零件的测量·托盘固定零件自动测量三坐标的应用领域:广泛的应用于汽车、电子、机械、汽车、航空、军工、模具等行业中的箱体、机架、齿轮、凸轮、蜗轮、蜗杆、叶片、曲线、曲面等的测量、五金、塑胶等行业中。

三坐标测量仪- 常用扫描方法三坐标测量机(CMM)的测量方式通常可分为接触式测量、非接触式测量和接触与非接触并用式测量。

其中,接触测量方式常用于机加工产品、压制成型产品、金属膜等的测量。

为了分析工件加工数据,或为逆向工程提供工件原始信息,经常需要用三坐标测量机对被测工件表面进行数据点扫描。

本文以海克斯康和其中国华南制造公司思瑞三坐标的FOUNCTION-PRO型三坐标测量机为例,介绍三坐标测量机的几种常用扫描方法及其草作步骤。

三坐标测量机的扫描草作是应用PC DMIS程序在被测物体表面的特定区域内进行数据点采集,该区域可以是一条线、一个面片、零件的一个截面、零件的曲线或距边缘一定距离的周线等。

扫描类型与测量模式、测头类型以及是否有CAD 文件等有关,控制屏幕上的“扫描”(Scan)选项由状态按钮(手动/DCC)决定。

若采用DCC方式测量,又有CAD文件,则可供选用的扫描方式有“开线”(Open Linear)、“闭线”(Closed Linear)、“面片”(Patch)、“截面”(Section)和“周线”(Perimeter)扫描;若采用DCC方式测量,而只有线框型CAD文件,则可选用“开线”(Open Linear)、“闭线”(Closed Linear)和“面片”(Patch)扫描方式;若采用手动测量模式,则只能使用基本的“手动触发扫描”(Manul TTP Scan)方式;若采用手动测量方式并使用刚性测头,则可用选项为“固定间隔”(Fixed Delta)、“变化间隔”(VariableDelta)、“时间间隔”(Time Delta)和“主体轴向扫描”(Body Axis Scan)方式。

下面详细介绍在DCC状态下,进入“功能”(Utility)菜单选取“扫描”(Scan)选项后可供选择的五种扫描方式。

1.开线扫描(Open Linear Scan)开线扫描是最基本的扫描方式。

测头从起始点开始,沿一定方向并按预定步长进行扫描,直至终止点。

开线扫描可分为有、无CAD模型两种情况。

(1)无CAD模型如被测工件无CAD模型,首先输入边界点(Boundary Points)的名义值。

打开对话框中的“边界点”选项后,先点击“1”,输入扫描起始点数据;然后双击“D”,输入方向点(表示扫描方向的坐标点)的新的X、Y、Z坐标值;最后双击“2”,输入扫描终点数据。

第二项输入步长。

在“扫描”对话框(Scan Dialog)中“方向1技术”(Direction 1 Tech)栏中的“最大”(Max Inc)栏中输入一个新步长值。

最后检查设定的方向矢量是否正确,该矢量定义了扫描开始后第一测量点表面的法矢、截面以及扫描结束前最后一点的表面法矢。

当所有数据输入完成后点击“创建”。

(2)有CAD模型如被测工件有CAD模型,开始扫描时用鼠标左键点击CAD模型的相应表面,PC DMIS程序将在CAD模型上生成一点并加标志“1”表示为扫描起始点;然后点击下一点定义扫描方向;最后点击终点(或边界点)并标志为“2”。

在“1”和“2”之间连线。

对于每一所选点,PC DMIS已在对话框中输入相应坐标值及矢量。

确定步长及其它选项(如安全平面、单点等)后,点击“测量”,然后点击“创建”。

2.闭线扫描(Closed Linear Scan)闭线扫描方式允许扫描内表面或外表面,它只需“起点”和“方向点”两个值(PC DMIS程序将起点也作为终点)。

(1)数据输入草作双击边界点“1”,在编辑对话框中输入位置;双击方向点“D”,输入坐标值;选择扫描类型(“线性”或“变量”),输入步长,定义触测类型(“矢量”、“表面”或“边缘”);双击“初始矢量”,输入第“1”点的矢量,检查截面矢量;键入其它选项后,点击“创建”。

也可使用坐标测量机草作盘触测被测工件表面的第一测点,然后触测方向点,PC DMIS程序将把测量值自动放入对话框,并自动计算初始矢量。

选择扫描控制方式、测点类型及其它选项后,点击“创建”。

(2)有CAD模型的闭线扫描如被测工件有CAD模型,测量前确认“闭线扫描”;首先点击表面起始点,在CAD 模型上生成符号“1”(点击时表面和边界点被加亮,以便选择正确的表面);然后点击扫描方向点;PC DMIS将在对话框中给出所选位置点相应的坐标及矢量;选择扫描控制方式、步长及其它选项后,点击“创建”。

3.面片扫描(Patch Scan)面片扫描方式允许扫描一个区域而不再是扫描线。

应用该扫描方式至少需要四个边界点信息,即开始点、方向点、扫描长度和扫描宽度。

PC DMIS可根据基本(或缺省)信息给出的边界点1、2、3确定三角形面片,扫描方向则由D的坐标值决定;若增加了第四或第五个边界点,则面片可以为四方形或五边形。

采用面片扫描方式时,在复选框中选择“闭线扫描”,表示扫描一个封闭元素(如圆柱、圆锥、槽等),然后输入起始点、终止点和方向点。

终止点位置表示扫描被测元素时向上或向下移动的距离;用起始点、方向点和起始矢量可定义截平面矢量(通常该矢量平行于被测元素)。

现以创建四边形面片为例,介绍面片扫描的几种定义方式:(1)键入坐标值方式双击边界点“1”,输入起始点坐标值X、Y、Z;双击边界方向点“D”,输入扫描方向点坐标值;双击边界点“2”,输入确定第一方向的扫描宽度;双击边界点“3”,输入确定第二方向的扫描宽度;点击“3”,然后按“添加”按钮,对话框给出第四个边界点;双击边界点“4”,输入终止点坐标值;选择扫描所需的步长(各点间的步距)和最大步长(1、2两点间的步长)值后,点击“创建”。

(2)触测方式选定“面片扫描”方式,用坐标测量机草作盘在所需起始点位置触测第一点,该点坐标值将显示在“边界点”对话框的“#1”项内;然后触测第二点,该点代表扫描第一方向的终止点,其坐标值将显示在对话框的“D”项内;然后触测第三点,该点代表扫描面片宽度,其坐标值将显示在对话框的“#3”项内;点击“3”,选择“添加”,可在清单上添加第四点;触测终止点,将关闭对话框。

最后定义扫描行距和步长两个方向数据;选择扫描触测类型及所需选项后,点击“创建”。

(3)CAD曲面模型方式该扫描方式只适用于有CAD曲面模型的工件。

首先选定“面片扫描”方式,左键点击CAD工作表面;加亮“边界点”对话框中的“1”,左键点击曲面上的扫描起始点;然后加亮“D”,点击曲面定义方向点;点击曲面定义扫描宽度(#2);点击曲面定义扫描上宽度(#3);点击“3”,选择“添加”,添加附加点“4”,加亮“4”,点击定义扫描终止点,关闭对话框。

定义两个方向的步长及选择所需选项后,点击“创建”。

4.截面扫描(Section Scan)截面扫描方式仅适用于有CAD曲面模型的工件,它允许对工件的某一截面进行扫描,扫描截面既可沿X、Y、Z轴方向,也可与坐标轴成一定角度。

通过定义步长可进行多个截面扫描。

可在对话框中设置截面扫描的边界点。

按“剖切CAD”转换按钮,可在CAD曲面模型内寻找任何孔,并可采用与开线扫描类似方式定义其边界线,PC DMIS程序将使扫描路径自动避开CAD曲面模型中的孔。

按用户定义表面剖切CAD的方法为:进入“边界点”选项;进入“CAD元素选择”框;选择表面;在不清除“CAD元素选择”框的情况下,选择“剖切CAD”选项。

此时PC DMIS程序将切割所选表面寻找孔。

若CAD曲面模型中无定义孔,就没有必要选“剖切CAD”选项,此时PC DMIS将按定义的起始、终止边界点进行扫描。

对于有多个曲面的复杂CAD图形,可对不同曲面分组剖切,*#将剖切限制在局部CAD曲面模型上。

5.边界扫描(Perimeter Scan)边界扫描方式仅适用于有CAD曲面模型的工件。

该扫描方式采用CAD数学模型计算扫描路径,该路径与边界或外轮廓偏置一定距离(由用户选定)。

创建边界扫描时,首先选定“边界扫描”选项;若为内边界扫描,则在对话框中选择“内边界扫描”;选择工作曲面时,启动“选择”复选框,每选一个曲面则加亮一个,选定所有期望曲面后,退出复选框;点击表面确定扫描起始点;在同一表面上点击确定扫描方向点;点击表面确定扫描终止点,若不给出终止点,则起始点即为终止点;在“扫描构造”编辑框内输入相应值(包括“增值”、“CAD公差”等);选择“计算边界”选项,计算扫描边界;确认偏差值正确后,按“产生测点”按钮,PC DMIS程序将自动计算执行扫描的理论值;点击“创建”。

相关文档
最新文档