西南财经大学新级博士高级计量复习题张卫东答案版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南财经大学新级博士高级计量复习题张卫东

答案版

GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

一、就本期学习而言,请尽可能多地列举自己认为所学到的新知识点,并就其中感

受深刻的两点,给出自己的学习体会或感悟。(一般不会考) 二、在本学期的学习中,有如下的古典假定:

(1)强外生性(|)0i E ε=X ;(2)球型扰动2(|)Var Cov εσ-=X I ; (3)弱外生性(,|)0ji i Cov x ε=X ;(4)满秩()Rank k =X ;(5)正态性

2~(0,)i N εσ。

简述自己对这些古典假定的认识,以及这些假设对参数估计统计性质的作用。

解答:(1)零均值,即()(|)0,|0i ij i E Cov x εε=⇒=X X ;

(2)同方差与无自相关假定,即随机扰动项的方差2(|)T Var εσ=X I ; (3)随机扰动项与解释变量不相关,即(,|)0ji i Cov x ε=X ; (4)无多重共线性,即各解释变量之间线性无关,()Rank k =X ; (5)正态性假定,即2~(0,)i N εσ。

以上假设条件可总结为:①解释变量的强外生性;②球形扰动;③解释变量的外生性;④满秩;⑤正态性。而它们的作用在于:

第一,条件均值为零(或强外生性)能保证最小二乘估计量的无偏性。 第二,球形扰动,是指随机扰动项的方差-协方差矩阵为同方差和无自相关同时成立时的情况。违反此假设条件,被称为非球形扰动,将会影响到参数估计的有效性问题。

第三,外生性条件,表示随机扰动项中不包含有解释变量的任何信息。注意,外生性条件的不同表述方式和内涵。外生性条件的违反将影响到参数估计的一致性问题。

第四,满秩性条件,它是为了保证条件期望的唯一性,参数可求解。 第五,正态性条件,它主要与我们的统计检验和推断有关,用于推断估计式的分布。

三、对于线性模型 y X βε=+,写出下述假定条件的表达式,并说明其含义和作用。

(1)强外生性;(2)弱外生性;(3)球型扰动;(4)正态性。 解答同上。

四、什么是估计量的无偏性,有效性和一致性?计量经济学中哪些古典假定能保证

这些性质成立?

解答:无偏性:如果参数的估计量ˆβ

的期望等于参数的真实值β,即()

ˆE ββ=,则称ˆβ

是参数β的无偏估计。强外生性或者条件均值为零可以保证最小二乘估计量的无偏性。

有效性:一个估计量若不仅具有无偏性而且具有最小方差时,称这个估计量为有效估计量。球型扰动2(|)Var Cov εσ-=X I 能保证估计量的有效性。

一致性:当样本容量趋于无穷大时,如果估计量ˆβ

的抽样分布依概率收敛于总体参数的真实值β,即ˆlim x P β

β→∞

=或()

ˆlim 1x P ββε→∞

⎡⎤-<=⎣

,则称估计量ˆβ为一致估计量。弱外生性(,|)0ji i Cov x ε=X 能够保证估计量的一致性。 五、某人依据1960-1995的时间序列数据关于如下所设定的模型

进行回归,得到了如表1-表4所示的结果。请仔细阅读这些结果,试回答以下问题

1、表1-表3是在进行什么工作?这些工作依据的基本思路是什么?

2、请写出表4回归结果的标准形式。

3、表4的结果说明什么?与表1-表3结果之间有何联系?

表1

Dependent Variable: G

Method: Least Squares

Date: 02/17/08 Time: 08:35

Sample: 1960 1995

Included observations: 36

Variable Coeffici

ent

Std.

Error

t-

Statistic Prob.??

C

-

8756.48

9528.1826-16.578530.0000

YEAR 4.54239

40.26709217.006820.0000

R-squared 0.89481

2

????Mean dependent

var

226.094

4

Adjusted R-squared 0.89171

9

????S.D. dependent

var

50.5918

2

S.E. of regression 16.6478

1

????Akaike info

criterion

8.51638

7

Sum squared resid 9423.08

7

????Schwarz

criterion

8.60436

Log likelihood

-

151.295????F-statistic

289.232

0 0

Durbin-Watson stat

0.258444 ????Prob(F-statistic)

0.00000

令g gstar resid 表2

Dependent Variable: PG

Method: Least Squares

Date: 02/17/08 Time: 08:37

Sample: 1960 1995

Included observations: 36

Variable

Coeffici

ent

Std. Error t-

Statistic Prob.??

相关文档
最新文档