定积分的概念讲课稿
定积分的概念 公开课一等奖课件

1.5.1 曲边梯形的面积
y
f b
f a
y f x
o
a
图1.5 1
b
x
思考 图1.5 1 中,阴影部分类似于一个梯 形, 但有一 边是曲线 y f x 的一段,我们把由直线 x a, x b a b , y 0和曲线 y f x 所围成的图形称为曲边 梯形,如何计算这个曲边梯形 的面积呢?
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
在学习过的函数中 , 许多函数(例如 y x, y x 2, y x等) 的图形都是某个区间 I上 的一条连续不断的曲线 .一般地, 如果函数 不断的曲线 , 那么我们就把它称为区 间 I上 的连续函数. 如不加说明 ,下面研究的都是连续函 数.
y f x 在某个区间I上的图象是一条连续
o
1x o
1x o
1x
o
1x
图1.5 5
图1 .5 5的演变过程, 也可以用几何画板演示 .
4取极限 分别将区间 0,1等分成 4,8,,20, 等份 图1.5 5,可以看到,当n趋向于无穷大 ,即Δx趋向
1 1 1 于0时, Sn 1 1 趋向于 S, 从而有 S 3 n 2n n 1 i 1 1 1 1 1 lim Sn lim f lim 1 1 . n n n 3 n 2n 3 i1 n n
2
1 n 1n2n 1 1 1 1 3 1 1 . n 6 3 n 2n
1 1 1 从而可得 S的近似值 S Sn 1 1 . 3 n 2n
《定积分的定义》课件

总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看
微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积
定积分的概念 课件

若 f(x)≤0,则在[a,b]上曲边梯形的面积 S=-bf(x)dx;
a
若在[a,c]上,f(x)≤0,在[c,b]上,f(x)≥0,则在[a,
b]上曲边梯形的面积 S=-cf(x)dx+bf(x)dx.
a
c
【正解】 05(x-2)dx=S2-S1=12×32-12×22=52,故502(x -2)dx=5.
∴05(x-2)dx=S1+S2=12×22+12×32=123,
∴052(x-2)dx=2×123=13.
【错因分析】 在应用定积分的几何意义求定积分时,
错解中没有考虑在 x 轴下方的面积取负号,x 轴上方的面积取
正号,导致错误. 【防范措施】 若 f(x)≥0,则在[a,b]上曲边梯形的面
积 S=bf(x)dx;
间[xi-1,xi]上任取一点 ξi(i=1,2,…,n),作和式 f(ξi)Δx
=
,当 n→∞时,上述和式无限接近某个常
数,这个常数叫做函数 f(x)在区间[a,b]上的 定积分 ,记作
bf(x)dx,
a
即bf(x)dx=
.
a
其中 a 与 b 分别叫做 积分下限 与 积分上限 ,区间 [a,b]叫做 积分区间 ,函数 f(x)叫做 被积函数 ,x 叫做 积分变量 ,f(x)dx 叫做 被积式 .
定积分的概念
定积分的概念 【问题导思】 分析求曲边梯形的面积和求变速直线运动的路程的步 骤,试找出它们的共同点. 【提示】 两个问题均可通过“分割、近似代替、求和、 取极限”解决.都可以归结为一个特定形式和的极限.
如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi -1<xi<…<xn=b 将区间[a,b]等分成 n 个小区间,在每个小区
《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上
定积分定义-说课稿公开课一等奖课件省赛课获奖课件

i 1
f
(i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t ) 是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t ) 0,求物体在这段时间内所经过的路程.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
bx
解决环节:
1) 分割. 在区间 [a, b] 内插入若干个分点,
a x0 x1 x2 xn1 xn b,
把区间 [a,b] 分成 n y
个小区间 [ xi1, xi ], 长度为 xi xi xi1;
在每个小区间 [ xi1, xi ]
上任取一点
,
i
o a x1
b xi1i xi xn1
(i 1, 2,, n)
则
f
(i )xi
i2xi
i2 n3
o
y x2
i 1x
n
n
i1
f
(i )xi
1 n3
n
i2
i1
1 n3
1 n(n 6
1)(2n
1)
1 (1 1)(2 1) 6n n
1 0
x2
dx
lim
0
n
i 1
i
2xi
y
y x2
lim 1 (1 1)(2 1)
n 6 n n
1
lim
n
n i 1
sin
i
n
n
1
sin xdx.
0
i xi
[a ,
b]上的定积分,
【最新】定积分说课word版本 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==定积分说课篇一:定积分的概念说课稿定积分的概念说课稿xxxx各位专家:大家好!我今天说课的题目是定积分的概念。
下面我从课程标准、教材分析、教学目标、教法学法、教学过程、板书设计六方面谈一下自己的理解和认识。
一、说课程标准根据专科学校高等数学课程要求,结合我校学生实际,对定积分的概念这节课提出三点要求:1、让学生认识到学习定积分的重要性。
2、了解定积分的定义和几何意义。
3、使学生建立变量的思想。
二、说教材1、定积分的概念的地位、作用及前后联系定积分定义是从曲边梯形的面积及变速直线运动的路程引出的,抓住其数量关系上的共同本质与特征加以概括,就可以抽象出定积分的概念,进而给出可积的条件及定积分的几何意义.正确理解定积分的概念及几何意义有助于进一步讨论定积分的性质与计算方法。
2、知识结构定积分的经典背景是曲边梯形的面积,而定积分的定义是一种特定的极限模式,它分为任意分割区间、任意在各区间内取点、做和式、取极限四步,简称“四步构造法”。
3、重点、难点、关键重点是定积分的概念,难点是利用定义计算定积分,关键是理解定积分定义的“四步构造法”及定积分的几何意义。
三、说教学目标1、知识目标:理解定积分的定义与几何意义,掌握可积的条件,会用定义与几何意义求简单函数的定积分。
2、能力目标:培养学生的抽象思维能力,探索能力和高等数学语言表达能力。
3、情感、态度目标:培养学生勇于探索新知的科学态度,克服畏难心理。
四、说教法学法定积分的定义既抽象又难懂,为了克服学生学习中的畏难心理,我在教学中设计了由曲边梯形的面积引出定积分的定义的如下探索方案:教法:引导探究法与讲解法1、曲边梯形→ 若干窄曲边梯形→ 若干窄矩形。
2、曲边梯形的面积可近似用若干窄矩形的面积和来近似。
3、取和式的极限,引出定积分的定义。
高中数学 定积分的概念课件PPT课件

观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
6
7
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
8
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
9
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
14
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
15
求由连续曲线y=f(x)对应的曲边梯形面积的方法
(1)分割:在区间[0,1]上等间隔地插入n-1个点,将它等分成
n个小区间:a, x1,x1, x2,L xi1, xi ,L ,xn1,b,
每个小区间宽度⊿x b a
yf (x)
24
探究:
根据定积分的几何意义,如何用定积分表示图中阴影部分的
面积?
y
yf (x)
b
b
S S1 S2
a
f (x)dx
g(x)dx
a
b
S1
ya
fg((x))dx
b
S2
g ( x)dx
a
O aa
bx
25
三: 定积分的基本性质
性质1.
b
b
a kf ( x )dx ka f ( x )dx
1.5.3 定积分的概念
1
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
2
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
4
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
《定积分的概念》课件[精编文档]
![《定积分的概念》课件[精编文档]](https://img.taocdn.com/s3/m/0348e5ccd0f34693daef5ef7ba0d4a7303766c5d.png)
a
a
性质2.
b
b
b
[ f ( x ) g( x )]dx f ( x )dx g( x )dx
a
a
a
性质3. 定积分关于积分区间具有可加性
bf(x )dx cf(x )dx bf(x )dx
a
a
c
y yf (x)
Oa
C
bx
b
f ( x )dx
c1 f ( x )dx
解:由定积分的几何意义知,该积分值等于
曲线y 1 x 2 , x轴,x 0及x 1所围 的面积(见下图)
面积值为圆的面积的 1
y
4
所以 1 1 x 2 dx
0
4
1 x
n
S f (xi )x i1
y=f(x)
(4)逼近:所求曲边梯形的面积S为
n
x 0, f (xi )x S i 1
(n )
Oa
xi-1 xi xi
x
bx
从求曲边梯形面积S的过程中可以看出,通过“四 个步骤”:
分割---以直代曲----求和------逼近.
小矩形面积和Sn
n i1
f (xi )x
如果 x 无限趋近于0时,Sn无限趋近于常数S,那么称
常数S为函数f(x)在区间[a,b]上的定积分,
记作:
.
b
S a f (x)dx
定积分的相关名称:
积分上限
———叫做积分号,
f(x)dx —叫做被积表达式, f(x) ——叫做被积函数, x ———叫做积分变量,
b
S a f (x)dx
a ———叫做积分下限,
(x)dx
A2
高等数学第五章第一节定积分的概念及性质课件.ppt

二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx
即
b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上
则
推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx
即
b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba
因
y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
定积分的概念说课稿 教案 交设计

定积分的概念一、教学目标:知识与技能:1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.过程与方法:通过对曲边梯形面积问题的求解及变速直线运动路程的运算,体会“以直代曲”、“以不变代变”的思想方法.情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:求曲边梯形的面积和汽车行驶的路程.难点:了解“以直代曲”、“以不变代变”的思想方法.三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程(一)温故知新任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、梯形等平面多边形的面积,可以利用相关公式进行计算.如图所示的平面图形,是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的,称之为曲边梯形,如何计算这个曲边梯形的面积呢?(二)探索新知探究点一 求曲边梯形的面积 思考1 如何计算下列两图形的面积?答 ①直接利用梯形面积公式求解.②转化为三角形和梯形求解.问题 如图,如何求由抛物线y =x 2与直线x =1,y =0所围成的平面图形的面积S? 思考2 图中的图形与我们熟悉的“直边图形”有什么区别?思考3 能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤)答 (如图)可以通过把区间[0,1]分成许多小区间,将曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值进行求和,就得到曲边梯形面积的近似值,随着拆分越来越细,近似程度会越来越好. S n =∑ni =1S i ≈∑ni =1(i -1n )2·Δx =∑n i =1(i -1n )2·1n (i =1,2,…,n )=0·1n +(1n )2·1n +…+(n -1n )2·1n=1n 3[12+22+…+(n -1)2]=13(1-1n )(1-12n ). ∴S =lim n →∞S n =lim n →∞ 13(1-1n )(1-12n )=13.求曲边梯形的面积可以通过分割、近似代替、求和、取极限四个步骤完成.思考4 在“近似代替”中,如果认为函数f (x )=x 2在区间[i -1n ,i n ](i =1,2,…,n )上的值近似地等于右端点in 处的函数值f (i n ),用这种方法能求出S 的值吗?若能求出,这个值也是13吗?取任意ξi ∈[i -1n ,i n ]处的函数值f (ξi )作为近似值,情况又怎样?其原理是什么?答 以上方法都能求出S =13.我们解决此类问题的原理是“近似代替”和“以直代曲”,在极限状态下,小曲边梯形可以看做小矩形.例1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替在区间[i -1n ,i n ](i =1,2,…,n )上,以i -1n 的函数值⎝⎛⎭⎫i -1n 2作为高,小区间的长度Δx =1n 作为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈(i -1n )2·1n .(3)求和曲边梯形的面积近似值为S =∑n i =1S i ≈∑n i =1(i -1n )2·1n =0·1n +(1n )2·1n +(2n )2·1n +…+(n -1n )2·1n =1n 3[12+22+…+(n -1)2]=13(1-1n )(1-12n). (4)取极限 曲边梯形的面积为 S =lim n →∞ 13(1-1n )(1-12n )=13. 反思与感悟 求曲边梯形的思想及步骤:(1)思想:以直代曲、逼近;(2)步骤:分割→近似代替→求和→取极限;(3)关键:近似代替;(4)结果:分割越细,面积越精确. 跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.解 ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S 阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =x 2x ≥0y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2] n 等分,则Δx =2n , 取ξi =2i -1n. (2)近似代替求和 S n =∑ni =12i -1n ]2·2n =8n 3[12+22+32+…+(n -1)2]=83(1-1n )(1-12n). (3)取极限S =lim n →∞S n =lim n →∞ 83(1-1n )(1-12n )=83. ∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323。
定积分的概念课件

区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。
定积分的概念 说课稿 教案 教学设计

定积分的概念教材分析《定积分的概念》从曲边梯形的面积及变速直线运动的共同特征概括出定积分的概念,它是学生学习定积分的基础,为学习定积分的应用作好铺垫.因此这节课有承前启后的作用,是本章的重点内容之一.本节课的重点是:理解并掌握定积分的概念、定积分的几何意义.理解定积分的概念是难点.主要是这种“以曲代直”“逼近”的思想方法在学生的头脑中并没有与之相联系的认知结构,只有将头脑中原有的认知结构加以改组和顺应,在几节课内达到深刻理解这种思想方法是难点所在.课时分配1课时.教学目标知识与技能目标通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;借助于几何直观的基本思想,理解定积分的概念.过程与方法目标培养学生的逻辑思维能力和创新意识.情感、态度与价值观激发学生主动探索学习的精神.重点难点重点:定积分的概念、定积分的几何意义.难点:定积分概念的理解.教学过程引入新课提出问题:回忆前面曲边梯形的面积、变速运动的路程等问题的解决方法与步骤.活动成果:分割→近似代替→求和→取极限活动设计:将以下问题及其解决步骤通过多媒体投影到屏幕上.物体做变速直线运动,速度函数为v =v(t),求它在a ≤t ≤b 内的位移s.步骤如下: (1)分割:用分点a =t 0<t 1<t 2<…<t n =b 将时间区间[a ,b]等分成n 个小区间[t i -1,t i ](i =1,2,…,n),其中第i 个时间区间的长度为Δt =t i -t i -1,物体在此时间段内经过的路程为Δs i .(2)近似代替:当Δt 很小时,在[t i -1,t i ]上任取一点ξi ,以v(ξi )来代替[t i -1,t i ]上各时刻的速度,则Δs i ≈v(ξi )·Δt i .(3)求和:s =1nii S=∆∑≈∑i =1nv (ξi )Δt.(4)取极限:Δt →0时,上式右端的和式作为s 近似值的误差会趋于0,因此s =0lim t ∆→∑i =1nv(ξi )Δt.探究新知提出问题1:请同学们对求曲边梯形的面积和变速运动的路程两个实例的四个步骤对比分析,找出共同点.活动设计:先让学生独立思考,再分小组讨论、交流.活动成果:1.二者都通过四个步骤——分割、近似代替、求和、取极限来解决问题; 2.解决这两个问题的思想方法是相同的,都采用了“逼近”的思想.总结:类似的问题都可以通过这种方法来解决,而且最终结果都可以归结为这种类型的和式的极限.提出问题2:你能不能类似地将在区间[a ,b]上连续的问题函数f(x)的最终结果归结为这种类型的和式的极限.活动设计:学生先独立思考,必要时允许学生合作、讨论、交流.学情预测:开始学生的回答可能不全面、不准确,但在教师的不断补充、纠正下,会趋于完善.活动成果:师生共同概括出定积分的概念: 一般地,设函数f(x)在区间[a ,b]上连续,用分点 a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b将区间[a ,b]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n),作和式:∑i =1n f (ξi )Δx =∑i =1nb -an f(ξi ),当n →∞时,上述和式无限接近某个常数,那么称该常数为函数f(x)在区间[a ,b]上的定积分.记为⎠⎛ab f(x)dx ,即⎠⎛ab f(x)dx =lim n →∞∑ni =1b -an f(ξi ), 其中f(x)称为被积函数,x 叫做积分变量,[a ,b]叫做积分区间,b 叫做积分上限,a 叫做积分下限,f(x)dx 叫做被积式.教师补充以下几点:(1)定积分⎠⎛a b f(x)dx 是一个常数;(2)定积分⎠⎛ab f(x)dx 是一种特定形式的和式∑i =1nb -a n f(ξi )的极限,即⎠⎛a b f(x)dx 表示当n →∞时,和式∑i =1n b -a n f(ξi )所趋向的定值;(3)对区间[a ,b]的分割是任意的,只要保证每一小区间的长度都趋向于0就可以了;(4)考虑到定义的一般性,ξi 是第i 个小区间上任意取定的点,但在解决实际问题或计算定积分时,可以把ξi 都取为每个小区间的左端点(或都取为右端点),以便得出结果.设计意图通过上述操作、思考问题使学生建立起对定积分的初步、直观的认识,并训练和培养学生的抽象概括能力.提出问题3:你能说说定积分的几何意义吗?活动设计:学生独立解决,必要时,教师指导、提示.学情预测:如果学生回答此问题有困难,可提示学生回顾求曲边梯形面积的例子. 活动成果:结合课本本节图1.57总结定积分⎠⎛ab f(x)dx(f(x)≥0)的几何意义:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.提出问题4:思考课本本节的探究问题. 活动设计:学生独立思考,并给出答案.活动成果:通过对定积分几何意义的理解,学生不难考虑到如何用定积分表示位于x 轴上方的两条曲线y =f 1(x),y =f 2(x)与直线x =a ,x =b 围成的平面图形面积.由于图中用虚线给出了辅助线,学生易得到阴影部分的面积为S =⎠⎛a b f 1(x)dx -⎠⎛ab f 2(x)dx.教师引导学生根据定积分的定义,可以得出定积分的如下性质:性质1:⎠⎛a b kf(x)dx =k ⎠⎛ab f(x)dx(k 为常数);性质2:⎠⎛a b [f 1(x)±f 2(x)]dx =⎠⎛a b f 1(x)dx±⎠⎛ab f 2(x)dx ;性质3:⎠⎛ab f(x)dx =⎠⎛ac f(x)dx +⎠⎛cb f(x)dx(其中a<c<b).提出问题5:性质1等式两边的两个定积分上、下限和被积函数分别是什么? 活动设计:以提问的形式让学生直接作答.提出问题6:你能从定积分的几何意义解释性质3吗? 活动设计:学生思考、交流、探索解决问题.学情预测:若学生解决问题有困难,教师可辅助学生用图象的方法帮助学生从几何直观上感知性质3的成立.活动成果:教师指出性质3为定积分对积分区间的可加性,它对把区间[a ,b]分成有限个(两个以上)小区间的情形也成立.给出以上3个性质,便于我们计算定积分.理解新知1.用定义求定积分的一般方法是:①分割:n 等分区间[a ,b];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑i =1nb -an f(ξi );④取极限:⎠⎛ab f(x)dx =lim n →∞∑i =1nb -an f(ξi ). 2.一般情况下,定积分∫b a f(x)dx 的几何意义是介于x 轴、函数f(x)的图形以及直线x =a ,x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.即∫b a f(x)dx =x 轴上方面积-x 轴下方的面积.运用新知例1利用定积分的定义,计算定积分∫10x 3dx 的值.解:令f(x)=x 3. (1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间[i -1n ,in](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10x 3dx ≈S n =∑i =1n (i n )3·1n =1n 4∑i =1n i 3=1n 4·n 2(n +1)24=14(1+1n)2.(3)取极限∫10x 3dx =lim n →∞S n =lim n →∞ 14(1+1n )2=14. 例2根据定积分的几何意义推出下列定积分的值.(1)∫10xdx ;(2)∫R 0R 2-x 2dx.思路分析:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分∫b a f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.(1)中的定积分的值即为由直线x =0,x =1,y =0和y =x 所围成的图形的面积;(2)中的定积分的值为由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形的面积.解:(1)由图象可知,由直线x =0,x =1,y =0和y =x 所围成的图形为一个直角三角形,两条直角边边长均为1,则面积为12×1×1=12,所以∫10xdx =12. (2)由图象可知,由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形面积即为圆x 2+y 2=R 2面积的14,则面积为14πR 2,所以∫R 0R 2-x 2dx =14πR 2. 变练演编例 计算定积分∫20x 3dx 的值,并从几何上解释这个值表示什么? 解:计算定积分∫20x 3dx 的值:(1)分割在区间[0,2]上等间隔地插入n -1个点,将区间[0,2]等分成n 个小区间[2(i -1)n ,2i n ](i =1,2,…,n),每个小区间的长度为Δx =2i n -2(i -1)n =2n.(2)近似代替、求和取ξi =2in(i =1,2,…,n),则∫20x 3dx ≈S n =∑i =1n(2i n )3·2n =16n 4∑i =1n i 3=16n 4·n 2(n +1)24=4(1+1n)2. (3)取极限∫20x 3dx =lim n →∞S n =lim n →∞4(1+1n )2=4. 由定积分的几何意义,可知这个值表示由直线y =0,x =0,x =2和曲线y =x 3所围成的图形的面积.活动设计:学生在理解例1和例2的基础上,独立完成此例练习. 设计意图设置本题意在让学生进一步理解定积分的定义和其几何意义,训练学生思维的灵活性. 达标检测1. lim n →∞ 1n [cos πn +cos 2πn +…+cos (n -1)πn +cos nπn ]写成定积分的形式,可记为( )A .∫π0cosxdx B.1π∫π0cosxdxC .∫10cosxdxD .∫π0cosx xdx 2.用定积分表示由曲线y =x 3和直线y =x 所围成的图形面积. 3.当f(x)≥0时,定积分∫b a f(x)dx 的几何意义是__________; 当f(x)≤0时,定积分∫b a f(x)dx 的几何意义是__________. 4.根据定积分的几何意义,求∫2-24-x 2dx 的值. 答案:1.B 2.∫10(x -x 3)dx.3.由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积 由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积的相反数4.2π.课堂小结1.知识收获:(1)定积分的概念;(2)定义法求简单的定积分;(3)定积分的几何意义. 2.方法收获:联想、归纳、总结的思想方法. 3.思维收获:从特殊到一般.。
定积分的概念及性质课件

03
定积分的应用
面积计算
平面面积
定积分可以用来计算平面图形的面积,例如矩形、圆形、三角形等。通过选取 适当的积分变量和积分区间,可以将面积表示为函数与积分区间的乘积,进而 求出面积。
曲面面积
定积分也可以用来计算曲面面积,例如球面、锥面等。通过选取适当的参数和 积分变量,可以将曲面面积表示为函数与积分区间的乘积,进而求出面积。
定积分的性质
线性性质
总结词
定积分的线性性质是指对于两个函数的和或差的积分,可以分别对每个函数进行 积分后再求和或求差。
详细描述
定积分的线性性质是定积分的一个重要性质,它表明对于任意两个函数f和g,以 及常数a和b,有∫(a×f+b×g) dx = a×∫f dx + b×∫g dx。这个性质在计算定积 分时非常有用,特别是当被积函数难以直接积分时,可以通过拆分被积函数来简 化计算。
函数可加性与积分可加性
总结词
函数可加性与积分可加性是指对于任意 两个区间[a, b]和[c, d],若函数f在每个 区间上可加(即可以表示为两个非负函 数的差),则∫(f) dx在[a, b]和[c, d]上的 积分值之差等于∫(f) dx在[a, c]上的积分 值与∫(f) dx在[c, d]上的积分值之差。
体积计算
旋转体体积
定积分可以用来计算旋转体的体积,例如圆 柱、圆锥、球等。通过选取适当的积分变量 和积分区间,可以将旋转体的体积表示为函 数与积分区间的乘积,进而求出体积。
曲顶柱体体积
定积分也可以用来计算曲顶柱体的体积,例 如圆环、椭圆环等。通过选取适当的积分变 量和积分区间,可以将曲顶柱体的体积表示 为函数与积分区间的乘积,进而分法是通过引入新的变量替换原变量,将复杂的 积分转换为更易于计算的积分。
《定积分的概念》课件

详细描述
微积分基本定理指出,一个定积分可 以用被积函数的不定积分来表示。这 个定理是计算定积分的基石,因为它 提供了一种将定积分问题转化为求不 定积分问题的途径。
பைடு நூலகம்
微积分基本定理的应用
总结词
微积分基本定理的应用广泛,包括计算面积、体积、速度和加速度等。
详细描述
通过微积分基本定理,我们可以计算各种物理量,如物体的运动速度、加速度,以及平面图形的面积 等。这些应用在科学、工程和经济学等领域都有广泛的应用。
定积分的计算方法
总结词
定积分的计算方法包括直接法、换元法 和分部积分法等。
VS
详细描述
直接法是直接利用微积分基本定理计算定 积分的方法;换元法是通过换元公式将复 杂的积分转化为简单的积分;分部积分法 则是通过将两个函数的乘积进行求导,再 利用微积分基本定理计算定积分的方法。 这些方法在解决实际问题时各有优缺点, 需要根据具体情况选择合适的方法。
通过将物体的运动轨迹分割成无数小的线段,再利用定积分计算这些线
段上的速度和加速度的积分和,可以求得物体的整体速度和加速度。
定积分在经济学中的应用
计算边际成本和边际收益
在经济学中,定积分可以用于计算边际成本和边际收益,这是通过将成本或收益函数在一定的范围内进行分割,再利 用定积分计算这些分段上的成本或收益的积分和,可以求得整体的边际成本和边际收益。
预测市场需求
通过将市场需求函数在一定的范围内进行分割,再利用定积分计算这些分段上的需求函数的积分和,可以预测整体的 市场需求。
评估投资项目的风险
通过将投资项目的风险函数在一定的范围内进行分割,再利用定积分计算这些分段上的风险函数的积分 和,可以评估整体的投资项目的风险。
定积分的概念 课件

积 念 当n→∞时,上述和式无限接近某个常数,这个常
分
数叫做函数f(x)在区间[a,b]上的定积分,记作
_ʃ_baf_(x_)_d_x_,这里a与b分别叫作积__分__下__限__与积__分__上__限__,
区间[a,b]叫做_积__分__区__间_,函数f(x)叫做_被__积__函__数__,x
叫做_积__分__变__量__,f(x)dx叫做_被__积__式__.
=530-23=16.
小结 利用几何意义求定积分,关键是准确确定被积函数的 图象,以及积分区间,正确利用相关的几何知识求面积.不 规则的图象常用分割法求面积,注意分割点的准确确定.
跟踪训练2 根据定积分的几何意义求下列定积分的值: (1)ʃ-1 1xdx;(2)ʃ20πcos xdx;(3)ʃ1-1|x|dx. 解 (1)如图(1),ʃ 1-1xdx=-A1+A1=0.
=6×(73+536)=126; (3)ʃ 12(3x2-2x3)dx=ʃ 213x2dx-ʃ 212x3dx
=3ʃ 21x2dx-2ʃ 21x3dx=3×73-2×145=7-125=-12.
答 如果在区间[a,b]上,函数f(x)≤0时, 那么曲边梯形位于x轴的下方(如图①). 由于b-n a>0,f(ξi)≤0,故 f(ξi)b-n a≤0.从而定积分ʃ baf(x)dx≤0, 这时它等于如图所示曲边梯形面积的相反值,
即ʃ baf(x)dx=-S.
当f(x)在区间[a,b]上有正有负时,定积 分ʃabf(x)dx表示介于x轴、函数f(x)的图 象及直线x=a,x=b(a≠b)之间各部分面 积的代数和(在x轴上方的取正,在x轴下方的取负).(如图 ②),
性质
ʃ
b a
定积分说课稿

定积分说课稿《定积分的概念》说课稿湖北大学数学系吴正艳课程性质:本内容选自《高等数学》,《高等数学》是高等院校工科类和经管类专业的必修公共基础课。
我将从教学内容分析、学情分析、教学方法、教学过程和板书设计谈谈自己的理解和认识。
一、教学内容分析1.教学内容的地位和作用:本节课选自同济版《高等数学》第五章第一节《定积分的概念与性质》,在此之前学生已学习了导数,不定积分等知识,这为本章的学习打下了基础。
“定积分的概念”是学生学习积分的必由之路,其“分割,近似,求和,取极限”的思想是本节课的精髓,这一思想的理解直接关系到应用定积分思想解决现实问题的能力。
定积分在几何、物理、工程技术、经济学等诸多领域都有广泛应用。
2.教学目标:(1)知识目标:掌握定积分的概念和几何意义。
(2)能力目标:理解“分割,近似,求和,取极限”的思想方法,培养学生的逻辑思维能力和进行知识迁移的能力。
(3)思想目标:激发学习热情,强化参与意识,培养严谨的学习态度。
3.教学重难点:定积分是新的知识点,需要用新的思维方式来学习,第一次接触难免有困难。
定积分的性质在证明时依赖于定积分的概念,所以概念是关键点,而概念是通过曲边梯形的面积引入的,因此,我将重难点确立为:重点:理解定积分的概念和思想。
难点:掌握“以直代曲”和“渐进逼近”的思想形成过程。
解决办法:案例引入概念,以问题驱动,淡化理论,借助多媒体,结合图形教学,遵循循序渐进的认知规律。
二、学情分析因刚进入大学不久,学生对大学的学习生活还在适应中,学生数学基础参差不齐,整体对数学的理解力有待提高,排斥过多的理论知识,但对新概念新内容有强烈的求知欲。
三、教学方法1.传统的教学方法与多媒体相结合,取长补短。
设计意图:求曲边梯形面积时,用多媒体演示成倍增加小矩形的个数时,小矩形的面积和越来越接近曲边梯形的面积的极限过程,这有利于抽象问题具体化;具体推导过程用黑板展示有利于学生按节奏思考和理解。
定积分的概念 课件

定积分的概念
1.定积分的概念 如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1 <…<xi-1<xi<…<xn=b,将区间[a,b]等分成 n 个小 区间,在每个小区间[xi-1,xi]上任取一点 ξi(i=1,2,…, n),作和 sn=f(x1)Δx+f(x2)Δx+…+f(xi)Δx+…f(xn)Δ x,当 n→∞时,上述和式无限接近某个常数,
(3)当曲边梯形的面积在 x 轴上方、x 轴下方均存在 时,如图③所示,则∫baf(x)dx=S 上-S 下,若 S 上=S 下, 则∫baf(x)dx=0.
温馨提示 在利用定积分的几何意义求定积分时, 要特别注意曲边梯形所在的位置,以此为依据确定积分 值的符号.
4.定积分的性质 (1)∫bakf(x)dx=_k_∫__ba_f(_x_)_d_x_ (k 为常数); (2)∫ba[f1(x)±f2(x)]dx=_∫__baf_1_(x_)_d_x_±__∫__ba_f2_(_x_)d_x__; (3)∫baf(x)dx=∫__caf_(_x_)d__x_+__∫__bcf_(_x_)d_x_,其中 a<c<b.
(2)∫21xdx 表示的是图②中阴影部分所示的梯形的面 积,由于这个梯形的面积为32,所以∫21xdx=32.
(3)在平面上 y= 9-x2表示的几何图形 为以原点为圆心,以 3 为半径的上半圆,如图 ③所示,其面积 S=12·π·32=92π.
由定积分的几何意义,知∫3-3 9-x2dx=92π.
温馨提示 注意积分结果的符号问题.因为定积分∫
baf(x)dx 是介于 x 轴、函数 f(x)的图象以及直线 x=a,x= b 之间的各部分面积的代数和,在 x 轴上方的取正号,在 x 轴下方的取负号.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(3)定义中区间的分法和xi 的取法是任意的.
(4)当函数 f ( x)在区间[a, b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积.
定理1 当函数 f ( x)在区间[a, b]上连续时,
称 f ( x)在区间[a, b]上可积.
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
实例1 (求曲边梯形的面积)
y
(1) 分割:
y = f(x)
O a x1 x2
xi-1
xi
xn-1 b x
在区间 [a,b]任意插 n 个分点,
a x0 x1 x2 xi1 xi xn b,
把 [a,b] 分成 n 个小区间: xi1 , xi (i 1,2,n).
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 23
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 33
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 43
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 53
一点xi(xi xi ),作乘积 f (xi )xi (i 1,2,)
n
并作和S f (xi )xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
怎样的分法,也不论在小区间[ xi1 , xi ]上
点 xi 怎样的取法,只要当 0时,和 S总趋于
确定的极限 I ,我们称这个极限 I 为函数 f ( x)
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”
某一点处的函数值
n
n
(3)求和: A= Ai f (ξi )Δxi
iБайду номын сангаас=1
i =1
y y = f(x) ff((xxf11f()()fx(x1x2)2)f)(x2)
f(xi) f(xi) f(xi)xi
O axx1x1x21x2 x2
(4)取极限
λ = m1iaxn {Δxi },
xxxi ii-1 xi xi
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 63
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 73
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 83
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 93
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 143
y
f(x2) f(x1)
f(xi) f(xi)xi
y = f(x)
O a x1x1 x2 x2
xi-1 xi xi
xn-1 b x
(2)近似: ξi [ xi-1 , xi ], Ai f (ξi )Δxi
小曲边梯形 面积
每个小区间的长度 xi xi xi1 (i 1,2,n).
y y = f(x)
O a x1 x2
(2)近似
xi-1
xi
xn-1 b x
方案1
方案2
方案3
特例(阿基米德问题):求由抛物线y=x2
与直线x=1,y=0所围成的平面图形的面积.
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 13
xn-1 b x
n
A lim 0 i1
f
(xi )xi
实例2 (求变速直线运动的路程)
设物体作直线运动,已知速度 v v(t) 是时间间隔
[T1,T2 ]上的连续函数,且 v(t) 0, 计算在这段时间
内物体所经过的路程。
V(T)
A
B
(1)分割 T1 t0 t1 t2 tn1 tn T2,ti ti ti1
定理2 设函数 f ( x)在区间[a,b]上有界,
且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
三、定积分的几何意义
T1
i
T2
t0 t1 t2 ti 1 ti tn 1 tn t
(2)近似
si v( i )ti
部分路程值
某时刻的速度
(3)求和 (4)取极限
n
s v( i )ti
i 1
max{t
1 i n
i
},
n
s
lim
0
i 1
v(
i
)ti
实例1 (求曲边梯形的面积)
n
A = lim λ0 i=1
f (ξi )Δxi
实例2 (求变速直线运动的路程)
n
s
lim
0
i 1
v(
i
)ti
二、定积分的概念
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 103
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 113
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 123
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 133
在区间[a, b]上的定积分,记为
积分和
积分上限 b a
f ( x)dx
I
lim 0
n i 1
f (xi )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
注意:
(1) 定积分是积分和的极限,是一个确定 的数值.
(2)积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
§6.1定积分的概念
这些图形的面积 该怎样计算?
一、问题引入
实例1 (求曲边梯形的面积)
y y = f(x)
曲边梯形由连续曲线
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
A?
x b所围成.
Oa
bx
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”