拓扑学的性质及在建筑形态中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓扑学的性质及在建筑形态中的应用

谷理1唐晶2韩文翔3

12郑州大学建筑学院3中原工学院建筑工程学院河南省450001

摘要:本文着重介绍拓扑学的性质,尤其是阐述莫比乌斯环和克莱因瓶这两种曲面在建筑设计中的应用。期望能够用拓扑相关理论指导现代建筑形态发生,以促进建筑形态学的发展。

Abstract:This article focuses on the nature of the topology,in particular,is described Mobius Strip and Klein due to bottle the two surfaces in architectural design.Look forward to the topological theory to guide the modern architectural form,in order to promote the development of architectural morphology.

关键字:拓扑学建筑形态莫比乌斯环克莱因瓶

中图分类号:O189.3文献标识码:A文章编号:Keywords:topology architectural form Mobius Ring Klein bottle

正文:

在现代生活节奏日益加快,并伴随着信息科学的飞速发展,人们对事物的感知方式逐渐发生了变化,这种变化以丰富多彩的图像为标志。另外,建筑形式的拓扑化引导建筑设计迈向一种新的、引人入胜的可塑性,引导类似巴洛克建筑和表现主义建筑的塑性美学。其次,随着欧几里得几何学这一影响深远的的数学理论被瓦解,非欧几何学逐渐被人们接受,拓扑几何学也逐渐成为建筑表皮生成的主要理论基础,并伴随表皮的独立逐渐成为建筑师表达建筑形态的主要手段之一。

1.拓扑学的概念

拓扑学是由庞加莱创立并在20世纪繁荣起来的一个数学分支,往往被描绘成“橡皮膜几何学”,但它更适合被定义为“连续性的数学”。拓扑学是研究几何对象在连续变换下保持不变性质的数学。所谓连续变换“也叫拓扑变换”就是使几何学对象受到弯曲、压缩、拉伸、扭转或它们的任意组合,变换前后点与点相对位置保持不变。大小和形状与拓扑学无关,因为这些性质在拉伸时就会发生改变。拓扑学家们只问一个形状是否有洞,是否连通,是否打结。他们不仅想象在欧几里得一、二、三维的曲面,而且想象在不可能形象化的多维空间中的曲面。拓扑学研究逐渐的、光滑的变化,它属于无间断的科学,关心的是定性而不是定量问题,重点则是连续变换。

如今,在拓扑变换下,拓扑学主要研究拓扑空间的不变量和不变性质。拓扑学对于形态艺术具有相互促进的作用,从而,诸多建筑师将其引入到建筑之中。

2.拓扑学的性质

拓扑学的性质有哪些呢?首先来介绍拓扑等价,这是一个比较容易理解的拓扑性质。

一个几何图形任意被“拉扯”,只要不发生粘接和割裂,可以做任意变形,这就称为“拓扑变形”。两个图形通过“拓扑变形”可以变得相同,则称这两个图形是“拓扑等价”。如图1所示,1、2、3同构,4和1、2、3不同构。

在拓扑学中,立方体与球是等价的,可以经过连续变换而得到。为了证明两个图形拓扑等价,需要找到一个拓扑(连续)变换,使其中一个图形变为另一个。而为了证明两个图形不等价,则需找出某种图形所独有的拓扑性质。拓扑性质是在连续变换下保持不变的性质,不变性包括可定向性、边缘数、亏格和欧拉示性数。欧拉示性数是与曲面中“洞”有关的拓扑性质,环面、双环面(两个洞)、三环面(3个洞)的欧拉示性数分别是0、2、-4;拓扑性质与欧几里得形状与尺寸等表面空间性质不同,更本质地揭示出曲面与空间的特性。莫比乌斯环和克莱因瓶是拓扑曲面和空间的典型实例。

凤凰国际传媒中心项目建筑高度55米,总建筑面积6.5万平方米,位于北京朝阳区朝阳公园内。整栋建筑的设计逻辑是一个具有生态功能的外壳将具有独立维护使用的功能空间包裹在里面,两者之间形成了许多共享型公共空间,同时展现了楼中楼的概念。在东西两个共享空间里,布置了景观性平台、连续的台阶、通天的自动扶梯和空中环廊,使整个建筑内部空间充满了活力和动感。更重要的是,这一建筑造型来源于“莫比乌斯环”,并与不

规则的道路方向、转角以及朝阳公园形成和谐的关系。

4.克莱因瓶在建筑形态中的应用

克莱因瓶是一种复杂的数学概念,是指一种没有

定向性和内外之分的立体环面。由菲利克斯·克莱因

(德国数学家)提出的。克莱因瓶和莫比乌斯带非常

相似。克莱因瓶的结构并不复杂,一个瓶子的底部有

一个洞,首先延长瓶子的颈部,并且扭曲地插入瓶子

的内部,然后和瓶子底部的洞连接起来。这个物体没

有“边缘”,它的表面不会结束。克莱因瓶(如图6)

是一个在四维空间中才能够真正表现出来的复杂曲

面。

温莎斜屋是一座全球最具创意性的18座DIY 建筑

之一。这栋建筑的设计灵感就来源于克莱因瓶曲面,它看起来根本分不清楚哪里是外部,哪里是内部。当初,设计师的想法是能够在房子中间位置建造一个小型院落,以保证整栋房屋具有良好的通风效果。最终,这栋“克莱因瓶”结构房屋实现了设计师的初衷。

在建筑学领域,拓扑学对当代建筑理论的影响主要体现在研究建筑形态的拓扑性质和形态间的拓扑变换,分析建筑形体、表面、空间的拓扑结构,最终通过拓扑变换生成建筑形态。拓扑学对当今建筑界的影响表现在建筑形态上,同时建筑体量、空间、表皮的形态也正发生着巨大变化,也许会引起建筑学范式转换的变革。

参考文献:

【1】任军,《当代建筑的科学之维:新科学观下的建筑形态研究》东南大学出版社2009-07-01

拓扑学的性质及在建筑形态中的应用

作者:谷理, 唐晶, 韩文翔

作者单位:谷理,唐晶(郑州大学建筑学院), 韩文翔(中原工学院建筑工程学院)刊名:

城市建设理论研究(电子版)

英文刊名:ChengShi Jianshe LiLun Yan Jiu

年,卷(期):2012(2)

本文链接:/Periodical_csjsllyj201202916.aspx

相关文档
最新文档