说说高电压正极材料的发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说说高电压正极材料的发展

核心提示:锂电正极材料的研发一直是锂电研究的最重要的领域之一,锂电正极材料到底如何发展,也是大家非常关心的话题。这里本人想就锂电正

锂电正极材料的研发一直是锂电研究的最重要的领域之一,锂电正极材料到底如何发展,也是大家非常关心的话题。这里本人想就锂电正极材料的发展趋势,说点个人看法。就目前来说,锂离子电池的发展有两条基本的路线,一条是大型动力电池,另外一条脉络是3C领域的小型电池。而我的基本观点就是目前电动汽车发展严重落后于人们预期,动力电池仍然还是美丽的画饼,未来数年3C领域仍然是锂电的主战场。所以我个人认为,3C领域这几年的发展趋势,就基本上决定了锂电电极材料的主流发展方向。那么3C领域如何发展呢?个人认为,在保证安全性和适当的循环性前提下,提高锂电的能量(主要是体积能量密度),仍然是未来数年小型锂电的基本发展方向。提高能量密度,无非有两个主要途径,提高电极材料容量或者提高电池工作电压。如果能够将高电压和高容量两者结合起来那将是再好不过了,事实上这正是目前3C锂电池正极材料发展的主流。(注意:本文中的正极材料电压如无特殊说明都是半电池电压,石墨为负极的全电池充电电压要减去0.15V)

1. 高电压高压实钴酸锂

这些年一直有人预言LCO将被其他材料取代,但事实是LCO的产量仍然逐年稳步增加,在未来一二十年都不可能出局。最近高电压(4.5V)高压实(4.1)LCO(高端LCO)的产业化,更是将LCO发展到极致,堪称锂电材料发展的一个经典范例。从常规LCO4.2V145的容量,发展到第一阶段4.35V超过155的容量,再到第二阶段4.5V超过185的容量(甚至到4.6V容量可以接近215),LCO基本上是发展到了它的极限了。看似充电电压0.15V的小幅提高,背后需要的技术积累和进步,却很少有国内厂家具备。第一阶段4.35V的改性相对比较容易,三四年前国外公司已经产业化,原理主要是掺杂改性。第二阶段4.5V 技术难度更高,需要体相掺杂+表面包覆,目前国际上已经有数家公司可以提供小批量产品了。改性元素,主要是Mg,Al,Ti,Zr等几种,基本上已经公开了,至于不同元素的作用机理如何,大部分人就不甚清楚了。高端LCO技术的关键在于掺杂什么元素,如何掺杂,以及掺杂的量为多少。同样,表面包覆的难点首先在于选择什么样的包覆物,再就是采用什么样的包覆方法以及包覆量的多少的问题。比如LCO表面包覆氧化物是4.5V高电压必须的改性手段,包覆可以包在前驱体上,也可以包在烧结以后的产物上。即可以选择湿法包覆,又可以选择干法包覆。湿法包覆可以是氢氧化物,也可以是醇盐。至于包覆设备,选择面也是很广阔。这就需要根据自己的技术积累和经济状况来选择适当的拘束路线。所谓条条大路通罗马,适合自家的路线就是最好的技术。

我个人认为,全电池4.4V应该是LCO的发展上限,充电电压再高的话循环性和安全性都不能保证了,尤其是在55度测试条件下。事实上,高端LCO全电池4.4V接近190的容量,体积能量密度在近几年是没有其他材料可以匹敌的。我这里要指出的是,高端LCO在国际上火爆,并不代表它在中国一定能就吃得开。这里主要有三个因素制约高端LCO在国内的发展,第一个知识产权的问题,高电压高压实LCO设专利由FMC申请,国内既没有任何公司购买专利授权也没有任何相关专利发表,可以说基本上断绝了出口的可能。第二是高端LCO定位就是smart phone 和tablet这样的高附加值产品,这些智能玩意基本是被欧美和日韩垄断的,厂家如果购买国产没有知识产权的LCO,在国际上将会面临很大的专利纠纷的风险,从Apple对几个电池厂家指定正极材料的做法,就可以看出端倪了。而国内的智能手机和平板电脑产业近几年才刚刚起步,还用不起价格较高的高端LCO。第三个因素就是国产高压电解液还不过关,而高端LCO对高压电解液是有讲究的,否则安全性将不大容易通过。基本上可以这样说,虽然高端LCO已经在Apple上成功应用,但在国内现在面临的是一个比较尴尬的现状,高端LCO在国内能否发展起来,就看国产智能手机和平

板电脑产业能否做起来了。当然,如果FMC追着打官司的话那将是另外一个故事了。

2. 高电压三元材料

从理论上讲,NMC天生就具有向高电压发展的优势。NMC半电池的标准测试电压是4.35V,在此电压下普通NMC都可以表现出很好的循环性能。将充电电压提高到4.5V,对称型的NMC(333和442)的容量可以达到190,循环性也还不错,532循环性差点但也凑合。充电到4.6V,NMC的循环性就不行了,胀气也很严重。但我们认为,NMC通过改性是可以充到4.6V而达到实际实用要求的。改性后的对称型的NMC在4.45V的全电池里,可以达到200以上的容量,相当可观。NMC改性的方法,和LCO基本上是大同小异的,也是体相掺杂+表面包覆,里面也是有相当的技术含量。

高压NMC目前暂时还没有市场,这是因为高压NMC的市场定位跟高端LCO基本上是重合的,都是应用于高端3C领域。而高端LCO在smart phone 和tablet的应用才刚刚起步而已,自然高压NMC还没有得到相应发展。高压NMC,我个人认为应该是高端LCO的延续,高端LCO将小电池的高压需求带动以后,然后由高压NMC取代其一部分市场,毕竟NMC的价格优势还是有的,随着钴价的升高越发明显。另外一个制约因素就是高压电解液的问题,NMC产气和高温存储问题比较突出,高压下更是如此。产气问题需要在电解液和材料本身两方面同事着手,才能起到比较好的效果。从我们积累的经验来看,高压三元的安全性以及产气问题,随着技术的进步,都是可以得到解决的,只不过时间可能比较长点。所以我个人认为,国内高压NMC的研发要加紧跟进,而产业化要适当调整。当然了,目前国内NMC的发展,是走进了片面追求高镍三元这条死胡同,从国人对811的热度可见一斑。看似我们又“领先”了(国际上622都还没完全产业化),但我要说的是,高镍NMC基本上不适合国内目前电池工艺水平(具体就不多说)。直接的例子就是,NCA在国内一直没有发展起来,而日韩3.0Ah以上的高端18650,几乎都是用NCA做正极的,而NCA和811是很相似的。

坛子里一直有很多人很感兴趣Apple的电池材料的情况,那我就说两句。据我了解的情况,i-Phone5用的是高端LCO,上限电压是4.3V。而i-Pad3用的是高端LCO和NMC532的混合材料,至于混合比例ICP 可以告诉你答案,想知道LCO和NMC用的哪家的材料,从SEM照片上一眼就可以看出来。为什么i-Phone 5和i-Pad3用的材料不一样?道理很简单,关机电压设置和价格不太敏感使得高端LCO成为i-Phone5的必

相关文档
最新文档