第13课时 二次函数综合应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章二次函数
第13课时二次函数综合应用
一、复习二次函数的基本性质
二、学习目标:
灵活运用二次函数的性质解决综合性的问题.
三、课前训练
1.二次函数y=kx2+2x+1(k<0)的图象可能是()
2.如图:
(1)当x为何范围时,y1>y2?
(2)当x为何范围时,y1=y2?
(3)当x为何范围时,y1<y2?
3.如图,是二次函数y =ax 2-x +a 2-1的
图象,则a =____________.
4.若A (-134 ,y 1),B (-1,y 2),C (53
,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )
A .y 1<y 2<y 3
B .y 3<y 2<y 1
C .y 3<y 1<y 2
D .y 2<y 1<y 3
5.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.
6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.
(1)求点P 从点A 运动到点D 所需的时间.
(2)设点P 运动时间为t (秒)
①当t =5时,求出点P 的坐标.
②若△OAP 的面积为S ,试求出S 与
t 之间的函数关系式(并写出相应
的自变量t 的取值范围).
五、目标检测
如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于
点C .
(1)求b 、c 的值;
(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.