逐点比较法画圆弧

合集下载

插补运动(逐点比较法)

插补运动(逐点比较法)

1、概述在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。

严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。

然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。

因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。

所谓插补是指数据密化的过程。

在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。

机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。

无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。

在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。

无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。

有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。

这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。

而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。

经过多年的发展,插补原理不断成熟,类型众多。

从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。

在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。

逐点比较法顺圆弧插补

逐点比较法顺圆弧插补

数控原理与系统课程设计课题名称:逐点比较法顺圆弧插补专业:班级:姓名:指导老师:数控原理与系统课程设计说明书班级姓名学号一、课程设计的目的1)了解连续轨迹控制数控系统的组成原理。

2) 掌握逐点比较法插补的基本原理。

3)掌握逐点比较法插补的软件实现方法。

二、课程设计的任务逐点比较法插补是最简单的脉冲增量式插补算法之一,其过程清晰,速度平稳,但一般只用于一个平面内两个坐标轴的插补运算。

其基本原理是在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小偏差的方向进给,且只有一个方向的进给。

也就是说,逐点比较法每一步均要比较加工点瞬时坐标与规定零件轮廓之间的距离,依此决定下一步的走向。

如果加工点走到轮廓外面去了,则下一步要朝着轮廓内部走;如果加工点处在轮廓的内部,则下一步要向轮廓外面走,以缩小偏差,这样周而复始,直至全部结束,从而获得一个非常接近于数控加工程序规定轮廓的轨迹。

逐点比较法插补过程中的每进给一步都要经过偏差判别、坐标进给、偏差计算和终点判别四个节拍的处理,其工作流程图如图所示。

本次课程设计具体要求如下:1)逐点比较法基本原理2)逐点比较法插补软件流程图3)算法描述(逐点比较法算法在VB中的具体实现)4)编写算法程序清单5)软件运行仿真效果三、课程设计报告要求1.按课程设计任务5点要求为标题,编写课程设计报告,最后加一点:此次课程设计小结(包括设计过程中所碰到的问题、解决办法以及有关设计体会等)2.字数在3000字左右3.仿真软件一份四、学生分组数控原理与系统课程设计一、逐点比较法基本原理逐点比较法I象限逆圆插补基本原理在加工圆弧过程中,人们很容易联想到使用动点到圆心的距离与该圆弧的名义半径进行比较来反映加工偏差。

假设被加工零件的轮廓为第Ⅰ象限逆走向圆弧SE,,圆心在O(0,0),半径为R,起点为S(XS ,YS),终点为E(Xe,Ye),圆弧上任意加工动点为N(Xi,Yi)。

逐点比较算法圆弧插补

逐点比较算法圆弧插补

XXX学院学生课程设计(论文)题目:逐点比较法圆弧插补的连续轨迹控制设计学生姓名: XXX 学号:2006XXXXXXXX 所在院(系):机电工程学院专业:机械设计制造及其自动化班级: 06机制6班指导教师: XXX 职称:教授2009年12月8 日XXX学院本科学生课程设计任务书题目逐点比较法插补的连续轨迹控制设计(圆弧插补)1、课程设计的目的专业课程综合训练目的是本使学生通过对所学主要专业课的综合应用,基本掌握一般机电控制系统的设计方法及步骤。

综合运用所学的基础知识和技能,进一步提高学生的设计能力,培养学生创新意识和创新能力,提高控制系统分析设计的总体意识和工程实践能力。

2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等)设计内容要求:(1)铣床CNC系统硬件原理图及其说明;(2)推导完整的插补公式;(3)设计出插补软件流程图;(4)用高级语言编写插补程序清单;(4)画出插补轨迹模拟图形;(5)将上述内容整理成设计说明书及图纸。

设计结束后提交4000字左右的课程设计论文;包含上述全部内容。

3、主要参考文献[1]、张建民等,《机电一体化系统设计》,北京:高等教育出版社,2002年[2]、赵先仲,《机电系统设计》,北京:机械工业出版社,2004年[3]、吴圣庄,《金属切削机床概论》,北京:机械工业出版社,1993[4]、杨有君,《数控技术》,北京:机械工业出版社,20054、课程设计工作进度计划内容学时总体方案设计8CNC系统硬件设计8插补系统原理及公式设计16插补系统软件设计48软件验证 4绘制所需的各类图及编制技术文件20合计3周指导教师(签字)日期2008年12 月1 日教研室意见:年月日学生(签字):接受任务时间:年月日注:任务书由指导教师填写。

课程设计(论文)指导教师成绩评定表题目名称评分项目分值得分评价内涵工作表现20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。

实验一 逐点比较法圆弧和直线插补实验

实验一 逐点比较法圆弧和直线插补实验

Y B(xe,ye)
M(xm,ym)
Rm R
A(x0,y0)
O 图3 圆弧插补原理图 X
圆弧插补原理参见上图,对于第一象限逆圆,设圆弧的起点为 A(x0,y0),终点为 B(xe,ye), 圆弧半径为 R。加工点为 M(xm,ym),它与圆心的距离为 Rm,则
(1)偏差计算
Fm
=
Rm2
− R2
=
xm2
p102=p102-p104 p101=p101+1 x-0.1 else p102=p102+p103 p101=p101+1 y0.1
;计算新的偏差值(Fi+1=Fi-ya) ;步数计数器加一 ;X方向进分别是(-0.1 -0.5 -1.0) ;偏差判别(若P102小于0表示刀具在直线下方) ;计算新的偏差值(Fi+1=Fi+xa) ;步数计数器加一 ;Y方向进给分别是(0.1 0.5 1.0)
endif
endwhile
close
(3)根据直线插补编成格式,编写所给圆弧插补程序。 各组的圆弧的插补任务是: u 第一组:圆弧半径 50,第二象限顺圆;
第二组:圆弧半径 50,第二象限逆圆; 第三组:圆弧半径 60,第三象限顺圆; 第四组:圆弧半径 60,第三象限逆圆; 第五组:圆弧半径 70,第四象限顺圆; 第六组:圆弧半径 70,第四象限逆圆; open prog7 clear linear inc p101=0 p102=0 p103=0 p104=50 while(p101!>100) if(p102!<0) y0.5 p101=p101+1 p102=p102-2*p104+1 p104=p104-1 else -x0.5 p101=p101+1 p102=p102-2*p103+1 p103=103-1 endif endwhile close

第05讲逐点比较(圆弧)

第05讲逐点比较(圆弧)
进给后新点的偏差计算公式除与前一点偏差值有关外, 还与动点坐标有关,动点坐标值随着插补的进行是变 化的,所以在圆弧插补的同时,还必须修正新的动点 坐标。
例2-2 现欲加工第一象限顺圆弧AB,如图所示,起点A (0,4),终点B(4,0),试用逐点比较法进行插补。
Y 4 3 2 1 B(4,0) O 1 2 3 4 X A(0,4)
图 四个象限圆弧进给方向
圆弧插补计算公式和进给方向
偏差符号Fi >=0 偏差符号Fi <0 圆弧线型 进给方向 坐标计算 偏差计算 圆弧线 型 进给方向 坐标计算 偏差计算
SR1, NR2 SR3, NR4 NR1, SR4 NR3, SR2
-Y
+Y -X +X
|Xi+1|=| xi | |Yi+1|=| yi|-1
§2-2 逐点比较法
二、逐点比较法圆弧插补(第Ⅰ 象限逆圆弧)
偏差判别
y
F>0
圆弧上 圆弧外
o F<0
P(x0,y0)
圆弧内
x
0点在圆弧上 2 2 偏差判别函数 Fij ( xi2 x0 ) ( y 2 y0 ) 0点在圆弧外 j 0点在圆弧内
§2-2 逐点比较法
X5 =3,Y5 =2 X6 =4,Y6 =2 X7 =4,Y7 =1 X7 =4,Y7 =0
NR2
NR1
SR2
SR1
NR3
NR 4
SR3
SR4
如果插补计算都用坐标的绝对值,将进给方向另做处 理,四个象限插补公式可以统一起来,当对第一象限 顺圆插补时,将X轴正向进给改为X轴负向进给,则走 出的是第二象限逆圆,若将X轴沿负向、Y轴沿正向进 给,则走出的是第三象限顺圆。

逐点比较法

逐点比较法


Fi1 Fi X e
6
在插补计算、进给的同时还要进行终点判别。常用终点判 别方法是:
设置一个长度计数器,从直线的起点走到终点,刀具沿
X 轴应走的步数为X e,沿Y 轴走的步数为Ye,计数器中存入 X和Y两坐标进给步数总和∑=∣Xe∣+∣Ye∣,当X 或Y
坐标进给时,计数长度减一,当计数长度减到零时,即∑= 0时,停止插补,到达终点。
终点判别:判断是否到达终点,若到 达x ,结束插补;否则,继续以上四个
步骤(如图3-3所示)。
图3-3 逐点比较法工作循环图
3
2. 直线插补
图3-4所示第一象限直线OE为给定轨迹,其方程为
XeY-XYe=0
(3-1)
P(X,Y)为动点坐标,与直线的关系有三种情况:
(1)若P1点在直线上方,则有XeY-XYe>0 E (2) 若P点在直线上,则有 XeY-XYe=0
2.由偏差方程确定加工动点引起的偏 差符号(若要计算偏差量,则偏差方程系数不能简 化)。
3.下一步插补方向确定原则:向使加 工偏差减小、并趋向轨迹终点的方向插补
.(将偏差等于零的情况并入偏差大于零的情况)。
4.关于插补量:每次插补一个脉冲当 量的位移
12
3. 圆弧插补
在圆弧加工过程中,可用动点到圆心的距离来描述刀具位置与 被加工圆弧之间关系。
b) 逆圆弧
图3-9 第一象限顺、逆圆弧
14
偏差递推简化:对第一象限顺圆,Fi≥0,动点Pi(Xi,Yi)应 向-Y向进给,新的动点坐标为(Xi+1,Yi+1),且Xi+1=Xi,Yi +1=Yi-1,则新点的偏差值为:
15
若Fi<0时,沿+X向前进一步,到达(Xi+1,Yi)点,新点

一种改进型逐点比较圆弧插补算法的FPGA实现

一种改进型逐点比较圆弧插补算法的FPGA实现

一种改进型逐点比较圆弧插补算法的FPGA 实现作者:韩赛飞施佺刘炎华黄新明孙玲来源:《现代电子技术》2017年第19期摘要:逐点比较圆弧插补作为一种常见的插补算法在数控系统中广泛应用。

为了进一步提高传统插补算法的速度,通过分析逐点比较法的特点简化了给进判别逻辑,提出一种改进的逐点比较圆弧插补算法实现方案。

充分利用Verilog HDL语言特点,通过设计全局变量并使用FPGA丰富的内部逻辑资源实现了算法精度的可调。

算法的FPGA硬件验证结果表明该实现方案具有运算速度快、插补精度可调和逻辑资源占用少的优点。

关键词:圆弧插补; Verilog 硬件描述语言; FPGA;逐点比较法中图分类号: TN492⁃34 文献标识码: A 文章编号: 1004⁃373X(2017)19⁃0153⁃03 Implementation of an improved circular interpolation algorithmwith point⁃by⁃point comparison based on FPGAHAN Saifei, SHI Quan, LIU Yanhua, HUANG Xinming, SUN Ling(School of Electronic Information, Nantong University, Nantong 226019, China)Abstract: As one of the common interpolation algorithms, the circular interpolation algorithm with point⁃by⁃point comparison is widely used in numerical control systems. In order to improve the speed of the traditional interpolation algorithm, the characteristics of point?by⁃point comparison method is analyzed to simplify the feed discrimination logic, and an improved implementation scheme of circular interpolation algorithm with point⁃by⁃point comparison is proposed. With the use of feature of Verilog HDL, the global variable is designed and the rich internal logic resources of FPGA are used to realize the precision adjustment of the algorithm. The results of FPGA hardware verification show that the proposed scheme has the advantages of fast computation speed, adjustable interpolation precision and little logic resource occupation.Keywords: circular interpolation; Verilog HDL; FPGA; point⁃by⁃point comparison method0 引言数控技术是工业制造的基础,数控机床在进行各种工件的轮廓加工时,一般都要用到插补算法[1]。

例题:逐点比较法

例题:逐点比较法

-、逐点比较法1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)插补总步数:M=x e+y e=4+6=103)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f. .+1= f.. + x e(2)列表计算(3)2、直线L2:起点坐标O (0, 0),终点坐标A (-6, 3)(1)分析1)直线L2为第二象限内直线2)插补总步数:M=l x e l+y e=6+3=93)若偏差任0,则刀具向-A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1= f.. +lx e\ (2)(3)3、直线L3:起点坐标O (0, 0),终点坐标A (-5, -8)(1)分析1)直线L3为第三象限内直线2)插补总步数:M=l x e l+l y e l=5+8=133)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1. = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f,,+1 = f.. +\x\(2)列表计算(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)插补总步数:M=x+\y\=7+4=113)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1= f.. + x e(2)(3)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)6、圆弧NR2:起点坐标A (0, 5),终点坐标E (-5, 0)(1)分析1)圆弧NR2为第二象限逆圆2)插补总步数:M=l(x0-x e)l+l(j0-j e)l=5+5=103)若偏差任0,则刀具向-颂方向进给一步,偏差f.,+1 = f.. - 2y.+ 14)若偏差f<0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 1 (2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1)圆弧NR3为第三象限逆圆2)插补总步数:M=l(x0-x g)l+l(y0-y g)l=6+6=123)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. + 2x. + 14)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1 = f.. - 2y. + 1 (2)列表计算(3)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)1)圆弧NR4为第四象限逆圆2)插补总步数:M=\(x Q-x e)\+\(y Q-y e)\=7+7=143)若偏差任0,则刀具向+A y方向进给一步,偏差f.,+1 =f.. + 2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f i+1j =加+ 2x. + 1(2)(3)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1)圆弧SR1为第一象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差f N0,则刀具向-A y方向进给一步,偏差f, .+1 = f.. ~2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f.+1. = f.. + 2x. + 1(2)(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5,0),终点坐标E (0,5)(1)分析1)圆弧SR2为第二象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=5+5=103)若偏差f N0,则刀具向+A x方向进给一步,偏差f,+1. = f.. + 2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=6+6=123)若偏差任0,则刀具向+颂方向进给一步,偏差f i+1j = f,. + 2y.+ 14)+1= "j - 2x.+ 1 (2)列表计算(3)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=7+7=143)若偏差任0,则刀具向-A x方向进给一步,偏差f. .+1 = f.j - 2x. + 14)+1.(3二、数值积分法(DDA)1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)x e=4=100B;y e=6=110B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+颂(2)列表计算:(3)绘制进给脉冲图(略)2、直线L2:起点坐标O(0,0),终点坐标A(-6,3)(1)分析1)直线L2为第二象限内直线2)x e=l-6l=110B;y e=3=011B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y (2)列表计算二进制累加:累加N3):累加(3)绘制进给脉冲图(略)3、直线L3:起点坐标O(0,0),终点坐标A(-5,-8)(1)分析1)直线L3为第三象限内直线2)x e=|-5|=101B;y e=|-8|=1000B3)取积分累加器容量N=4位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过4位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过4位溢出时,则在y方向分配一进给脉冲-A y (2)列表计算二进制累加:(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)x e=7=111B;y e=l-4l=100B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;j被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;j累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x 7)当J Ry累加超过3位溢出时,则在j方向分配一进给脉冲-颂(2)列表计算二进制累加:N3):(3)绘制进给脉冲图(略)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)x0=4=100B;y0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1) 圆弧NR3为第三象限逆圆 2) 扁=I-6I=110B ; y 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为加一(2)列表计算_8_ 9 10 11 12 1314(-44) (-4,4) (-5,3) (-5,3)(-3+4=7 7+4=11 (3)停止累加2+4=6 6+4=10(2) 2+5=7 7+5=12(4) 4+6=10(2) 2+6=8(0)停止累加0 1 0 1 1 1 0(3) 绘制进给脉冲图(略)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)(1)分析1) 圆弧NR4为第四象限逆圆 8) x 0=0=000B ; j 0=|-7l=111B 9) 取积分累加器容量N=3位10) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 11) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 012) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对 x 坐标的修正为加一2) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算10 11 12 13 14 15(-4,-6) (-3,-6) (-2,-6) (-1,-7+6=13(5) 5+6=11(3) 3+6=9 (1) 1+6=7 7+6=13 (5)停止累加1 1 1 0 1 0停止累加(3)绘制进给脉冲图(略)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1) 圆弧SR1为第一象限顺圆 2) x 0=0=000B ; j 0=4=100B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为减一(2)列表计算11 12 13 1415(7, -4) (7, - 3) (7, - 2)-6+5=11⑶3+7=10(2) 2+7=9(1) 1+7=8(0) 0+7=7 7+7=14(6)停止累加1 1 0 1 0(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5, 0),终点坐标E (0, 5)(1)分析1)圆弧SR2为第二象限顺圆 2) x 0=l-5l=101B ; j 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为加一(2)列表计算12 13 1415(4,2)g (41) (4,1) (4,0)3+4=7 7+4=11(3) 3+4=7 7+4=11(3)停止累加1 0 1 0(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆 2) x 0=0=000B ; y 0=l-6l=110B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲-A x ,相应在J vy 中对x 坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算141514(-6,-1)15(-6,0)停止累加0(3)绘制进给脉冲图(略)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)x0=7=111B;j0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲-A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)。

数控机床逐点比较法圆弧插补

数控机床逐点比较法圆弧插补

第一象限逆圆弧为例,讨论圆弧的插补方法。

如图8-4 所示,设要加工圆弧为第一象限逆圆弧AB ,原点为圆心O ,起点为A (xo ,y 0),终点为B (x e ,y e )半径R ,瞬时加工点为P (x i ,y i ),点P 到圆心距离为Rp<0+△y>0-△x <0+△x <0+△y>0-△x<0-△y <0-△y>0+△x yx图8-2 第一象限直线插补轨迹图 图 8-3第一象限直线插补程序框图图12345X123YF>0p(xi,yi)A(Xi,Yi)F<0开始初始化Xe ,Y e ,JF≥0?+x 走一步F←F -Y e F←F -X e-y 走一步YNJ ←J-1J =0?Y结束若点P 在圆弧内则,则有x i2+y j2=R2p<R2即x i2+y j2-R2 < 0显然,若令F i,j= x i2+y j2-R2(8-4)图8-4 逆圆弧插补则有:(1)F i,j= F i,j=0, 则点P在圆弧上(2)F i,j >0则点P在圆弧外则(3)F i,j<0则点P在圆弧不则常将8-4称为圆弧插补偏差判别式。

当F i,j≥时,为逼近圆弧,应向-x方向进给一步;当F i,j<0时,应向+y 方向走一步。

这样就可以获得逼近圆弧的折线图。

与直线插补偏差计算相似,圆弧插补的偏差的计算也采用递推的方法以简化计算。

若加工点P(x i,y i)在圆弧外或者圆弧上,则有:F i,j=x i2+y j2-R2≥0 为逼近该圆沿-x方向进给一步,移动到新加工点P(x i=1,y i),此时新加工点的坐标值为x i+1=x i-1,y i=y i新加工点的偏差为:F i+1,j=(x i-1)2+y i2-R2=x i2-2x i+1+ y i2-R2= x i2+ y i2-R2+1即F i+1,j= F i,j-2x i+1 (8-5)若加工P(x i,y i)在圆弧内,则有F i,j=x i2+y j2-R2<0若逼近该圆需沿+y方向进给一步,移到新加工点P(x i,y i),此时新加工点的坐标值图8-5 第一象限圆弧插补程序框图为新加工点的偏为:F i,j+1=x i2+(y i+1)2-R2=x i2+ y i2+1 -R2= x i2+ y i2-R2+1+2y iF i,j+1= F i,j-2y i+1 (8-6)从(8-5)和式(8-6)两式可知,递推偏差计算仅为加法(或者减法)运算,大大降低了计算的复杂程度。

第三章插补原理及控制方法

第三章插补原理及控制方法

15
其中 tg αi= y j / xi
tgα= y e / x e
tg αi -tgα= y j / xi - y e / x e
= (x e y j – x i y e ) / x e x i
令: Fi , j xe y j xi ye 为偏差函数
y A (Xe,Ye)
M (xi,yj)
+ ΔY
N
终点? 结束
第三章 插补原理及控制方法 29
作 业
试推导逐点比较法直线插补第三象限 直线的递推公式,并画出程序流程图。
注意:1、正确设定偏差函数
2、进给运动后的坐标增量均为数值增加。
第三章 插补原理及控制方法
30
二、逐点比较法圆弧插补—第一象限
设要加工第 I 象线逆圆弧AE, M为某一时刻加 工点,其坐标为(xi , y j) 当M点在圆外时,-ΔX (Rm> R) 当M点在圆内时, + Δ Y (Rm < R) 当M点在圆上时, - Δ X (Rm= R)
第三章 插补原理及控制方法
7
※插补方法的分类
直线和圆弧是构成零件轮廓的基本线型, CNC系统都有直线插补、圆弧插补两种基本功能 。 三坐标以上联动的CNC系统中,一般还有螺 旋线插补等功能。 一些高档CNC系统中,已出现了抛物线插补 、渐开线插补、正弦线插补、样条曲线插补和球 面螺旋线插补等功能。
第三章 插补原理及控制方法
数控技术
※插补的概念
插补(Interpolation):根据给定进给速度 和给定轮廓线形的要求,在轮廓的已知点 之间,确定一些中间点的方法,这种方法 称为插补方法或插补原理。 插补技术是数控系统的核心技术。数控 加工过程中,数控系统要解决控制刀具或 工件运动轨迹的问题。刀具或工件一步步 移动,移动轨迹是一个个小线段构成的折 线,不是光滑曲线。刀具不能严格按照所 加工零件的廓形运动,而用折线逼近轮廓 线型。

(完整版)圆弧插补

(完整版)圆弧插补
Fi<0
Fi<0
O Fi≥0
X Fi<0 Fi≥0
2、圆弧插补的象限处理
前面的圆弧插补(顺圆、逆圆)只限于第一象限,其他 情况如图所示: Y
O
X
代入偏差函数,得Pi+1点的偏差为: Fi+1 = Fi-2Xi + 1
当Fi<0时,向+Y方向进给一步。动点由Pi(Xi,Yi) 移动到 Pi+1(Xi,Yi +1)则新动点的坐标为 Yi+1=Yi +1
代入偏差函数,得Pi+1点的偏差为:
Fi+1 = Fi + 2Yi + 1
所以,第一象限逆时针圆弧插补加工时偏差加工的递推 公式为:
6 F5= -7 +Y F6=F5+2Y5+1 =0, X6=3,Y6=4 ∑=4
7 F6=0 -X F7=F6-2X6+1 = -5, X7=2,Y7=4 ∑=3 8 F7= -5 +Y F8=F7+2Y7+1 =4, X8=2,Y8=5 ∑=2
9 F8=4 -X F9=F8-2X8+1 = 1, X9=1,Y9=5 ∑=1
若P点在圆弧上,则有 (Xi2 +Yi2 ) — (Xo2 +Yo2) = 0,我们定义偏差函数Fi为 Fi = (Xi2 +Yi2 ) — (Xo2 +Yo2 )
Y
B(Xe,Ye)
Pi(Xi,Yi)
A(Xo,Yo) O
X
可见,若Fi=0,表示动点位于圆弧上;若Fi>0,表示动 点位于圆弧外;Fi<0,表示动点位于圆弧内。
(2)进给控制
把Fi=0和若Fi>0合在一起考虑,当Fi≥0时,向-X方向进 给一步;当Fi<0时,向+Y方向进给一步。

逐点比较法画圆弧

逐点比较法画圆弧

所以,第一象限逆时针圆弧插补加工时偏差加工的递推 公式为: Fi+1 = Fi-2Xi + 1 ( Fi≥0时) Fi+1 = Fi + 2Yi + 1 (Fi<0时)
同理,对于第一象限顺圆加工时,即B→A,当Fi≥0时, 应向-Y方向进给一步,当Fi<0时,应向+X方向进给 一步。
Y
B(Xe,Ye) Pi(Xi,Yi) A(Xo,Yo)
所以,第一象限顺时针圆弧插补加工时偏差加工的递推 公式为: Fi+1 = Fi-2Yi + 1 ( Fi≥0时) Fi+1 = Fi + 2Xi + 1 (Fi<0时)
(4)终点判别 1)根据X、Y坐标方向要走的总步数∑来判断,即∑=lXeXol +lYe -Yol,每走一步进行∑-1计算,当∑=0时即到 终点。 2)分别判断各坐标轴的步数,∑x=lXe-Xol , ∑y= lYe –Yol,当沿坐标值方向进给一步时进行∑-1计算, 当∑x=0 ,∑y=0时即到终点。
F6=F5-2X5+1 =0, X6=0,Y5=3
偏差计算 F0=0,Xo=3,Yo=0
终点判别
∑=0
加工过程为: Y 3 2
B
1
O A
1
2
3
X
习题:设圆弧AB为第一象限逆圆弧,起点A(5,0),终 点为B(0,5),用逐点比较法加工圆弧AB。 Y 5 4 3 2 1 O
1
2
3ห้องสมุดไป่ตู้
4
5
X
运算过程:
O
X
O
X
当Fi≥0时,向-Y方向进给一步,动点由Pi(Xi,Yi) 移动到 Pi+1(Xi,Yi +1),则新动点的坐标为 Yi+1=Yi -1 代入偏差函数,得Pi+1点的偏差为: Fi+1 = Fi-2Yi + 1 当Fi<0时,向+X方向进给一步,动点由Pi(Xi,Yi) 移动到 Pi+1(Xi +1,Yi),则新动点的坐标为 Xi+1=Xi +1 代入偏差函数,得Pi+1点的偏差为: Fi+1 = Fi + 2Xi + 1

(二)逐点比较法圆弧插补

(二)逐点比较法圆弧插补

(二)逐点比较法圆弧插补
逐点比较法圆弧插补是数控加工中常用的一种圆弧插补方法,其原理是通过逐点比较给定的圆弧路径与机床实际移动轨迹的差异,不断调整目标点的加工速度和轨迹实现精细的加工。

1.将给定的圆弧路径分割成若干个目标点,通常每隔一定距离取一个目标点。

2.根据目标点之间的距离和已知的转速,计算每个目标点的加工速度。

3.将目标点逐个输入数控系统,根据当前位置和目标点的位置计算运动轨迹和加工速度。

4.在运动过程中不断比较实际轨迹和目标轨迹之间的误差,根据误差大小调整加工速度,保证加工精度。

5.重复步骤3和4,直到完成整个圆弧的加工。

逐点比较法圆弧插补的优点是在加工过程中能够动态地调整加工速度,避免加工误差的累积。

同时,它对系统精度要求不高,能够适应各种数控系统。

不过,逐点比较法圆弧插补的缺点也是比较明显的。

由于每个目标点的加工速度独立计算,导致加工过程中产生了较大的速度变化,容易引起加工表面的纹路和不良的表面质量。

因此,在实际应用中,需要根据加工要求和机床精度选择合适的加工方法,并进行适当的加工优化。

2--插补象限、圆弧走向处理以及逐点比较法合成进给速度-PPT精选文档

2--插补象限、圆弧走向处理以及逐点比较法合成进给速度-PPT精选文档

Y
+Y
Y +X
Xe > 0? N -X
F = F + |Xe|
F = F - |Ye|
F = F - |Ye|
F = F + |Xe|
N
(∑=∑-1)=0? Y 结束
(二)四个象限中的圆弧插补 第一象限顺圆弧插补 在圆弧插补过程中,除象限问题外,还有圆弧走向 问题。 设有第一象限顺圆弧SE,如右图所示。 偏差值计算公式为
Fi < 0 偏差计算 坐标进给 +Y +Y -Y -Y
E(|Xe|,|Ye|)
F i 1 F i Y e
F F i 1 i X e
F<0
X
-Y
根据上述计算表,四个象限内的直线插补处理流程图可绘制如下。
开始 初始化 1)F = 0 2)∑=|Xe|+ |Ye| Y F ≥ 0? N
Xe > 0? Y
2 F X Y R i i 2 2
Y F>0 S
F<0 E
刀具移动方向为 ① 当动点在圆弧上或在圆弧外侧区域时,向-Y方向进给一步; ② 当动点在圆弧内侧区域时,向+X方向进给一步。 将偏差值计算公式离散化,可得如下计算表。 偏差值 动点位置 进给方向 新位置偏差值计算公式 新位置动点坐标
X
② 四个象限的直线插补
采用类似分析,可以发现以下重要规律。 当直线处于第2、3或4象限时,可以采用与之对称的第1象限直线的插补计算 公式进行计算,只是根据象限不同采用不同的进给方向。 即,第2、3和4象限直线的插补问题可以归结为与之对称的第1象限直线的插 补问题。
E(Xe,Ye)
F>0 Y F>0

一种改进型逐点比较圆弧插补算法的FPGA实现

一种改进型逐点比较圆弧插补算法的FPGA实现

一种改进型逐点比较圆弧插补算法的FPGA实现韩赛飞;施佺;刘炎华;黄新明;孙玲【摘要】逐点比较圆弧插补作为一种常见的插补算法在数控系统中广泛应用.为了进一步提高传统插补算法的速度,通过分析逐点比较法的特点简化了给进判别逻辑,提出一种改进的逐点比较圆弧插补算法实现方案.充分利用Verilog HDL语言特点,通过设计全局变量并使用FPGA丰富的内部逻辑资源实现了算法精度的可调.算法的FPGA硬件验证结果表明该实现方案具有运算速度快、插补精度可调和逻辑资源占用少的优点.%As one of the common interpolation algorithms,the circular interpolation algorithm with point-by-point comparison is widely used in numerical control systems. In order to improve the speed of the traditional interpolation algorithm,the charac-teristics of point-by-point comparison method is analyzed to simplify the feed discrimination logic,and an improved implementa-tion scheme of circular interpolation algorithm with point-by-point comparison is proposed. With the use of feature of Verilog HDL,the global variable is designed and the rich internal logic resources of FPGA are used to realize the precision adjustment of the algorithm. The results of FPGA hardware verification show that the proposed scheme has the advantages of fast computa-tionspeed,adjustable interpolation precision and little logic resource occupation.【期刊名称】《现代电子技术》【年(卷),期】2017(040)019【总页数】4页(P153-155,159)【关键词】圆弧插补;Verilog硬件描述语言;FPGA;逐点比较法【作者】韩赛飞;施佺;刘炎华;黄新明;孙玲【作者单位】南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019【正文语种】中文【中图分类】TN492-34Abstract:As one of the common interpolation algorithms,the circular interpolation algorithm with point⁃by⁃point comparison is widely used in numerical control systems.In order to improve the speed of the traditional interpolation algorithm,the charac⁃teristics of point⁃by⁃point comparison method is analyzed to simplify the feed discrimination logic,and an improved implementa⁃tion scheme of circular interpolation algorithm with point⁃by⁃point comparison is proposed.With the use of feature of Verilog HDL,the global variable is designed and the rich internal logic resources of FPGA are used to realize the precision adjustment of the algorithm.The results of FPGA hardware verification show that the proposed scheme has the advantages of fast computa⁃tion speed,adjustable interpolation precision and little logic resource occupation.Keywords:circular interpolation;Verilog HDL;FPGA;point⁃by⁃point comparison method数控技术是工业制造的基础,数控机床在进行各种工件的轮廓加工时,一般都要用到插补算法[1]。

逐点比较法第一象限直线圆弧插补

逐点比较法第一象限直线圆弧插补

逐点比较法第一象限直线,圆弧插补编程逐点比较法是以折线来逼近给定的轨迹,就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。

逐点比较法以折线来逼近直线或圆弧,其最大的偏差不超过一个最小设定单位。

只要将脉冲当量取得足够小,就可以达到精度要求。

逐点比较插补法在脉冲当量为0.01mm,系统进给速度小于3000mm/min时,能很好的满足要求。

一、逐点比较法直线插补如下图所示设直线 oA 为第一象限的直线,起点为坐标原点o (0 , 0) ,终点坐标为, A( ) , P() 为加工点。

若 P 点正好处在直线 oA 上,由相似三角形关系则有即点在直线 oA 上方 ( 严格为直线 oA 与 y 轴正向所包围的区域 ) ,则有即若 P 点在直线 oA 下方 ( 严格为直线 oA 与 x 轴正向所包围的区域 ) ,则有图 3 — 1 逐点比较法第一象限直线插补即令则有:①如,则点 P 在直线 oA 上,既可向 +x 方向进给一步,也可向 +y 方向进给一步;②如,则点 P 在直线 oA 上方,应向 +x 方向进给一步,以逼近oA 直线;③如,则点 P 在直线 oA 下方,应向 +y 方向进给一步,以逼近 oA 直线一般将及视为一类情况,即时,都向 +x 方向进给一步。

当两方向所走的步数与终点坐标相等时,停止插补。

这即逐点比较法直线插补的原理。

对第一象限直线 oA 从起点 ( 即坐标原点 ) 出发,当 F 时, +x 向走一步;当 F<0 时,y 向走一步。

特点:每一步都需计算偏差,这样的计算比较麻烦。

递推的方法计算偏差:每走一步后新的加工点的偏差用前一点的加工偏差递推出来。

采用递推方法,必须知道开始加工点的偏差,而开始加工点正是直线的起点,故。

下面推导其递推公式。

设在加工点 P( ) 处,,则应沿 +x 方向进给一步,此时新加工点的坐标值为新加工点的偏差为即若在加工点 P( ) 处,,则应沿 +y 方向进给一步,此时新加工点的坐标值为,新加工点的偏差为即综上所述,逐点比较法直线插补每走一步都要完成四个步骤 ( 节拍 ) ,即:(1) 位置判别根据偏差值大于零、等于零、小于零确定当前加工点的位置。

01-3.逐点比较法圆弧插补

01-3.逐点比较法圆弧插补
若F<0,表明动点在圆内, 向+X向进给,计算出新一点的 偏差;
O
如此走一步,算一步,直至 终点。
A F≥0 SR1
F<0 B X
图5-11 顺圆弧插补
机电工程学院
下面推导第一象限顺圆SR1偏差计算递推公式
当Fi≥0,动点Pi(Xi,Yi)应向-Y向进给,新的动点坐 标为(Xi+1,Yi+1),且Xi+1=Xi,Yi+1=Yi-1,则新点的 偏差值为:
Fi1 X i12 Yi12 R 2 =(Xi 1 )2 Yi 2 R2
经整理得偏差计算递推公式:
Fi1 Fi 2Xi 1
机电工程学院
进给后新点的偏差计算公式除与前一点偏差 值有关外,还与动点坐标有关,动点坐标值随着 插补的进行是变化的,所以在圆弧插补的同时, 还必须修正新的动点坐标。
N←N -1
N N=0
Y 结束
机电工程学院
例: 现欲加工第一象限顺圆弧AB,如下图所示,起点A(0,4),终 点B(4,0),试用逐点比较法进行插补。
Y
4 A(0,4) 3
2
1
B(4,0)
O 1 2 34
X
图5-12 圆弧插补实例
机电工程学院
步数 起点
1 2 3 4 5 6 7 8
偏差判别
F 0=0 F 1<0 F 2<0 F 3<0 F 4>0 F 5<0 F 6>0 F 7>0
机电工程学院
步数
起点
1 2 3 4 5 6 7 8 9 10 11 12
偏差判别
F0,0=0 F1,0<0 F1,1<0 F1,2<0 F1,3<0 F1,4>0 F2,4<0 F2,5>0 F3,5<0 F3,6>0 F4,6>0 F5,6>0

逐点比较法1

逐点比较法1

§2—1逐点比较法逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

逐点比较法,顾名思义,就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向,如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点在图形里面,那么下一步就要向图形外面走,以缩小偏差。

这样就能得出一个非常接近规定图形的轨迹,最大偏差不超过一个脉冲当量。

在逐点比较法中,每进给一步都须要进行偏差判别、坐标进给、新偏差计算和终点比较四个节拍。

下面分别介绍逐点比较法直线插补和圆弧插补的原理。

一、逐点比较法直线插补如上所述,偏差计算是逐点比较法关键的一步。

下面以第Ⅰ象限直线为例导出其偏差计算公式。

图2-1 直线插补过程点击进入动画观看逐点比较法直线插补如图2—1所示,假定直线的起点为坐标原点,终点A的坐标为为加工点,若P点正好处在直线上,那么下式成立:若任意点在直线的上方(严格地说,在直线与y轴所成夹角区域内),那么有下述关系成立:亦即:由此可以取偏差判别函数为:由的数值(称为“偏差”)就可以判别出P点与直线的相对位置。

即:当=0时,点正好落在直线上;当>0时,点落在直线的上方;当<0时,点落在直线的下方。

从图2—1看出,对于起点在原点,终点为A()的第Ⅰ象限直线OA来说,当点P 在直线上方(即>0)时,应该向+x方向发一个脉冲,使机床刀具向+x方向前进一步,以接近该直线;当点P在直线下方(即<0)时,应该向+y方向发一个脉冲,使机床刀具向+y方向前进一步,趋向该直线;当点P正好在直线上(即=0)时,既可向+x方向发一脉冲,也可向+y方向发一脉冲。

因此通常将>0和=0归于一类,即≥0。

这样从坐标原点开始,走一步,算一次,判别,再趋向直线,逐点接近直线,步步前进。

当两个方向所走的步数和终点坐标A()值相等时,发出终点到达信号,停止插补。

数控机床DDA数字积分法插补第一象限直线,逐点比较法插补二三象限顺圆弧

数控机床DDA数字积分法插补第一象限直线,逐点比较法插补二三象限顺圆弧

数控机床DDA数字积分法插补第⼀象限直线,逐点⽐较法插补⼆三象限顺圆弧⽬录⼀、课程设计介绍1.1 任务说明 (3)1.2要求 (3)⼆、程序操作及算法流程图2.1 DDA法插补直线流程 (3)2.2逐点⽐较法插补逆时针圆弧流程 (4)三、⽤户使⽤说明3.1 程序开始运⾏时显⽰介⾯ (5)3.2 执⾏计算 (5)3.3 DDA法直线插补实例 (6)3.4 逐点⽐较法插补第⼆三象限逆时针圆弧 (7)四、主要算法及源程序4.1 程序设计概述 (8)4.2 主要算法的实现 (8)4.2.1 参数声明 (8)4.2.2复位操作 (9)4.2.3单步操作 (11)4.2.4 连续插补 (11)4.2.5 辅助操作 (13)五、本设计的特点 (13)六、课程设计的感想 (13)七、主要参考⽂献 (14)⼀、课程设计介绍1.1、任务说明:(1)直线插补:DL1, DDA 法第⼀象限直线插补。

(2)圆弧插补:PA23,逐点⽐较法⼆三象限顺圆弧插补。

1.2、要求:(1)具有数据输⼊界⾯,如:起点,终点,圆⼼,半径及插补步长。

(2)具有插补过程的动态显⽰功能,如:但单步插补,连续插补,插补步长可调。

本课程设计的题⽬要求是DDA数字积分法插补第⼀象限直线,逐点⽐较法插补⼆三象限顺圆弧。

由于本课设要求只为⼆三象限,故默认为劣弧插补。

此外,对于两种插补对象均可根据需要改变插补步长,以表现不同的插补效果。

在插补显⽰过程中,有两种插补显⽰⽅式,即⼿动单步插补和⾃动连续插补动态显⽰。

⼆、程序操作及算法流程图 2.1 DDA 法插补直线流程初始化sx sy ex ey 步长bc 寄存器vx1 vy1 累加器 rx1 ry1rx1=rx1+vx1 ry1=ry1+vy1ry1是否溢出rx1是否溢出是否到达终点结束 +x ⾛⼀个步长 +y ⾛⼀个步长NY NYNY开始DDA 插补第⼀象限的直线流程图2.2逐点⽐较法插补逆时针圆弧流程逐点⽐较法插补⼆三象限逆圆弧参数说明:sx 、sy 为起点坐标ex 、ey 为终点坐标开始初始化sx ex sy sy bc 弧半径平⽅rY21>=0r>=0r>=0向—y ⾛⼀步向x ⾛⼀步向—y ⾛⼀步向—x ⾛⼀步是否到达终点结束yyynnnn yn为进给总次数cx、cy为圆⼼坐标bc为步长m为寄存器位数s_1表⽰按下直线选项,s_2表⽰按下圆弧按钮三、⽤户使⽤说明——软件运⾏说明及结果显⽰3.1 程序开始运⾏时显⽰介⾯3.2 执⾏计算在右侧⾯板中有参数输⼊区,⽅式选择区以及执⾏按钮等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档