矩阵位移法(单元分析)

合集下载

龙驭球《结构力学》笔记和课后习题(含真题)详解(矩阵位移法)【圣才出品】

龙驭球《结构力学》笔记和课后习题(含真题)详解(矩阵位移法)【圣才出品】

第9章 矩阵位移法9.1 复习笔记一、矩阵位移法的基本思路矩阵位移法又称为杆件结构的有限元法。

分析的两个基本步骤:(1)单元分析;(2)整体分析。

单元分析:建立杆端力与杆端位移间的刚度方程,形成单元刚度矩阵。

整体分析:将单元合成整体,按照刚度集成规则形成整体刚度矩阵,建立位移基本方程。

二、单元刚度矩阵(局部坐标系)进行单元分析,推导单元刚度方程和单元刚度矩阵。

单元刚度方程是指由单元杆端位移求单元杆端力的一组方程,可以用“”表示,由位移求力称为“正问题”。

相应的由力求位移称为“反问题”。

正问题的解是唯一的确定的,但是反问题则可能无解,如果有解也非唯一解。

当外部荷载为不平衡力系时,反问题无解;当外荷载为平衡力系时,反问题有解但是因为杆件除本身变形外还可有任意刚体位移,此时反问题的解不唯一。

本书暂不考虑反问题的求解。

1.一般单元图9-1所示为平面刚架中的一个等截面直杆单元.单元的两个端点采用局部编码1和2,由端点1到端点2的方向规定为杆轴的正方向,在图中用箭头标明。

F →∆e图9-1图中采用坐标系,其中轴与杆轴重合。

这坐标系称为单元坐标系或者局部坐标系。

字母、的上面都画了一横,作为局部坐标系的标志。

推导单元刚度方程时,有以下几点需要注意:重新规定正负号规则、讨论杆件单元的一般情况、采用矩阵表示形式。

在局部坐标系中,图9-2所示的位移、力分量方向为正方向。

图9-2杆件性质:长度l ,截面面积A ,截面惯性矩I ,弹性模量E ;杆端位移u 、v 、θ。

根据杆端位移可以推导出下面两组刚度方程:(9-1)x y x x y(9-2)将上述六个刚度方程列成矩阵形式:(9-3)其中就是局部坐标系下单元刚度矩阵,即为(9-4)2.单元刚度矩阵的性质 (1)单元刚度系数的意义e e ek F∆=eK代表单元杆端第j 个位移分量等于1时所引起的第i 个杆端力分量。

(2)是对称矩阵,即。

(3)一般单元的是奇异矩阵,即,因此不存在逆矩阵。

结构力学十三讲矩阵位移法

结构力学十三讲矩阵位移法

-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66

矩阵位移法

矩阵位移法
第六章 矩阵位移法
6.1 概 述
矩阵位移法是以结构位移为基本未知量, 借助矩阵进行分析,并用计算机解决各种杆系 结构受力、变形等计算的方法。
理论基础:位移法 分析工具:矩阵 计算手段:计算机
基本思想:
56
•化整为零 ------ 结构离散化
将结构拆成杆件,杆件称作单元.
2 3
3
单元的连接点称作结点.
P1 k111 k12 2 k133
k11
=1
P2 k211 k22 2 k233
1
P3 k311 k32 2 k33 3
k111
P1 P2
k11 k21
k12 k22
k13 k23
12
k12
p3 k31 k32 k33 3
k112
简记为 P k---结构刚度方程
k31 0 k32 k221 k33 k222
1
k 2 kk122211
2
k122 k222
12 23
四.计算杆端力
P k 计算结点位移 Fe ke e 计算杆端力
1 P1 1
1 i1 i
P2
2
2
P3
3
2 i2 i
3
四.计算杆端力
6kN.m 3kN.m 3kN.m
P k 计算结点位移 Fe ke e 计算杆端力
移为零位移时在 i结点所需 加的结点力.
k 1 kk121111
k112 k212
11 22
1
2
3
结构刚度矩阵性质:对称矩阵
简记为 P k---结构刚度方程 k --结构刚度矩阵
0
23
k112 0 1
k212
k121

李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】

李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】

第10章矩阵位移法复习思考题1.矩阵位移法的基本思路是什么?答:矩阵位移法的基本思路:(1)单元分析单元分析是指将结构先分解为有限个较小的单元,即离散化,在较小的范围内分析单元的内力与位移之间的关系,建立单元刚度矩阵或单元柔度矩阵。

(2)整体分析整体分析将将单元分析中的各单元集合成原来的结构,要求各单元满足原结构的几何条件(包括支承条件、结点处的变形连续条件)和平衡条件,建立整个结构的刚度方程或柔度方程,以求解原结构的内力和位移。

(3)支承条件引入支承条件,修改结构原始刚度方程。

(4)求解解算结构刚度方程,求出结点位移,计算各单元杆端力。

2.试述矩阵位移法与传统位移法的异同。

答:矩阵位移法与传统位移法的异同点:(1)相同点传统位移法的基本原理,是以在小变形的基础的结构体系中,内力是可以叠加的,位移也是可以叠加的,而矩阵位移法是按传统位移法的基本原理运用矩阵计算内力和位移的方法。

因此矩阵位移法和传统位移法的基本原理在实质上是一致的。

(2)不同点①矩阵位移法中一般考虑杆件轴向变形的影响,传统位移法忽略杆件的轴向变形;②矩阵位移法一般在计算机上进行计算,可以解决大型复杂问题;传统位移法的计算手段一般是手算,只用来解决简单问题。

3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的?答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负同杆端力和弯矩。

结点力沿整体坐标系x、y的正方向为正,结点力偶逆时针为正;结点位移的正负同结点力和力偶。

4.为何用矩阵位移法分析时,要建立两种坐标系?答:因为单元刚度矩阵是建立在杆件的局部坐标系上的,但对于整体结构,各单元的局部坐标系可能不尽相同,在研究结构的几何条件和平衡条件时,需要选定一个统一的坐标系即为整体坐标系,另外按局部坐标系建立的单元刚度矩阵可以通过坐标转换到整体坐标系中,从而得到整体坐标系中的单元刚度矩阵。

故建立两种坐标系使矩阵位移法的思路更清晰,物理意义更明确,且不会影响计算结果。

第八章矩阵位移法-135页PPT

第八章矩阵位移法-135页PPT


Fyi Fxj

F4 Fyj
8-1 概述
31
刚架单元
结构坐标系
1 (e) ui (e)

2


v
i

δ (e)

δi (e)

δ
j



3 4


i u j


5

6
8-1 概述
10
3.结构坐标系(整体坐标系)
• 对整个结构建立统一的坐标系 • 在整体分析中,采用统一的坐标来
描述结构的结点和单元位置等。
8-1 概述
11
4.单元坐标系(局部坐标系)
• 针对每一单元的坐标系 x o y
• 以杆轴线的某方向作为 x 轴正向,在轴线
上以箭头作正方向标记,以垂直于杆件轴线 方向为 y 轴,本章采用右手坐标系
u 1v 1 1u 2v 2
2u 3v 3
3u 4v 4
T 4
8-1 概述
20
结点位移
若平面刚架有n个结点
Δ u 1v 11u 2v 22 u nv nn T
第i结点的位移为 Δ i ui vi iT
则n个结点的位移向量为
Δ Δ 1 Δ 2 Δ nT
F x 1F y 1M 1F x 2F y 2M 2F x 3F y 3M 3F x 4F y 4M 4T
8-1 概述
25
刚架的结点力向量
• 第i结点的结点力为 Fi = ( Fxi Fyi Mi )T
• 刚架的结点力向量为 F =(F1 F2 F3 … Fi … Fn )T

第九节矩阵位移法

第九节矩阵位移法

(2 =1)
0
6EI l2 2EI l
0
6EI
l2 4EI
l
e
…(9-4)
F e k ee
…(9-5)
即为一般单元的刚度方程。其中 k e 称为局部坐标系中的单
元刚度矩阵。
2、一般单元刚度矩阵的性质
(1)单元刚度系数的意义
单元刚度矩阵中的每个元素称为单元刚度系数 kij ,其物理
意义表示由于单位杆端位移引起的杆端力。
( v1e
v2e
)
Fye1
6EI l2
(1e
2e )
12EI l3
( v1e
v2e )
Fye2
6EI l2
(1e
e 2
)
12 l
EI
3
( v1e
v2e
)
Fx1 M1
1
v1
Fy1
u1
…(9-2)
e
1
M2
Fx2
2 Fy2
v2
u2
2
式(9-1) 、(9-2)即为局部坐标系下平面刚架一般单元的单元刚度方
ke T Tk eT
F e kee
即为单元e在整体坐标中的单元刚度方程 其中 k e为整体坐标系的单元刚度矩阵,和 k e 同阶,且具有类似的性质。
§9-4 结构的整体刚度矩阵
作用在结构上的荷载与结构的结点位移, 也存在一一对应的关系,即为结构的整体刚 度方程。结构的整体刚度方程反映了结点荷 载和结构位移之间的关系,其实质就是位移 法的基本方程。求解方法一种是传统位移法, 另一种是直接刚度法。
l
Fxe1
EA l
u1e
EA l
u2e

《矩阵位移法》课件

《矩阵位移法》课件

实际工程案例分析
总结词
为了验证矩阵位移法的有效性,可以通过实际工程案例 进行分析。通过与实验结果的对比,可以评估方法的精 度和可靠性。
详细描述
选取具有代表性的实际工程案例,如高层建筑、大跨度 桥梁等,利用矩阵位移法进行计算,并将结果与实验数 据进行对比。通过对比分析,可以评估矩阵位移法的精 度和可靠性,为该方法在实际工程中的应用提供依据。 同时,也可以针对不同工程案例的特点,对矩阵位移法 进行优化和改进,提高其适用性和计算效率。
05
矩阵位移法的优缺点
优点
精确度高
矩阵位移法基于严格的数学推导,能 够精确地计算出结构的位移和内力, 尤其适用于复杂结构的分析。
适用性强
矩阵位移法可以处理多种类型的载荷 ,包括静载、动载以及温度载荷等, 适用范围广泛。
便于计算机化
矩阵位移法的计算过程可以通过计算 机程序实现,便于进行大规模的结构 分析。
多尺度方法
将矩阵位移法应用于多尺度问题 ,考虑不同尺度之间的相互作用 和影响,为复杂系统提供更准确 的模拟结果。
THANKS
感谢观看ts
目录
• 引言 • 矩阵位移法的基本概念 • 矩阵位移法的实施步骤 • 矩阵位移法的应用实例 • 矩阵位移法的优缺点 • 未来展望与研究方向
01
引言
什么是矩阵位移法
矩阵位移法是一种数值分析方法,用 于求解线性方程组和解决各种数值计 算问题。
它通过将原问题转化为矩阵形式,利 用矩阵运算来求解未知数,具有高效 、精确和灵活的特点。
并行计算
利用并行计算技术,将计算任务分解为多个子任务,同时运行在多 个处理器上,加快计算速度。
智能优化
结合人工智能和机器学习技术,自动调整算法参数,实现自适应优 化,提高算法的效率和稳定性。

结构力学(I)-结构静力分析篇6 矩阵位移法

结构力学(I)-结构静力分析篇6   矩阵位移法

用数字描述体系的位置,单元的属性。

10 / 105
第六章
例如
单元 FP
矩阵位移法
3(5,6)FP
2
1
2
2
结点
1
1(1,2) 单元方向 1
1
2(3,4)
2
1,2,3 ----结构结点编码(总码) (1,2,3) ----结点位移编码
1 2 ----杆端结点编码(局码)
1 2 ----单元编码

11 / 105

9 / 105
第六章
矩阵位移法
六、结构的离散化工作
将一个在荷载作用下的连续结构剖分成若干 个各自独立的单元,单元之间是由结点连接,用 此计算模型模拟原结构的受力和变形特性。 模型和原结构是有差别的,这个差别可以通 过单元的适当选取给予降低。 主要工作:单元的划分;体系的数字化。
直杆体系按自然选取杆件的汇交点、截面的 变化点、支撑点或荷载作用点作为结点,将结构 划分成一系列只在结点相连的单元集合。
EA l e
矩阵位移法
0
6 EI l2 4 EI l
0
12 EI l3 6 EI l2

EA l
0 12l EI 3 6lEI 2 0
12 EI l3 6 EI l2
0 0
EA l
0 12l EI 3
6 EI l2
0 6lEI 2
2 EI l
0 0
0 1 6 EI l2 2 2 EI 3 l 0 4 6lEI 5 2 4 EI 6 l
单元刚度方程
F k
e e
e

结构力学-矩阵位移法

结构力学-矩阵位移法
Fxe1, Fye1, u1e , v2e , Fxe2 , Fye2 , u2e , v2e
以上杆端力和杆端线位移与相应的坐标轴正 方向一致为正,相反为负。
M1e,M 2e,1e,2e,M1e,M 2e,1e ,2e
以上杆端力矩和杆端转角均以顺时针方向为 正,逆时针方向为负。
10
3. 单元坐标转换矩阵

4

7


1
36
曲杆可用多段直杆近似代替(以直代曲)。
进行结点编号时,要尽量使单元两端结点编号 的差值最小。
4
三、单元杆端力和杆端位移的坐标变换
1.坐标系
结构整体分析 —整体坐标系xy
x
2

4
y
①③

单元分析—局部坐标系 x y 1
3
单元始端指向末端的方向就
是 x 轴的正方向
1
x
坐标轴遵循右手法则,即
Fx1e
M
e 1
1
M
e 1
e
y
x
2
y
x
单元杆端力
x
2

4
y
①③

1
3
y v1e 1
1
u1e
u1e
v1e
1e
1e
e
y
x
2
x
2
单元杆端位移
7
Fxe1 Fye1
uv11ee
F
e
MFxe12e
e
u12ee
Fye2
v2e
M
e 2
e 2
Fxe1 Fye1
uv11ee
点,单元与单元、单元与支座均通

矩阵位移法

矩阵位移法

e
=0
因此它的逆矩阵不存在
从力学上的理解是,根据单元刚度方程 F

F e F e e
e
= k
e
e
e
有一组力的解答(唯一的),即正问题。 如果 F

e
不是一组平衡力系则无解;若是一
组平衡力系,则解答不是唯一的,即反问题。
正问题
(Δ F)
反问题
0 6 EI l2 4 EI l 0 6 EI - 2 l 2 EI l
EA l 0 0 EA l 0 0
0 12EI - 3 l 6 EI - 2 l 0 12EI l3 6 EI - 2 l
0 6 EI l2 2 EI l 0 6 EI - 2 l 4 EI l

例如 k52 = -
e
12 EI 代表单元杆端第2个位移分量 v1 = 1 时所引起的第5个杆 3 l 端力分量 Y2 的数值。
(2)单元刚度矩阵 k

e
即 kij = k ji。 是对称矩阵,
(3)一般单元的刚度矩阵 k

e
是奇异矩阵;
从数学上可以证明一般单元的刚度矩阵 k

e
的行列式
k
当p = l 时才能相乘
共形
2× 2
2 ×1
非 共形
b11 a11 a12 B A= a a b 21 21 22 2 ×1 2 ×2
(2)不具有交换律,即
AB BA
6、转置矩阵
将一个阶矩阵的行和列依次互换,所得的阶矩阵称之为
原矩阵的转置矩阵,如:
a11 a12 A= a21 a22 a31 a32

结构力学课件 第十章 矩阵位移法

结构力学课件 第十章 矩阵位移法

• 分别绘在结上,如图b 所示。
图17-12 返回 下一张 上一张 小结
• 第六节 矩阵位移法解题步骤
• 具体步骤如下:
• 1)将结构划分为若干个单元,并将各单元和结点进行编号。 • 2)选择结构坐标系及局部坐标系。 • 3)计算等效结点荷载,建立结点荷载列向量和结点位移列向
• 2)计算结构坐标系中各单元的单元刚度矩阵。
• 3)将各单元刚度矩阵的各子块,按“对号入座”送入结构总刚 度矩阵中。
• 17.3.2 结构总刚度方程

方程 K 式F中:
• {F} — 结构的结点力列向量;
• — 结构的结点位移列向量;
• [K] —结构的总刚度矩阵或叫结构整体刚度矩阵。
返回 下一张 上一张 小结
e
j
• 结点的杆端力列向量为:
e
F
i
e
Xi
Y
e i
e
M i
e
X j
F
e
j
e Y j
e
M j
• 注:这些杆端位移和杆端力的正向均规定与坐标轴的正方向一致 为正;其中转角和弯矩以顺时针为正。
返回 下一张 上一张 小结
• 17.2.3 单元杆端力与杆端位移之间的关系式
• 2)在 B、C 两点没有附加约束的情况
• 下,施加与上述固端剪力和固端弯矩
• 大小相等方向相反的力和力矩,如图
• 7-10(c)所示。
• 3) (a)=(b)+(c)
• 4)等效结点荷载为汇交在每一结点的
• 固端剪力的代数和以及固端弯矩代数
• 和,但方向相反。

图7-10
返回 下一张 上一张 小结
x

Chapter 12 矩阵位移法

Chapter 12 矩阵位移法

0 0 0 sin cos 0
e 0 X i e 0 Yi e M 0 i e 0 X j e Y 0 j e 1 M j
同样
e
F TF
e
T
e
e
坐标转换矩阵为
cos sin 0 T 0 0 0
没有考虑支承条件,结构可以有任意刚体位移,总体 刚度矩阵奇异,逆阵不存在,不能求解结点位移。
P 2, P 3 已知结点荷载; 2 , 3 未知结点位移,待求;
P 1, P 4 未知结点荷载(支座反力); 1 , 4 已知结点位移。
结点1,4为固定端,支承约束条件为
1 0 4 0
EA l 0 e Ni e Qi 0 e M i e N j EA Qe l j e M j 0 0
0 12 EI l3 6 EI l2 0 12 EI 3 l 6 EI l2
X Yi e M i e F e Xj Y je e M j
e i e
x
uie e vi e i e e u j ve j e j
杆端力在局部坐标系和整体坐标系中的关系为
e
F k
e e
e T
e
其中,整体坐标系中的单元刚度矩阵
k T k T
e
按单元的始末结点i,j进行分块
e e F k i ii e e Fj kij e e kij i e e k jj j
0
(2) k23 (2) (3) k33 k33 (3) k43

矩阵位移法

矩阵位移法

原理同源---
(1)以结点位移为基本未知量,
(2)以单元分析为基础(力法计算的 结果单元刚度方程);
(3) 建立平衡方程求出结点位移,
(4) 将结点位移代入单元刚度方 程求得内力
矩 阵 位 移 法
作法有别-(1)矩阵组织数据,矩阵运算;
(2)设计计算机程序(正确);
(3) 原始数据的准备、输入、计算 结果的输出及正确性判别等 特点: 省力;计算速度快;计算结果精度高 ;使用者要力学概念清楚。
1 0 0 1 0 0 8 2 4 i i 2 42 i i 0 2 4 3
修改后的位移 法方程
(6) 解方程
矩 阵 位 移 法
0 1 3.571 2 i 3 12.286 i
(5)引入支承条件修改原始刚度方程
矩 阵 位 移 法
K FP
4 i 2i 0 1 4 2 i 8 i 2i 4 2 i 0 2 4 42 i 3
主1副0法修改后 原始刚度方程
整 体 刚 度 方 程
单元刚度集成法
矩 阵 位 移 法
单元(1)对号 入座
单元刚度集成法 单元(2)对号入 座并累加
矩 阵 位 移 法 单元(3)对号入座
并累加 整体刚度矩阵
连续梁刚度方程
矩 阵 位 移 法
9.5 等效结点荷载向量
矩 阵 位 移 法 加刚臂
去刚臂
(1)加约束求杆端固端弯矩、刚臂约束力矩
矩 阵 位 移 法
(5)集成等效结点荷载向量 形成过程如下:
矩 阵 位 移 法

矩阵位移法

矩阵位移法
第十一章 矩 阵 位 移 法
一、单元的划分 矩阵位移法解题,首先将结构划分为若干个单元。同一个结构 单元的划分可多可少,但每个单元必须是等截面直杆。 单元的两端为结点,单元与单元间以结点相连。单元划分后, 需将单元和结点排序编码。 【例11-1】将图示结构划分为单元。 q
P D A B E C
q
P D B E C
K 13 K 23 K 33 K 43 K 53 K 63
K 14 K 24 K 34 K 44 K 54 K 64
K 15 K 25 K 35 K 45 K 55 K 65
K 16 K 26 K 36 K 46 K 56 K 66
e
同理可求得余下各列元素,即
0 0 0 sin cos 0
简写为:
T
e
0 ix 0 iy 0 i 0 jx 0 jy 1 j
cos sin 0 T 0 0 0
e
u i vi i u j v j j
e
K
e
K 11 K 21 K 31 K 41 K 51 K 61
K 12 K 22 K 32 K 42 K 52 K 62
K 13 K 23 K 33 K 43 K 53 K 63
K
e
EA 0 l 12EI 0 l3 6 EI 0 l2 EA 0 l 12EI 0 3 l 6 EI 0 l2
0 6 EI l2 4 EI l 0 6 EI 2 l 2 EI l
EA l 0 0 EA l 0 0

矩阵位移法

矩阵位移法

0 cos 0 sin 0
e
0
0 X 1 0 Y 1 0 M 1 0 X 2 0 Y 2 1 M 2
e
简记:
F
e
T
F
T 为单元坐标转换矩阵
22
cos sin 0 T 0 0 0
e e
2、叠加各单元贡献矩阵,得到整体刚度矩阵。 二、单元定位向量 1、定义: 由单元的结点位移总码组成的向量称为“单元定
0 6EI 2 u1 l 2EI v1 1 l 0 u 2 v 2 6EI 2 l 2 4EI l
e
记为
F k
e
12
局部坐标系中的单元刚度方程
e
F 1 F 2 F 3 ... F 4 F 5 F 6
e
7
13.2 单元分析(一)——局部坐标系 中的单元刚度矩阵
定义:单元杆端力和杆端位移之间的转换关
系成为单元刚度方程。
F k
e e
e
e k 其中 称作单元刚度矩阵(简称作单刚)
sin cos 0 0 0 0
0 0 1
0 0 0
0 0 0 sin cos 0
0 cos 0 sin 0 0
0 0 0 0 0 1
23
T 为正交矩阵
T T F T F T T
e e
0 6EI l2 4EI l 0 6EI l2 2EI l

EA l 0 0
0 12EI 3 l 6EI 2 l 0 12EI l3 6EI 2 l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e

0 12i / l 2 6i / l 0 12i / l 2 6i / l
0 6i / l 4i 0 6i / l 2i
0 6i / l
单元刚度矩阵退化
1. 桁架(杆)单元 退化后的单元刚度 e 矩阵是否可逆?力 F e 0 1 0 u 1 1 x1 e e 学含义是什么? 0 0 0 EA 0
k12
k13
EA / l k15 0 0 EA / l 0 0 k 25 k35 k 45 k55 k65

k 22 k 23 k32 k33 k 42 k 43 k52 k62 k53 k63
k24 0
e 34
k54 0
k16 k 26 k36 k 46 k56 k66
7.3 整体坐标下的单元刚度矩阵
1.问题的提出
局部坐标系下的杆端力 2.整体坐标系下的杆端力与 局部坐标系下的杆端力之 间的关系 x y 2 y e
Fxe
Fy Me
e x
1

e
e
整体坐标系下的杆端力
x
F
M Fye
e e Fxe Fxe cos Fye sin 简记为: F t F 1 1 e e e e e Fy Fx sin Fy cos F t F 2 2 e e e e e M M F t 0 F 1 1 e e Fx cos sin 0 Fx F 2 0 t F 2 Fy sin cos 0 Fy e e e M 1 0 F T F 0 1 M 1
第七章 矩阵位移法
主要内容:
• • • • • • 概述 局部坐标下的单元刚度矩阵 整体坐标下的单元刚度矩阵 整体刚度矩阵 等效结点载荷 计算步骤与算例
7.1 概述
矩阵位移法是结构矩阵分析方法的一种. 以结点位移为基本未知量,借助矩阵进行分 析,并通过计算机编程解决各种杆系结构受 力、变形等计算的方法。 理论基础:位移法 分析工具:矩阵论 计算手段:计算机技术
若令:
1
u 1 , 其它=0
e e k11 EA / l k41 EA / l e e k51 0 k21 0
e 1
k
e 11
l , A, EI e e u1 1
2
k
e 41
EA / l e e k61 0 k31 0 0 0 e 再令: k e EA / l u 2 1 ,其它=0 0 e e k14 EA / l k44 EA/ l 0 e e
0 12i / l 2 6i / l 0 12i / l 2 6i / l
e 1 e x2
0 6i / l 4i 0 6i / l 2i
e y2
EA / l 0 0 EA / l 0 0
e 2
0 12i / l 2 6i / l 0 12i / l 2 6i / l
F F
再令:
v 1 , 其它=0
e k15 0
e k45 0
e 2 k 12 i / l k 12i / l 55
e 2
e 25
2
e e 6i / l k35 6i / l k65
当:
1 , 其它=0
e k13 0
e k43 0
e k53 6i / l e k63 2i e 1

2
1
l l
已知: EI 12 12
EA 6; l 12
求:各局部坐标下的单元单刚
解: EA/ l 6,12i / l 2 1, 6i / l 6,2i 24,4i 48
0.5 0 0 0.5 0 0 0 1 6 0 1 6 0 6 48 0 0 24 1 2 k k 0.5 0 0 0.5 0 0 0 1 6 0 1 6 6 24 0 6 48 0
6
2 1
3
5
4 (10,11,12)
3 (7,8,9)
4
Y X
1 (1,2,3)
2 (4,5,6)

e e e e e F 1 u1 M e 2 v2 M 1 e e e F 1 2 u2 l , A , EI v 1 v 2 1 e e ex e e F F e x2 e M e 3 1 x1 F e F y2 e e F e y1 e u1 4 u 2 Fx 2 e 5 ve 单元杆端力和单元杆端位移 单元杆 F e 单元杆 2 y2 e 端力 e 端位移 e 的方向与局部坐标系一致为正. 2 6 M 2
e eT
其中 k T k T e
e
----整体坐标系下的单元刚度矩阵 (简称整体单刚)
例:
解:
1 0
1 0 0 1 T 0 0 0
1 1T
1
2
l
l
0.5 0 0 0.5 0 0 0 1 6 0 1 6 0 6 48 0 0 24 1 2 k k 0 . 5 0 0 0 . 5 0 0 0 1 6 0 1 6 6 24 0 6 48 0
结点位移
7.2 局部坐标下的单元刚度矩阵
一.离散化
将结构离散成单元的分割点称作结点. 结点的选择:转折点、汇交点、支承点、 刚度变化、荷载作用点等 整体编码:单元编码、结点编码、 结点位移编码。 坐标系:整体(结构)坐标系; 局部(单元)坐标系. 曲杆结构:以直代曲. 变截面杆结构:以等截面杆 代变截面杆 6 5 (13,14,15) (16,17,18)
0 1 0 0 0 0
0 0 1 0 0 0
1 1
0 0 0 1 0 0பைடு நூலகம்
1
0 0 0 0 1 0
0 0 0 0 0 1
2 90
0 1 0 2 T 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
k k
11 21
12
1 22 2
EA / l 0 0 EA / l 0 0 0 12i / l 2 6i / l 0 12i / l 2 6i / l
e u 1 e v1e 2i 1 e 0 u 2 e 6i / l v 2 e 4i 2
基本思想: •化整为零
5
6
3
2
6
------ 结构离散化
将结构拆成杆件,杆件称作单元. 单元的连接点称作结点. 对单元和结点编码.
2
3
5
4
1
1
4
•单元分析基本未知量:结点位移
单元杆端力
单元杆端位移
------ 整体分析
e
•集零为整
结点外力
单元杆端力 结点外力 单元杆端位移
(杆端位移=结点位移) 结点外力
F y1 e l 1 F x2 F e 0 y2 0 0 1 0 v1 e 0 u 2 e 0 v 2
2.纯弯曲梁单元 矩阵位移法的基本 e e 4 i 2 i ? M 1 体系是什么 1 e e M 2 2i 4i 2
2.整体坐标系下的杆端力与 其中 0 0 0 局部坐标系下的杆端力之 cos sin 0 sin cos 0 间的关系 0 0 0 x 0 0 1 0 0 0 y 2 e y T e F2 0 0 0 cos sin 0 e F3e 1 0 0 0 sin cos 0 e x F1 e 0 0 0 0 1 0 F3 e F1e F2 单元 e 的坐标转换矩阵
1 0
k T k T k
例:
2
1
l l
1 1T 1 1 1
解:
k T k T k 利用物理意义求2单 2 90 元整体单刚所有元素 . 2 2T 2 2 k T k T 怎样进行?
0 6 1 0 6 1 0 0 . 5 0 0 0 . 5 0 6 0 48 6 0 24 0 6 1 0 6 1 0 0. 5 0 0 0. 5 0 0 24 6 0 48 6
k 0
e k64 0
若令:
v 1 , 其它=0
k 0
e 12 e 22 2
e 1
v 1
k
e 32
e 1
1
k 0
e 42
k
e 22
l , A, EI e
2
k
e 62 e 52
k
e 2 k 12 i / l k 12i / l 52
e k32 6i / l
e k62 6i / l
二.单元分析
y
e 1

e 2
k12 k 22 k32 k 42 k52 k62
k13 k 23 k33 k 43 k53 k63
k14 k 24 k34 k 44 k54 k64
k15 k 25 k35 k 45 k55 k65
e k16 u1 e k 26 v1 e k36 1 e k 46 u 2 e k56 v 2 e k66 2
相关文档
最新文档