人教版高中数学必修一一集合(课堂PPT)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
了解康托尔
3
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
元素与集合的关系有两种:
a A 如果a是集A的元素,记作: a A 如果a不是集A的元素,记作:
例如,用A表示“ 1~20以内所有的质数”组
成的集合,则有3 ∊A,4 ∉A,等等。
思考:
(1)世界上最高的山能不能构成集合? (2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素? (4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
6
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
4
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
5
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
A.2 B.3 C.4
D.5
16
3.填空
x y 2
(1)方程组
x
y
5
的解集用列举法表示
为_______;用描述法表示为 .
(2)集合{ (x ,y )|x y 6 ,x N ,y N }
用列举法表示为
.
17
复习回顾
1、元素和集合的定义 2、集合的特性 3、元素和集合的关系 4、集合的表示方法
解:(1)A={0,1,2,3,4,5,6,7,8,9}. 1.确定性
(2)B={0,1}.
2.互异性
(3)C={2,3,5,7,11,13,17,19}.
3.无序性 12
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
18
Biblioteka Baidu9
新课
示例1:观察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
20
1.子 集 一般地,对于两个集合,如果A中
1
2012.7.1
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合? “请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
2
集合的含义与表示
集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
8
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
9
元素与集合的关系
(请阅读课本P4例2前的内容)
{x R |x10}
{x|x220}
﹨{x|1 0x2}0
13
集合的表示方法
练习 (1) 用列举法表示下列集合
① A { x N |0 x 5 }② B{x|x25x60}
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
则实数 a为( c )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
15
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
B.C. ﹛2﹜
D. ﹛x︱x2-4x+4=0﹜
(4) 由实数x, -x, x 2 , |x|, 3 x3 所组成的集合 中,最
多含有的元素的个数为( )
把集合中的元素一一列举出来,并用花括号{}括起来表示
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
练习 P5 练习第2题
14
2.选择题 ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数}
(B) {a,b,c,d}与{c,d,b,a}是两个不同的集合
(C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
⑵ 已知2是集合M={ 0,a,a23a2}中的元素,
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
7
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
10
常用的数集
数集
符号
自然数集(非负整数集)
N
正整数集
整数集 有理数集
实数集
N* 或 N+
Z
Q
R
判断Q与N,N*,Z的关系?
课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
11
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}
了解康托尔
3
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
元素与集合的关系有两种:
a A 如果a是集A的元素,记作: a A 如果a不是集A的元素,记作:
例如,用A表示“ 1~20以内所有的质数”组
成的集合,则有3 ∊A,4 ∉A,等等。
思考:
(1)世界上最高的山能不能构成集合? (2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素? (4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
6
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
4
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
5
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
A.2 B.3 C.4
D.5
16
3.填空
x y 2
(1)方程组
x
y
5
的解集用列举法表示
为_______;用描述法表示为 .
(2)集合{ (x ,y )|x y 6 ,x N ,y N }
用列举法表示为
.
17
复习回顾
1、元素和集合的定义 2、集合的特性 3、元素和集合的关系 4、集合的表示方法
解:(1)A={0,1,2,3,4,5,6,7,8,9}. 1.确定性
(2)B={0,1}.
2.互异性
(3)C={2,3,5,7,11,13,17,19}.
3.无序性 12
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
18
Biblioteka Baidu9
新课
示例1:观察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
20
1.子 集 一般地,对于两个集合,如果A中
1
2012.7.1
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合? “请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
2
集合的含义与表示
集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
8
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
9
元素与集合的关系
(请阅读课本P4例2前的内容)
{x R |x10}
{x|x220}
﹨{x|1 0x2}0
13
集合的表示方法
练习 (1) 用列举法表示下列集合
① A { x N |0 x 5 }② B{x|x25x60}
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
则实数 a为( c )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
15
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
B.C. ﹛2﹜
D. ﹛x︱x2-4x+4=0﹜
(4) 由实数x, -x, x 2 , |x|, 3 x3 所组成的集合 中,最
多含有的元素的个数为( )
把集合中的元素一一列举出来,并用花括号{}括起来表示
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
练习 P5 练习第2题
14
2.选择题 ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数}
(B) {a,b,c,d}与{c,d,b,a}是两个不同的集合
(C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
⑵ 已知2是集合M={ 0,a,a23a2}中的元素,
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
7
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
10
常用的数集
数集
符号
自然数集(非负整数集)
N
正整数集
整数集 有理数集
实数集
N* 或 N+
Z
Q
R
判断Q与N,N*,Z的关系?
课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
11
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}