二叉树的性质与链式存储结构-实验8报告讲解

二叉树的性质与链式存储结构-实验8报告讲解
二叉树的性质与链式存储结构-实验8报告讲解

实验八

指导老师:朱芳

学号:13011432

班级:13083414

姓名:张杭俊

【实验目的】

●了解树结点和结点间关系的基本概念

●了解树的结点访问的方法

●掌握二叉树的链式存储结构

●掌握二叉树结点的递归访问方法

●掌握二叉树的遍历

【实验内容】

1.观察如图所示的二叉树并回答问题

1)写出前序、中序和后序的遍历序列

前序:ABDECFG

中序:DBEAFGC

后序:DEBGFCA

2)分别写出单支结点和叶子结点

单支结点:C、F

叶子结点:D、E、G

3)以“#”补充所有结点的空分支

4)写出补充空分支后二叉树的前序遍历序列

前序:ABD##E##CF#G###

5)在工程BiTree中添加二叉树的中序或后序遍历接口,并在主函数中将

第(4)小题的遍历序列写入main函数的数组A[]中进行验证结果如下:

2.验证题

函数调用和返回动作发生的顺序

调用顺序root结点返回顺序返回值

1 A 9 3

2 B 5 2

3 D 3 1

4 NULL 1 0

5 NULL 2 0

6 NULL 4 0

7 C 8 1

8 NULL 6 0

9 NULL 7 0

调试过程:

3.计算题

仿照第(2)题,在main函数中,定义数组A[]=“ABD##E##C#F##”;调用函数

CreateBTree_Pre(root,A);根据A[]中的数据建立如图二叉树,调用并验证递归函数int BTreeDepth(BTNode *root)计算该二叉树深度过程

函数调用和返回动作发生的顺序

调用顺序root结点返回顺序返回值

1 A 13 3

2 B 7 2

3 D 3 1

4 NULL 1 0

5 NULL 2 0

6 E 6 1

7 NULL 4 0

8 NULL 5 0

9 C 12 2

10 NULL 8 0

11 F 11 1

12 NULL 9 0

13 NULL 10 0

调试过程:

4.二叉树的非递归遍历

#include

using namespace std ;

typedef char DataType ;

typedef struct Node

{

DataType data ;

struct Node *left , *right ;

}BTNode ;

void TreeInit(BTNode *&root) ;

void CreateBTree_Pre(BTNode *&root , DataType Array[]) ; void PreOrder(BTNode *root) ;

void InOrder(BTNode *root) ;

void PostOrder(BTNode *root) ;

int BTreeDepth(BTNode *root) ;

void ClearBTree(BTNode *&root) ;

#函数

#include"BiTree.h"

void TreeInit(BTNode *&root)

{

root = NULL ;

}

void CreateBTree_Pre(BTNode *&root , DataType Array[]) {

static int count = 0 ;

char item = Array[count] ;

count++ ;

if(item == '#')

{

root = NULL ;

return ;

}

else

root = new BTNode ;

root->data = item ;

CreateBTree_Pre(root->left , Array) ;

CreateBTree_Pre(root->right , Array) ;

}

}

void PreOrder(BTNode *root)

{

if(root != NULL)

{

cout << root->data ;

PreOrder(root->left) ;

PreOrder(root->right) ;

}

}

void InOrder(BTNode *root)

{

if(root != NULL)

{

InOrder(root->left) ;

cout << root->data ;

InOrder(root->right) ;

}

}

void PostOrder(BTNode *root)

{

if(root != NULL)

{

PostOrder(root->left) ;

PostOrder(root->right) ;

cout << root->data ;

}

}

int BTreeDepth(BTNode *root)

{

if(root == NULL)

{

return 0 ;

}

{

int depl = BTreeDepth(root->left) ;

int depr = BTreeDepth(root->right) ;

if(depl > depr)

{

return depl + 1 ;

}

else

{

return depr + 1 ;

}

}

}

void ClearBTree(BTNode *&root)

{

if(root != NULL)

{

ClearBTree(root->left) ;

ClearBTree(root->right) ;

delete root ;

root = NULL ;

}

}

#主函数

#include"BiTree.h"

int main()

{

BTNode *root ;

DataType A[] = "ABD##E##CF#G###" ;

TreeInit(root) ;

CreateBTree_Pre(root , A) ;

cout << "前序遍历序列: " ;

PreOrder(root) ;

cout << endl ;

cout << "中序遍历序列: " ;

InOrder(root) ;

cout << endl ;

cout<< "后续遍历序列: " ;

PostOrder(root) ;

cout << endl ;

cout << "深度" << BTreeDepth(root) << endl ;

return 0 ;

}

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构二叉树遍历实验报告记录

数据结构二叉树遍历实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数据结构之二叉树 实验报告 题目:二叉树的遍历和子树交换 指导老师:杨政宇 班级:通信1202 姓名:徐江 学号:0909121127

需求分析 1.演示程序分别用多种遍历算法遍历二叉树并把数据输出。 2.输入字符序列,递归方式建立二叉树。 3.在演示过程序中,用户敲击键盘,输入数据,即可看到数据的输出。 4.实现链式存储的二叉树的多种遍历算法。 遍历算法包括: a)中序递归遍历算法、前序递归遍历算法【选】 b)中序遍历非递归算法 c)先序或后序遍历非递归算法 d)建立中序线索,并进行中序遍历和反中序遍历 5.实现二叉树的按层遍历算法 6.设计一个测试用的二叉树并创建对应的内存二叉树,能够测试自己算法的边界(包括树节点数为0、1以及>1 的不同情形)。 7.测试数据:输入数据:-+a *b -c d -e f 概要设计 说明:本程序在递归调用中用到了链表,在非递归调用时用到了栈。 1.栈的抽象数据类型 ADT Stack{ 数据对象:D={a i|a i∈char,i=1,2,3……..} 数据关系:R={< a i-1,a i >| a i-1,a i∈D,i=2,3…..} 基本操作: InitStack(&S) 操作结果:构造一个空栈 StackEmpty( S ) 初始条件:栈S已存在。 操作结果:若S为空栈,则返回OK,否则返回ERROR。 Push( &S, e ) 初始条件:栈S已存在。 操作结果:插入元素e为新的栈顶元素。 Pop( &S, &e ) 初始条件:栈S已存在且非空。 操作结果:删除S的栈顶元素,并用e返回其值。 GetTop( S, &e ) 初始条件:栈S已存在且非空。 操作结果:用e返回S的栈顶元素。 }

树和二叉树实验报告

树和二叉树 一、实验目的 1.掌握二叉树的结构特征,以及各种存储结构的特点及适用范围。 2.掌握用指针类型描述、访问和处理二叉树的运算。 二、实验要求 1.认真阅读和掌握本实验的程序。 2.上机运行本程序。 3.保存和打印出程序的运行结果,并结合程序进行分析。 4.按照二叉树的操作需要,重新改写主程序并运行,打印出文件清单和运 行结果。 三、实验内容 1.输入字符序列,建立二叉链表。 2.按先序、中序和后序遍历二叉树(递归算法)。 3.按某种形式输出整棵二叉树。 4.求二叉树的高度。 5.求二叉树的叶节点个数。 6.交换二叉树的左右子树。 7.借助队列实现二叉树的层次遍历。 8.在主函数中设计一个简单的菜单,分别调试上述算法。 为了实现对二叉树的有关操作,首先要在计算机中建立所需的二叉树。建立二叉树有各种不同的方法。一种方法是利用二叉树的性质5来建立二叉树,输入数据时要将节点的序号(按满二叉树编号)和数据同时给出:(序号,数据元素0)。另一种方法是主教材中介绍的方法,这是一个递归方法,与先序遍历有点相似。数据的组织是先序的顺序,但是另有特点,当某结点的某孩子为空时以字符“#”来充当,也要输入。若当前数据不为“#”,则申请一个结点存入当前数据。递归调用建立函数,建立当前结点的左右子树。 四、解题思路 1、先序遍历:○1访问根结点,○2先序遍历左子树,○3先序遍历右子树 2、中序遍历:○1中序遍历左子树,○2访问根结点,○3中序遍历右子树 3、后序遍历:○1后序遍历左子树,○2后序遍历右子树,○3访问根结点 4、层次遍历算法:采用一个队列q,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进后出,所以能够达到按层次遍历二叉树的目的。 五、程序清单 #include #include #define M 100

(完整word版)数据结构课程设计实验报告

设计题目:一 单位员工通讯录管理系统 一、题目要求 为某个单位建立一个员工通讯录管理系统,可以方便查询每一个员工的办公室电话、手机号、及电子邮箱。其功能包括通讯录链表的建立、员工通讯信息的查询、修改、插入与删除、以及整个通讯录表的输出。二、概要设计 本程序通过建立通讯录链表,对员工信息进行记录,并建立一个系统的联系。 三、主要代码及分析 这里面关于链表的主要的操作有插入,查询,删除。则这里只列出这几项的主代码。 1、通过建立通讯录结构体,对信息进行存储,建立链表,建立信息之间 的联系。 typedef struct { }DataType;结构体来存储通讯录中的基本信息 typedef struct node { DataType data; /*结点的数据域*/ struct node *next; /*结点的指针域*/ }ListNode,*LinkList; 2、信息插入操作,将信息查到链表的后面。 void ListInsert(LinkList list){ //信息插入 ListNode *w; w=list->next; while(w->next!=NULL) { w=w->next; } ListNode *u=new ListNode; u->next=NULL; cout<<"员工编号:";cin>>u->data.num; cout<<"员工姓名:";cin>>u->https://www.360docs.net/doc/a43699942.html,; cout<<"手机号码:";cin>>u->data.call; cout<<"员工邮箱:";cin>>u->data.email; cout<<"办公室电话号码:";cin>>u->data.phone; w->next=u;w=w->next; }

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树实验报告及代码

重庆交通大学综合性设计性实验报告 姓名姚远学号 631106060113 班级:计信息一班 实验项目名称:二叉树 实验项目性质:设计性实验 实验所属课程:数据结构 实验室(中心): 407机房 指导教师:鲁云平 实验完成时间: 2013 年 5 月 10 日

一、实验目的 1. 建立二叉树 2. 计算结点所在的层次 3.统计结点数量和叶结点数量 4.计算二叉树的高度 5.计算结点的度 6.找结点的双亲和子女 7.二叉树的遍历 8.二叉树的输出等等 二、实验内容及要求 1.二叉树的结点结构,二叉树的存储结构由学生自由选择和设定 2.实验完成后上交打印的实验报告,报告内容与前面所给定的实验模板相同 3.将实验报告电子版和源代码在网络教学平台提交 三、实验设备及软件 VISUAL C++软件 四、设计方案 ㈠题目(老师给定或学生自定) 二叉树的应用 ㈡设计的主要思路 在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。二叉树的每个结点至多只有二棵子树(不存在出度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的i -1次方个结点;深度为k的二叉树至多有2^(k) -1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,出度为2的结点数为n2,则n0 =n2 + 1。 ㈢主要功能

实现二叉树的各项操作。 五、主要代码 #include #include #include typedef struct BinTreeNode //二叉树结点类定义 { char data; //数据域 BinTreeNode *leftChild, *rightChild; //左子女、右子女链域 }*BTree; BinTreeNode *p,*q,*f; int NodeNum,Leaf; int NodeDu,nodeloc=1; void CreateBinTree(BTree &T); void preOrder(BTree T); void inOrder(BTree T); void postOrder(BTree T); int TreeNodes(BTree T); int LeafNodes(BTree T); int TreeNodedu(BTree T,char ch); void NodeLoc(BTree T,char c,int nodeloc); int Height(BTree T); BTree Parent(BTree T,char c); BTree NodeRC(BTree T,char c); BTree NodeLC(BTree T,char c); void CreateBinTree(BTree &T) {

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树实验报告

题目: 编程实现二叉查找树的建立、中序遍历、元素查找等功能,要求解释实现过程及演示实际例子的运行结果。 算法描述: 首先创建二叉树结点类,其主要包括:二叉树结点数据域,指向左、右子树的指针,构造函数,设置当前结点左、右子树、数据域以及判断当前结点是否为叶子结点等。然后进行二叉树类定义,其私有部分为定义二叉树根结点指针,公有部分主要包括:构造函数、析构函数、判断二叉树是否为空树、先,中,后序遍历的递归与非递归、二叉树删除、层序遍历以及二叉树搜索等。接下来将对一些重要函数算法进行描述: 1、isLeaf函数:若该结点的左子树和右子树都为空,则为叶子结点。 2、isEmpty函数:根结点为空则为空树。 3、Parent函数:首先判断给定结点是否有双亲,根结点和空结点一定无双亲,初始化一个临时变量,用于跟进查找双亲结点,查找到后其保存的便是双亲结点。先递归在左子树中查找,如果找到,便结束递归且返回双亲结点指针;如果没有找到,再递归在右子树中查找。如果都没有找到,说明给定结点的双亲结点不在该二叉树中。 4、LeftSibling(RightSibling)函数:首先找到当前结点的双亲,然后判断双亲结点左右子树是否为空,其中必然有一个不为空,返回另一个子树指针即可。 5、DeleteBinaryTree函数:首先判断是否为空树,若为空,则返回,然后递归删除左子树,递归删除右子树,最后删除根结点。 6、PreOrder函数:首先判断是否为空树,若为空,则返回,然后访问根结点,递归遍历左子树,递归遍历右子树,结束。 7、PreOrderWithoutRecusion函数:使用栈来模拟递归过程,首先申请栈,用于保存结点指针序列,申请指针pointer保存当前根指针,然后判断栈是否为空,若栈为空且pointer为空,跳出函数,否则若pointer不为空,访问pointer所指结点,pointer入栈,pointer指向其左子树;若pointer为空,弹出栈顶元素赋给pointer,pointer指向其右子树,结束。 8、CreateTree函数:采用先序遍历序列构造二叉树,设‘0’为空结点,输入非‘0’数,生成新结点,递归创建左子树和右子树。 9、Search函数:采用先序遍历查找给定元素是否在二叉树中,首先判断树是否是空树,若是空树,则返回空指针。然后初始化临时指针temp,查找成功后temp即为所给元素所在

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

二叉树实验报告

二叉树的创建与遍历 一、试验内容 根据输入的字符串创建树或二叉树,输出树或二叉树的先序遍历和后序遍历序列。 二、运行环境 Visual C++ 三、需求分析 1、建立一棵用二叉链表方式存储的二叉树。 2、从键盘接受扩展先序序列,以二叉链表作为存储结构。 3、建立二叉树,并将遍历结果打印输出。采用递归和非递归两种 方法实现。 四、设计概要 //——————二叉树的二叉链表存储表示—————— typedef struct BiTBode{ TElemType data; Struct BiTNode *lchild, *rchild //左右孩子指针 }BiTNode, *BiTree; //—————基本操作的函数原型说明———————— Status CreateBiTree(BiTree &T); //按先序次序输入二叉树中结点的值(一个字符),空格字符表示空树。 //构造二叉树链表表示的二叉树T。 Status PreOrderTraverse(BiTree T, status(*visit)(TElemType e)); //采用二叉链表存储结构,visit是对结点操作的应用函数。 //先序遍历二叉树T,对每个结点调用函数visit一次且仅以次。 //一旦visit()失败,则操作失败。 Status PostOrderTraverse(BiTree T, status(*visit)(TElemType e)); //采用二叉链表存储结构,visit是对结点操作的应用函数。 //后序遍历二叉树T,对每个结点调用函数visit一次且仅以次。 //一旦visit()失败,则操作失败。 —————先序遍历二叉树基本操作的递归算法———— Status PreOrderTraverse(BiTree T,Status(*visit)(TElemType e)){ //采用二叉链表存储结构,visit是对数据元素操作的应用函数,

数据结构实验报告—二叉树

算法与数据结构》课程实验报告

一、实验目的 1、实现二叉树的存储结构 2、熟悉二叉树基本术语的含义 3、掌握二叉树相关操作的具体实现方法 二、实验内容及要求 1. 建立二叉树 2. 计算结点所在的层次 3. 统计结点数量和叶结点数量 4. 计算二叉树的高度 5. 计算结点的度 6. 找结点的双亲和子女 7. 二叉树前序、中序、后序遍历的递归实现和非递归实现及层次遍历 8. 二叉树的复制 9. 二叉树的输出等 三、系统分析 (1)数据方面:该二叉树数据元素采用字符char 型,并且约定“ #”作为二叉树输入结束标识符。并在此基础上进行二叉树相关操作。 (2)功能方面:能够实现二叉树的一些基本操作,主要包括: 1. 采用广义表建立二叉树。 2. 计算二叉树高度、统计结点数量、叶节点数量、计算每个结点的度、结点所在层次。 3. 判断结点是否存在二叉树中。 4. 寻找结点父结点、子女结点。 5. 递归、非递归两种方式输出二叉树前序、中序、后序遍历。 6. 进行二叉树的复制。 四、系统设计 (1)设计的主要思路 二叉树是的结点是一个有限集合,该集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树、互不相交的二叉树组成。根据实验要求,以及课上老师对于二叉树存储结构、基本应用的讲解,同时课后研究书中涉及二叉树代码完成二叉树模板类,并将所需实现各个功能代码编写完成,在建立菜单对功能进行调试。 (2)数据结构的设计 二叉树的存储结构有数组方式和链表方式。但用数组来存储二叉树有可能会消耗大量的存储空间,故在此选用链表存储,提高存储空间的利用率。根据二叉树的定义,二叉

7-1实验七报告(二叉树的相关操作)

安徽工商职业学院实验报告 实验完成日期:课程名称:《数据结构》 班级:软件二班学号:123745姓名:胡文凯 实验名称:二叉树的相关操作 实验目的:1、进一步掌握树的结构及非线性特点,递归特点和动态性。 2、进一步巩固对指针的使用和二叉树的遍历方法、建立方法及输入 输出等各种操作。 3、掌握二叉树线索化目的及方法。 4、进一步认识哈夫曼树的特点,掌握构造哈夫曼树的方法。 5、了解哈夫曼编码方法。 实验原理(预习内容): 1、二叉树的定义、基本术语、性质; 2、二叉树的顺序存储和链式存储结构的描述方法; 3、二叉树的遍历和其他各种操作实现。 4、线索二叉树的构造方法。 5、哈夫曼编码原理。 实验器材(软件):Computer,Windows OS,VC++ 实验过程记录: 1、二叉树的遍历及其应用 (1)请实现二叉树的创建 (2)并对创建好的二叉树分别进行先序、中序、后序和层次遍历 (3)求出所创建二叉树的结点数目 (4)叶子结点数目 (5)树的深度 (6)拓展任务:增加交换二叉树左右子树的功能 注意:请先设计好你要输入的测试树,注意数据输入的正确性。 实验源程序代码: #include "stdio.h" #include "stdlib.h" typedef char ElemType; typedef struct BiTNode { ElemType data; struct BiTNode *lchild; struct BiTNode *rchild; }BiTNode,*BiTree; /*按先序次序输入二叉树结点的字符,'@'字符表示空树,建立二叉树的二叉链表T*/ void create_bitree(BiTree *T) { char ch;

数据结构二叉树的实验报告

数据结构 实 验 报 告

1. 实验目的和内容: 掌握二叉树基本操作的实现方法2. 程序分析 2.1存储结构 链式存储 2.程序流程

2.3关键算法分析 算法一:Create(BiNode* &R,T data[],int i,int n) 【1】算法功能:创建二叉树 【2】算法基本思想:利用顺序存储结构为输入,采用先建立根结点,再建立左右孩子的方法来递归建立二叉链表的二叉树 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑: 如果位置小于数组的长度则 {创建根结点 将数组的值赋给刚才创建的结点的数据域 创建左子树,如果当前结点位置为i,则左孩子位置为2i 创建右子树,如果当前结点位置为i,则右孩子位置为2i+1 } 否则R为空 算法二:CopyTree(BiNode*sR,BiNode* &dR) ) 【1】算法功能:复制构造函数 【2】算法基本思想:按照先创建根结点,再递归创建左右子树的方法来实现。 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑: 如果源二叉树根结点不为空 则{ 创建根结点 调用函数自身,创建左子树 调用函数自身,创建右子树 } 将该函数放在复制构造函数中调用,就可以实现复制构造函数

算法三:PreOrder(BiNode*R) 【1】算法功能:二叉树的前序遍历 【2】算法基本思想:这个代码用的是优化算法,提前让当前结点出栈。【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑(伪代码) 如果当前结点为非空,则 { 访问当前结点 当前结点入栈 将当前结点的左孩子作为当前结点} 如果为空 { 则栈顶结点出栈 则将该结点的右孩子作为当前结点 } 反复执行这两个过程,直到结点为空并且栈空 算法四:InOrder(BiNode*R) 【1】算法功能:二叉树的中序遍历 【2】算法基本思想:递归 【3】算法空间时间复杂度分析:未知 【4】代码逻辑: 如果R为非空: 则调用函数自身遍历左孩子 访问该结点 再调用自身访问该结点的右孩子 算法五:LevelOrder(BiNode*R) 【1】算法功能:二叉树的层序遍历 【2】算法基本思想: 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑(伪代码): 若根结点非空,入队

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

二叉树的遍历及线索化

青岛理工大学数据结构课程实验报告

void PreOrderTraverse(BiTree T,Status(*Visit)(TElemType e)){ if(T){ Visit(T->data);//首先访问根结点 PreOrderTraverse(T->lchild,Visit);//然后递归遍历左子树 PreOrderTraverse(T->rchild,Visit);//最后递归遍历右子树}} //中序遍历时先递归遍历左子树,然后访问根结点,最后递归遍历右子树;后序遍历时先递归遍历左子树,然后递归遍历右子树,最后 访问根结点 3、//先把栈及队列相关操作的头文件包括进来 1)根指针入栈, 2)向左走到左尽头(入栈操作) 3)出栈,访问结点 4)向右走一步,入栈,循环到第二步,直到栈空 //层次遍历时,若树不空,则首先访问根结点,然后,依照其双亲结 点访问的顺序,依次访问它们的左、右孩子结点; 4.首先建立二叉线索存储:包含数据域,左右孩子指针以及左右标志 typedef enum { Link=0,Thread=1 } PointerTag; typedef struct BiThrNode{ TElemType data; struct BiThrNode *lchild,*rchild;//左右孩子指针 PointerTag LTag,RTag;//左右标志 }BiThrNode, *BiThrTree; 建立前驱线索和后继线索,并用中序遍历进行中序线索化,然后最 后一个结点线索化 调 试 过 程 及 实 验 结 果 把测试数据放在f:\\file\\data.txt里,测试数据为:1 2 4 0 0 0 3 5 0 0 0 总访问结点是指访问该结点的数据域,弄清楚各个指针所指的类型

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

数据结构——线索二叉树实验报告

线索二叉树应用实验 实验报告 实验目的 (1)掌握线索二叉树的有关知识。 (2)掌握求解线索二叉树中结点前趋和后继的算法以及以相应次序遍历线索二叉树的算法。 (3)掌握二叉树的线索化算法的设计。 实验运行环境 Visual C++ 实验任务 线索二叉树是为了快速求解二叉树中结点在指定次序下的前驱和后继,而将二叉链表中空的左右孩子指针分别改为指向其前驱和后继结点而得到的结构,反映了运算对数据结构的设计的影响。因此,首先要了解线索二叉树的结构特点,其中原本为空的指针被修改为前驱和后继指针,使得对左右子树和线索的判断发生了变化。利用线索可以实现某些次序下的前驱和后继。本实验期望能理解线索二叉树的结构特点,实现各前驱和后接算法的求解,并掌握将二叉树转换为线索二叉树的算法,即线索化算法。为使实验程序简洁直观,下面的部分实验程序中的一些功能实现仍以调用库函数程序"btrechar.h"中的函数的形式给出,并假设该库函数中定义了线索二叉树的相关功能,如显示线索二叉树等。 实验内容 第一题: 按先序次序遍历先序线索二叉树。 实验测试数据基本要求: 第一组数据: full41.cbt 第二组数据: letter.cbt 实验准备: 1:将二叉树的根结点的指针传给函数。 2:判断当前结点是否为先序遍历的最后一个结点,若是则访问完该结点后结束,否则进入3。

2:判断当前结点是否有左子树,若有的话访问完该结点后访问它的左子树,否则访问它的右子树,返回2。 第二题: 按中序次序遍历中序线索二叉树。 实验测试数据基本要求: 第一组数据: full41.cbt 第二组数据: letter.cbt 实验准备: 1:将二叉树的根结点的指针传给函数。 2:判断当前结点是否为中序遍历的最后一个结点,若是则访问完该结点后结束,否则进入3。 3:对于当前结点,先访问该结点的前驱结点并进入第二步,其次访问该结点并进入第二步最后访问该结点的后继结点并进入2。 第三题: 将值为x的结点作为先序线索二叉树T的左子树的(先序)最后一个结点的右孩子插入进去。 实验测试数据基本要求: 第一组数据: full41.cbt 第二组数据: letter.cbt 实验准备: 1:将先序线索二叉树的根结点的指针传给函数。 2:判断当前结点是否为要找的结点P,若是则建立一个新的结点,将新结点作为P的右孩子,并根据新建的结点修改前驱后继关系,否则进入3。 3:指针指向该结点先序遍历的后继,返回2。 第四题: 按中序次序线索化二叉树。 实验测试数据基本要求: 第一组数据: full41.cbt 第二组数据: letter.cbt

二叉树实验报告

二叉树实验报告 问题描述 (1)问题描述:①用先序递归过程建立二叉树 (存储结构:二叉链表)。 输入数据按先序遍历所得序列输入,当某结点左子树或右子树为空时,输入‘*’号,如输入abc**d**e**得到的二叉树为: ②编写递归算法,计算二叉树中叶子结点的数目。 ③按凹入表方式输出该二叉树。 (2)分析:①此题要求用二叉链表作为存储结构,首先要定义二叉链表: typedef struct BiTNode { char data; struct BiTNode *lchild, *rchild; }BiTNode, * BiTree; struct BiTNode *lchild, *rchild 中lchild ,rchild 分别表示该结点的左右孩子。 ②输入时,按先序遍历所得序列输入,当某结点左子树或右子树为空时,输入‘*’号。 ③输出以凹入表的形式输出。 算法思想 (1)按照要求,这道题采用二叉链表来存储矩阵的有关信息。 存储结构定义为: typedef struct BiTNode { char data; struct BiTNode *lchild, *rchild; }BiTNode, * BiTree; 题中共有四个函数,包括主函数main(),创建二叉树函数Status preorder(BiTree &T),计算叶子结点函数Status calLeaf(BiTree &T),输出函数Status output(BiTree &T,int)。其中,主函数首先调用preorder()创建二叉树,然后调用函数calLeaf()。最后调用函数output(),输出二叉树。 (2)算法描述: a b e c d

数据结构实验报告二叉树

《数据结构与算法》实验报告 专业班级姓名学号 实验项目 实验三二叉树。 实验目的 1、掌握用递归方法实现二叉树的遍历。 2、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 题目: (1)编写二叉树的遍历操作函数。 ①先序遍历,递归方法re_preOrder(TREE *tree) ②中序遍历,递归方法re_midOrder(TREE *tree) ③后序遍历,递归方法re_postOrder(TREE *tree) (2)调用上述函数实现先序、中序和后序遍历二叉树操作。 算法设计分析 (一)数据结构的定义 要求用c语言编写一个演示程序,首先建立一个二叉树,让用户输入一个二叉树,实现该二叉树的便利操作。 二叉树型存储结构定义为: typedef struct TNode { char data;//字符型数据 struct TNode *lchild,*rchild;//左右孩子指针 }TNode,* Tree; (二)总体设计 程序由主函数、二叉树建立函数、先序遍历函数、中序遍历函数、后序遍历函数五个函数组成。其功能描述如下: (1)主函数:统筹调用各个函数以实现相应功能。 int main() (2)二叉树建立函数:根据用户意愿运用先序遍历建立一个二叉树。 int CreateBiTree(Tree &T) (3)先序遍历函数:将所建立的二叉树先序遍历输出。 void PreOrder(Tree T) (4)中序遍历函数:将所建立的二叉树中序遍历输出。 void InOrder(Tree T) (5)后序遍历函数:将所建立的二叉树后序遍历输出。 void PostOrder(Tree T)

相关文档
最新文档