高速公路爆破振动监测方案
爆破振动监测方案
爆破振动监测方案在爆破工程中,振动是一种普遍存在的现象。
由于振动的强度、频率与距离有关,并且爆破工程通常在城市建筑等人口集中区域使用,因此正确的振动监测方案对于保护周围环境和建筑物非常重要。
一、仪器与设备选择爆破振动监测仪器应该根据工程所在环境特点来选择,一般应该考虑进出口处统计仪、振动计和地震计等设备。
振动计的监测频率一般为1-10Hz,但是一些高频设备也可测量高频振动。
进出口处统计仪需要安置在场地的所有出入口处。
这些仪器可以对远离爆破场地的建筑物和环境提供有用的数据。
由于进出口处统计仪的使用范围非常广泛,因此这种仪器往往是监测方案的核心。
二、仪器与设备的布置1. 进出口处统计仪进出口处统计仪应该安置到危险区域以外的地方,以避免这些设备受到振动影响。
进出口处统计仪应该布置在一个距离爆破场地足够远的地方,以确保其所测量到的数据是合理的。
2. 振动计在选择振动计时,应该优先考虑其安装方便性和测量频率范围。
振动计通常被安装在建筑物和其他重要设施附近。
这样做可以帮助我们监测到振动的强度和频率,以确保所有可能的影响得到控制。
3. 地震计地震监测仪器常用于高要求的振动监测工程。
地震计的监测频率范围一般在1Hz-200Hz之间,可以测量出各种不同频率的振动。
地震计应该被安装在场地中,通常会被嵌入到岩石或者其他坚固的物体中。
三、爆破振动监测方案1. 爆破前在进行爆破振动监测前,我们应该评估工程范围内所有的建筑物和设施。
我们需要确认这些建筑物和设施是否需要进行监测。
同时,我们还要确定有哪些设备需要安装,以及这些设备应该被安置在哪些位置。
2. 爆破时在进行爆破时,我们需要根据上述设备和方案来监测振动。
当触发爆破时,我们需要读取仪器记录到的振动数据。
如果数据不正常,我们需要立即停止工程并进行调整。
3. 爆破后当爆破工程结束后,我们需要对记录到的振动数据进行综合分析。
如果振动数据表现正常,我们可以对工程进行验收并确认工程完成。
高速公路爆破振动监测方案
1.2 监测的目的(1)通过监测信息,提供新建隧隧道地表下沉及爆破振动信息,优化施工方法、调整开挖步序、修正支护参数等最大限度降低隧道施工对东洞口地表苏大山墓及苏懋棋墓的影响,并且使其影响控制在相关规范允许的范围内。
(2)通过监控量测,了解隧道各施工阶段地层与支护结构的动态变化,明确工程施工对地层的影响程度以及可能产生失稳的薄弱环节,把握施工过程中结构所处的安全状态。
(3)用现场实测的结果弥补理论分析的不足,并把监控量测结果反馈到设计和施工中,在施工过程中,及时掌握地层和支护结构的变位和受力信息,以便采取相应的施工技术措施,比如改变施工方法、确定临时支护的拆除时机及二次衬砌施作时机、调整开挖步序、修正支护参数等,以避免出现施工事故。
(4)积累资料。
通过监控量测,了解该工程客观条件下所表现出来的一些地下工程施工规律和特点,为今后类似工程或工法本身的发展提供借鉴,以提高地下工程的设计和施工水平;并为隧道运营后的养护与维修提供可靠的原始数据。
1.3监测的必要性现场监控量测是隧道施工过程中,对围岩及支护系统的稳定状态进行监测,为围岩级别变更、初期支护和二次衬砌的参数调整提供依据,是确保隧道施工安全、指导施工程序、便利施工管理的重要手段,对于采用新奥法施工的隧道,监控量测是新奥法施工过程中必不可少的施工程序。
第三方监测是对工程施工监测的监督、管理和优化,是其施工过程中必不可少的重要环节之一。
由于各种施工开挖方法对土体和支护结构的受力以及周边的环境有较大的影响。
尤其是不良地质现象如果不及时发现和处理,很可能酿成重大施工事故。
为实现施工的安全性和经济性,通过对现场监测的有效管理,及时进行预测、预报,是避免事故,降低施工风险的有效手段。
第三方监测更具有其特殊性和重要性。
1.4施工监测方案制定的原则1)监测方案以确保施工安全监测为首要目的,根据地下工程特点确定监测对象和主要安全监测警戒指标。
2)根据监测对象的重要性确定监测规模和内容、监测项目和测点布置,全面地反映实际工作状态。
爆破振动监测试验方案
爆破振动监测试验方案一、背景介绍爆破工程是一种常见的工程施工方式,但在施工过程中,由于产生的爆破振动可能会对周边环境造成损害,因此需要进行爆破振动监测,以评估振动对建筑物、地下管线等结构的影响程度。
本文就爆破振动监测试验方案进行介绍。
二、测试仪器与设备1. 振动监测仪:使用精度高、响应速度快的振动监测仪,能够准确测量振动的频率、加速度、速度等参数。
2. 数据采集设备:连接振动监测仪和电脑的数据采集设备,负责将采集到的数据传输到电脑中进行记录和分析。
3. 电脑及软件:用于接收和处理采集到的振动数据,通过相应的软件进行数据分析和结果展示。
三、测试方案1. 测试点选取:根据爆破工程的具体情况,选择合适的测试点位。
测试点选取应包括建筑物、地下管线等结构可能受到影响的区域,以及距离爆破源较远的控制点,用于对比分析。
2. 测试参数设定:根据国家相关标准规定,设定合适的测试参数,包括测试时间、测试频率范围、振动监测仪的放置位置等。
3. 数据采集与记录:按照测试参数设定,在测试点位安置好振动监测仪,并连接数据采集设备和电脑。
开始爆破施工后,振动监测仪将自动进行数据采集,采集完成后将数据传输到电脑中进行记录。
4. 数据分析与结果展示:利用相关软件分析采集到的数据,将数据转化为振动参数图表,并进行数据统计和结果分析。
将分析结果进行清晰明了的展示,包括振动图、数据表格等形式。
四、注意事项1. 安全第一:测试人员在进行测试时,应遵守相关安全操作规范,确保人身安全。
2. 工程保护:在测试前,应评估爆破活动可能对周边工程造成的潜在影响,并采取相应的保护措施。
3. 仪器校准:振动监测仪应定期进行校准,以确保测试结果的准确性和可靠性。
4. 数据质量控制:在数据采集过程中,应确保数据的连续性和稳定性,避免误差的干扰。
五、测试结果与分析根据爆破振动监测数据的分析,可评估爆破活动对建筑物、地下管线等结构的影响程度,并根据评估结果进行相应的工程调整和改进措施。
爆破振动监测方案
爆破振动监测方案爆破是一种常见的工程施工方式,可以用于矿山开采、建筑拆除等工程领域。
然而,爆破施工会伴随着强烈的振动,可能对周围环境和结构物造成不可忽视的影响。
因此,为了保证工程施工的安全性和可持续发展,爆破振动监测方案应运而生。
1. 振动监测原理爆破振动监测方案的核心是对爆破引起的振动进行实时监测和记录。
通常采用的方法是利用振动传感器将振动信号转化为电信号,并通过数据采集系统进行数据的存储和分析。
振动监测方案的目标是获得准确、全面的振动参数,包括振动速度、振动加速度和振动位移等指标。
2. 振动监测方案的关键技术(1)传感器选择:选择适合的振动传感器对于监测方案至关重要。
常见的振动传感器有加速度传感器、速度传感器和位移传感器等。
根据实际需要和监测要求,选择合适的传感器进行布置。
(2)布置方案:根据监测目标和工程施工的具体情况,合理规划传感器的布置位置和数量。
一般来说,应根据工程施工区域的大小和结构物的分布等因素进行布置,以确保监测数据的准确性和可靠性。
(3)数据采集与处理:振动监测方案需要结合现代信息技术手段,通过数据采集系统对监测数据进行实时采集和处理。
数据处理包括数据存储、传输和分析等环节,可以借助计算机、云平台和人工智能等技术手段进行。
3. 爆破振动监测方案的应用(1)工程施工监测:爆破振动监测方案可以应用于各类工程施工中,如建筑拆除、地铁隧道开挖等。
通过监测振动参数,可以评估工程施工对周围环境和结构物的影响,及时采取相应的措施进行调整和改进。
(2)安全评估与预警:振动监测方案可以提供全面的数据支持,对爆破施工产生的振动进行准确评估。
一旦发现超过安全限值的振动情况,可以及时预警并采取措施,以保证工程施工的安全性。
(3)环境保护与监管:爆破振动监测方案可以用于环境保护和监管领域,对工程施工中的爆破振动进行监测和评估。
通过振动监测数据,可以了解爆破施工对周边生态环境的影响程度,提出相应的环境保护措施和监管建议。
爆破振动监测方案
爆破振动监测方案随着城市建设的快速发展和人们对基础设施建设需求的不断增长,爆破作为一种高效的土石方施工方法被广泛应用。
然而,爆破作业所带来的振动对周围环境和建筑物可能造成一定的影响,因此需要对爆破振动进行科学监测和评估。
本文将提出一个完善的爆破振动监测方案,从监测设备的选择到数据处理的方法,为爆破施工提供可靠的技术支持。
一、监测设备的选择在爆破振动监测中,选择合适的监测设备是保证监测数据准确可靠的基础。
常用的监测设备包括振动监测仪、声级计和位移计。
1. 振动监测仪:振动监测仪是爆破振动监测的核心设备,用于测量和记录振动信号。
在选择振动监测仪时,需要考虑其测量范围、灵敏度、采样频率等参数,以确保监测数据的准确性和可比性。
2. 声级计:声级计用于测量爆破作业中产生的噪音水平。
在监测过程中,噪音与振动常常同时存在,因此使用声级计进行综合监测可以全面评估爆破作业对周围环境的影响。
3. 位移计:位移计用于测量建筑物的变形情况,对于对振动敏感的建筑物尤为重要。
位移计的选择要考虑其工作原理、测量范围以及对建筑物结构的影响。
二、监测方案的制定针对不同的爆破作业需求,需要制定相应的监测方案,包括监测点的布设、监测参数的选择以及监测数据的处理方法。
1. 监测点布设:监测点的布设应充分考虑周围环境特点和敏感目标的位置,并根据爆破作业的具体情况确定监测点的数量和位置。
在布设监测点时,应将其分散布置在可能受到振动影响的区域,以获得全面、全方位的监测数据。
2. 监测参数选择:监测参数的选择要根据爆破振动的特点和所需评估的影响来确定。
常见的监测参数包括振动速度、振动加速度、峰值振动等。
根据实际需要,可以选择不同的监测参数进行综合评估。
3. 监测数据处理:监测数据处理是评估爆破振动影响的重要环节。
监测数据可以通过软件进行分析和处理,例如绘制振动速度-时间曲线、峰值振动-距离曲线等。
通过对监测数据的分析,可以评估振动对周围建筑物和环境的影响,并制定相应的防护措施。
爆破振动监测实施方案
爆破振动监测实施方案一、引言。
爆破振动监测是指在进行爆破作业时对周围环境振动情况进行监测和评估,以确保爆破作业对周围建筑物、设施和人员的影响在可接受范围内。
本实施方案旨在规范爆破振动监测工作,保障爆破作业的安全进行。
二、监测设备。
1. 振动监测仪,采用专业的振动监测仪器,确保监测数据的准确性和可靠性。
2. 传感器,选择合适的传感器,根据实际情况确定传感器的布设位置,以保证监测数据的全面性和代表性。
三、监测方案。
1. 前期准备,在进行爆破作业前,对监测设备进行检测和校准,确保监测仪器和传感器的正常工作。
2. 监测布设,根据爆破作业的具体位置和周围环境,合理布设监测点,保证监测数据的全面性和准确性。
3. 监测参数,监测振动速度、振动加速度等参数,对振动情况进行全面监测和记录。
4. 监测频次,根据爆破作业的规模和要求,确定监测频次,确保监测数据的及时性和完整性。
5. 监测记录,对监测数据进行及时记录和整理,形成监测报告,以备后续分析和评估。
四、监测分析。
1. 数据分析,对监测数据进行分析,评估爆破振动对周围环境的影响情况。
2. 结果评估,根据监测数据分析结果,评估爆破振动对周围建筑物、设施和人员的影响程度,确定是否需要采取相应的控制措施。
3. 建议措施,根据评估结果,提出相应的控制措施建议,以减小爆破振动对周围环境的影响。
五、监测报告。
1. 报告内容,监测报告应包括监测数据、分析结果、评估结论和建议措施等内容。
2. 报告提交,监测报告应及时提交给相关部门和责任人,以供参考和决策。
3. 报告保存,监测报告应保存备查,作为爆破作业的监测记录和证据。
六、总结。
爆破振动监测是爆破作业安全进行的重要保障措施,合理有效的监测工作能够及时发现问题、评估影响、提出建议,确保爆破作业的安全进行。
因此,各相关部门和责任人员应严格按照本实施方案进行爆破振动监测工作,确保监测数据的准确性和可靠性,保障爆破作业的安全进行。
爆破振动监测方案
爆破振动监测方案近年来,随着城市建设的飞速发展,建筑物的拆除、爆破工作越来越多。
而在这些工作中,爆破振动监测方案的实施显得尤为重要,能够有效评估爆破振动对周边建筑物和地下管线设施的影响。
一、监测方案的建立在制定监测方案时,需要根据爆破的规模、距离和爆破物的种类等情况进行综合考虑。
基本的监测方案包括三个方面:监测地点的选定、监测设备的布置以及监测参数的设定。
监测地点的选定应根据爆破振动传播的方向和距离而定,同时需要充分考虑周边建筑物和地下管线设施的安全性。
监测设备的布置应覆盖爆破振动传播路径,能够提供充分的监测数据。
监测参数的设定也需要根据实际情况进行调整。
二、监测设备的选择目前常用的监测设备有加速度计、速度计和位移计等。
加速度计可测量振动的加速度,速度计可测量振动的速度,位移计可测量振动的位移。
不同的设备具有不同的优缺点,需要根据实际情况进行选择。
一般情况下,加速度计的测量范围比较广,适用于中小规模的爆破工程;速度计对低频振动有比较好的响应,适用于纵向振动;位移计对高频振动有比较好的响应,适用于侧向振动。
在选择监测设备时,还需要考虑其精度、稳定性、防护性能以及数据传输能力等因素。
三、监测参数的处理监测数据的处理分为实时处理和离线处理两种。
实时处理需要将监测设备的数据及时传输到监测中心,并对数据进行实时处理和分析,以及对监测设备进行状态监测和预警。
离线处理可以在实际爆破过程结束后对监测数据进行处理和分析,如生成时频分析图、频率分析图等,从而更好地评估爆破振动对周边环境的影响。
四、监测报告的撰写监测报告是对监测数据进行分析和评估后的结果报告。
监测报告应当包括以下内容:爆破工程的基本情况、监测方案的制定和实施情况、监测设备的使用和维护情况、监测数据的分析和评估结果、环境影响评估等内容。
监测报告应尽量客观真实,数据分析应科学合理,评估结果应讲求严谨,避免夸大和简化情况。
综上所述,爆破振动监测方案的建立和实施需要充分考虑实际情况和监测设备的选择,并对监测数据进行处理和分析,形成客观、真实的监测报告。
爆破作业振动监测方案
爆破作业振动监测方案一、监测目的爆破作业振动监测的主要目的是:1、评估爆破振动对周边环境的影响程度,包括建(构)筑物、道路、桥梁、地下管线等设施的安全性。
2、验证爆破设计参数的合理性,为优化爆破方案提供依据。
3、确保爆破作业符合相关法规和标准的要求,避免对周边环境和人员造成不必要的损害。
二、监测依据1、《爆破安全规程》(GB6722-2014)2、相关工程的设计文件和施工方案3、国家和地方有关环境保护、安全管理的法律法规三、监测范围根据爆破工程的规模、地形地貌、周边环境等因素,确定监测范围。
一般来说,监测范围应包括距离爆破点最近的建(构)筑物、重要设施以及可能受到影响的人员密集区域。
四、监测内容1、振动速度振动速度是评估爆破振动影响的主要参数,包括水平方向(X 轴、Y 轴)和垂直方向(Z 轴)的振动速度。
2、振动频率振动频率反映了振动的特性,对于不同类型的建(构)筑物和设施,其对振动频率的敏感度不同。
3、持续时间爆破振动的持续时间也是一个重要的监测指标,它与振动能量的释放和传播有关。
五、监测设备1、振动传感器选用高精度、高灵敏度的振动传感器,如压电式加速度传感器或速度传感器。
2、数据采集仪能够实时采集、存储和传输振动数据的设备,具备良好的稳定性和可靠性。
3、计算机及分析软件用于对采集到的数据进行处理、分析和生成报告。
六、监测点布置1、在建(构)筑物的基础、柱子、墙壁等关键部位布置监测点,每个监测点应至少布置三个方向的传感器。
2、对于重要的设施,如桥梁的桥墩、桥台,地下管线的检查井等,应根据其结构特点合理布置监测点。
3、在人员密集区域,如居民区、学校、医院等,应适当增加监测点的密度,以全面了解振动影响情况。
七、监测时间1、爆破前进行背景振动监测,了解周边环境的自然振动情况,为后续数据分析提供参考。
2、爆破时在爆破作业过程中,实时采集振动数据,确保振动参数在控制范围内。
3、爆破后对爆破后的振动影响进行持续监测,观察建(构)筑物和设施的稳定情况。
爆破振动监测方案
爆破振动监测方案爆破工程是一种常见的施工方式,它在矿山、隧道建设、道路拓宽等领域有着广泛的应用。
然而,爆破工程会产生较大的振动,给周围环境和结构物带来潜在的安全风险。
为了有效控制爆破振动,我们需要制定一套科学合理的爆破振动监测方案。
1. 监测目的爆破振动监测的主要目的是保护周围环境和结构物的安全。
通过监测爆破振动的参数,如振动速度、振动加速度等,可以及时判断振动是否超过预定的安全限值,从而采取相应的措施进行风险控制。
2. 监测方案爆破振动监测方案应包括监测设备的选用、监测点的布设以及监测参数的设置等内容。
2.1 监测设备的选用在爆破振动监测中常用的设备有振动传感器、数据采集仪等。
振动传感器用于测量振动参数,数据采集仪用于接收并存储振动信号。
在选用设备时,应考虑设备的准确性、稳定性和适应性,以确保监测结果的准确性和可靠性。
2.2 监测点的布设监测点的布设应充分考虑爆破工程的施工特点和结构物的分布情况。
一般来说,监测点应位于离爆破源较近的区域,并覆盖主要的观测对象,如结构物、管线等。
监测点的数量和位置应根据实际情况进行合理调整,以保证监测结果的全面性和代表性。
2.3 监测参数的设置监测参数的设置是爆破振动监测方案中的重要环节。
合理设置监测参数能够更准确地评估爆破振动的影响程度。
监测参数的设置应参考相关标准和规范,如国家标准《爆破振动测量规范》等。
常见的监测参数包括振动速度、振动加速度、频率等。
3. 监测方法爆破振动监测可采用实时监测和事后分析两种方法,具体应根据实际情况选择合适的监测方法。
3.1 实时监测方法实时监测方法可以通过在线监测系统进行。
监测系统应具备实时数据传输和处理功能,并能够及时将监测结果反馈给工程现场人员。
该方法的优点是能够实时掌握振动参数的变化,及时采取措施进行调整和控制。
3.2 事后分析方法事后分析方法是通过事后处理监测数据来评估爆破振动的影响程度。
监测数据可通过数据采集仪导出并进行分析处理。
爆破振动监测方案
爆破振动监测方案爆破振动监测是一种常用的工程技术手段,用于评估和控制爆破活动可能带来的振动影响。
本文将介绍一个完整的爆破振动监测方案,旨在帮助工程师和相关专业人员了解并合理应用该方案。
一、方案目的爆破振动监测方案的主要目的是通过对振动参数的测量和分析,评估爆破活动对周围结构物和环境的振动影响,以达到以下目标:1. 确保爆破活动对周围结构物和环境的振动水平不超过预定的安全标准;2. 监测和记录振动数据,为后续评估和调整提供依据;3. 提供数据支持,用于改进爆破方案和优化爆破参数。
二、方案内容1. 振动监测点布置根据具体工程情况,选取一定数量的监测点进行振动监测。
监测点应以被保护结构物或敏感环境为中心,合理布置,确保能够全面监测到爆破活动可能产生的振动影响。
2. 振动参数测量利用专业的振动测量设备对选定的监测点进行振动参数测量。
常见的振动参数包括振动速度、振动加速度、振动位移等。
在测量过程中,应确保测量设备的准确性和稳定性,并遵循相应的测量标准和规范。
3. 数据记录和分析将振动测量得到的数据进行记录和分析。
数据记录可以使用数据采集仪器进行实时监测和记录,也可通过传感器与数据采集系统相连,将数据传输到中央控制室进行实时处理和分析。
4. 振动监测报告根据测量数据和分析结果,编制振动监测报告。
报告应包括监测点的位置、测量时间和各个监测点的振动参数数据。
同时,结合相关标准和规范,对振动水平进行评估和分析,判断爆破活动是否符合安全标准。
5. 振动控制与调整根据振动监测报告的评估结果,对爆破活动进行必要的调整和控制。
可以通过调整爆破参数、减小药量或采取其他措施,来减少振动影响,确保周围结构物和环境的安全。
三、方案执行步骤1. 制定爆破振动监测方案,并明确方案的具体要求和目标;2. 根据方案要求,选择适当的振动测量设备和传感器,并确保其准确性和可靠性;3. 进行振动监测点的布置和标定,并安装测量设备和传感器;4. 开展爆破活动,并进行振动参数的实时测量和数据记录;5. 对测量数据进行分析,编制振动监测报告;6. 根据报告评估结果,进行振动控制与调整;7. 根据实际情况,适时进行方案的修订和优化。
爆破振动监测方案
爆破振动监测方案在建筑和采矿工程等领域中,常常需要采用爆破来实现地质岩石的拆除或挖掘,这种方法虽然快速高效,但是也会引起周围环境的振动。
如果炸药的使用不当,就有可能会对周边建筑物、桥梁、道路、地下管道等设施造成损伤。
因此,有效的爆破振动监测方案显得尤为重要。
一、监测设备的选择爆破振动监测的核心设备就是振动监测仪。
目前市面上的振动监测仪种类繁多,主要包括地震仪、加速度计、伺服加速度计、光弹性仪、光纤光栅传感器等。
其中,地震仪以其灵敏度和抗干扰能力优秀而备受青睐,但是需要实时处理原始数据,成本昂贵。
加速度计则分为传统式和高精度式,传统式以价格低廉和使用方便为其特点,但是数据采样率和采样范围有限;高精度式则相对更贵,但是采集数据更加精细。
伺服加速度计以测量灵敏度和稳定性著称,通常用于大规模的监测工程。
光弹性仪和光纤光栅传感器则由于其无源无干扰和抗自然干扰的特点,被广泛应用于复杂环境和远距离监测场合。
二、传感器的布设传感器的布设是爆破振动监测方案的重要组成部分。
布设要合理,才能更全面、准确地掌握爆破振动情况。
在振动监测仪的选择确定之后,需要根据工程的具体情况来规划传感器的布局。
对于建筑物或桥梁等重要设施来说,必须在其周围设置多个传感器,以便能够准确地掌握振动信息。
此外,传感器的安装位置也应尽可能靠近被监测结构物,避免距离过远而导致数据误差。
具体来说,要注意以下几个方面:1.传感器应尽可能布设在被监测结构物的基础或者最佳监测位置;2.在被监测结构物周围设置至少三个传感器,以便保证数据的精确性;3.传感器的布设应考虑到周边环境,避免有遮挡物影响信号传输。
三、信息接收与处理传感器采集到的数据需要经过信息接收与处理,才能转化为有意义的数据图谱。
处理算法的优化程度也直接决定了监测数据的准确性与实时性。
爆破振动监测的数据处理一般分为两个阶段,第一阶段是实时测量瞬时振动速度,第二阶段是对振动速度进行峰值处理,得出振动强度。
爆破振动监测方案
爆破振动监测方案一、工程概述在进行各类爆破作业时,为了确保周边建(构)筑物、设施以及人员的安全,需要对爆破振动进行有效的监测。
本次监测对象为具体工程名称的爆破作业,该工程位于工程地点,周边环境复杂,存在列举周边重要建(构)筑物、设施等。
二、监测目的1、评估爆破振动对周边环境的影响,确保其在安全允许范围内。
2、为优化爆破设计提供数据支持,降低爆破振动的危害。
3、及时发现异常振动情况,采取相应的措施保障安全。
三、监测依据1、(GB 6722-2014)2、相关行业标准及规范四、监测仪器设备1、振动监测仪:选用仪器型号振动监测仪,该仪器具有高精度、高稳定性和良好的抗干扰能力。
2、传感器:采用传感器型号速度传感器,能够准确测量振动速度。
五、监测点布置1、原则重点监测周边重要建(构)筑物、设施等。
考虑爆破振动的传播方向和衰减规律,在不同距离和方向上布置监测点。
监测点应布置在基础或结构的关键部位,如柱子、梁、承重墙等。
2、具体布置在距离爆破点具体距离 1的建(构)筑物名称 1上布置监测点具体数量 1,分别位于详细位置 1。
在距离爆破点具体距离 2的建(构)筑物名称 2上布置监测点具体数量 2,分别位于详细位置 2。
六、监测时间1、爆破前:进行仪器设备的调试和校准,确保正常工作。
2、爆破中:在爆破作业进行时同步进行监测,记录振动数据。
3、爆破后:对监测数据进行分析和处理。
七、监测频率1、每次爆破作业时进行监测。
2、对于重点监测对象,可根据实际情况适当增加监测频率。
八、数据采集与处理1、数据采集监测仪器按照设定的参数自动采集振动数据,包括振动速度、频率、持续时间等。
采集的数据应及时存储,确保数据的完整性。
2、数据处理对采集到的数据进行筛选和整理,去除异常值和干扰数据。
计算振动速度的峰值、主振频率等参数。
绘制振动速度时程曲线和频谱图,直观展示振动特性。
九、振动安全允许标准根据和相关规范,结合周边建(构)筑物的类型、结构和使用功能,确定振动安全允许标准如下:1、对于一般民用建筑物,振动速度峰值不超过具体数值 1cm/s。
爆破监测方案
爆破监测方案为了确保爆破作业的安全性和减少对周围环境的影响,制定合适的爆破监测方案是至关重要的。
该方案旨在提供必要的措施和方法,以评估和监测爆破活动的效果,并确保安全和环境保护。
以下是爆破监测方案的具体内容:一、前期准备在进行任何爆破活动之前,必须进行充分的前期准备工作。
这包括相关工程师的派遣,对爆破区域的详细调查与识别,以及合适的监测设备和工具的准备。
在确定监测方案之前,必须充分考虑以下几个方面:1. 监测目标的确定:明确爆破活动的监测目标,例如结构物的振动、噪音、空气质量、地下水位等。
2. 监测设备的选择:根据监测目标,选择合适的监测设备。
例如使用振动传感器来测量结构物的振动幅度,使用环境噪音仪来测量噪音水平等。
3. 监测点的布设:根据监测目标和监测设备的要求,合理布设监测点。
确保监测点的数量和位置能够全面覆盖爆破区域,并能准确测量相关参数。
4. 监测数据的处理和分析:提前确立监测数据的处理和分析方法,以便及时评估爆破活动的效果和对周围环境的影响。
二、监测方案的实施在爆破活动进行期间,需按照以下步骤执行监测方案:1. 监测设备的安装:按照前期准备中确定的布设方案,安装监测设备。
确保设备的稳定性和准确性,并调试好设备的各项参数。
2. 监测数据的实时采集:保证监测设备正常运行,并实时采集监测数据。
这可以通过现场工程师人工记录,或使用自动数据采集系统进行。
3. 监测数据的记录与存储:对采集到的监测数据进行准确的记录与存储,包括监测时间、监测点位、监测值等信息。
确保数据的可追溯性和准确性。
4. 监测数据的在线传输:如果可能,可采用在线数据传输系统,将实时监测数据传输至监测中心,以便工程师能够实时分析和评估数据。
三、监测数据的处理与分析在爆破活动结束后,需要对监测数据进行处理与分析,以评估爆破活动的效果和对周围环境的影响。
这包括以下几个步骤:1. 数据的整理与筛选:对监测数据进行整理与筛选,剔除异常数据和噪声数据,确保分析的准确性和可信度。
爆破振动监测方案
爆破振动监测方案为了确保爆破作业的安全和对周围环境的影响进行有效管控,需要建立一个全面的爆破振动监测方案。
本文将介绍一种适用于爆破振动监测的方案,并提供详细的操作步骤。
一、前期准备工作1. 确定监测区域:根据实际情况,确定需要进行爆破振动监测的区域范围,包括可能受影响的建筑、地质构造和环境要素等。
2. 选择监测设备:根据监测需求,选择合适的爆破振动监测设备。
常见的监测设备包括高精度振动传感器、数据采集仪和监测软件等。
3. 部署监测设备:根据监测区域的特点和要求,合理部署监测设备,以保证监测数据的准确性和全面性。
二、监测方案的制定1. 监测参数的选择:根据爆破振动的特征和对环境的影响程度,选择合适的监测参数,包括振动加速度、振动速度和振动位移等。
2. 监测点的设置:根据监测区域的实际情况和要求,确定监测点的数量和位置。
监测点的设置应该覆盖整个爆破工作面,以确保监测的全面性。
同时,重点考虑监测点与可能受影响建筑物的距离和方向。
3. 监测频率和时长:确定监测的频率和时长,以保证监测的连续性和有效性。
监测频率应根据爆破工程的具体情况进行合理确定,通常可以采用每次爆破前、中、后的连续监测方式。
三、监测操作流程1. 监测设备的安装:事先检查监测设备的状态和功能,按照设备说明书进行正确的安装,确保设备的可靠性和稳定性。
2. 监测数据的采集:按照监测方案确定的监测频率和时长,进行监测数据的采集。
确保采集的数据准确、完整,并记录监测时间、地点和设备状态等相关信息。
3. 数据处理和分析:将采集到的监测数据进行处理和分析。
通过数据处理软件,提取有关振动特征和变化规律的信息,为后续的监测评价和决策提供依据。
四、监测结果评价1. 监测数据的解读:根据监测数据的处理和分析结果,对爆破振动的强度、频率和持续时间等进行解读。
结合监测点的位置和周围环境的影响,评估爆破振动对建筑物和环境的潜在影响程度。
2. 结果评价的输出:将监测结果和评价意见进行整理和输出。
工程爆破振动监测计划
工程爆破振动监测计划一、工程概述本次工程爆破地点位于_____,周边环境复杂,附近有建筑物、道路、地下管线等重要设施。
爆破工程的目的是为了_____,预计爆破规模为_____,使用的炸药类型为_____。
二、监测目的工程爆破振动监测的主要目的是:1、保障周边建筑物、设施及人员的安全。
通过监测振动数据,评估爆破振动对周边环境的影响,确保其在安全允许范围内,预防可能出现的结构损坏、人员伤亡等事故。
2、优化爆破设计。
根据监测结果,对爆破参数进行调整和优化,以降低振动强度,提高爆破效果,同时减少对周边环境的干扰。
3、提供数据支持和证据。
监测数据可以作为工程施工过程中的技术依据,在出现纠纷或问题时,能够为相关方提供客观、准确的证据。
三、监测依据本次监测计划依据以下标准和规范制定:1、《爆破安全规程》(GB 6722-2014)2、《建筑抗震设计规范》(GB 50011-2010)3、《工程测量规范》(GB 50026-2020)四、监测内容1、振动速度包括水平径向、水平切向和垂直方向的振动速度,这三个方向的振动速度是评估爆破振动影响的关键参数。
2、振动频率振动频率反映了振动能量的分布情况,对于判断振动对不同类型建筑物和结构的影响具有重要意义。
3、持续时间振动的持续时间会影响建筑物和结构的累积损伤,因此也是监测的重要内容之一。
五、监测仪器1、选用高精度、高可靠性的振动监测仪器,如_____型号的振动传感器和_____型号的数据采集仪。
2、传感器的性能参数应满足以下要求:测量范围:能够覆盖预计的振动速度范围。
频率响应:在爆破振动的主要频率范围内具有良好的响应特性。
精度:满足相关标准和规范的要求。
六、监测点布置1、监测点应根据爆破区域与周边建筑物、设施的相对位置进行合理布置。
2、在距离爆破点较近的重要建筑物和设施处设置重点监测点,如距离爆破点_____米范围内的_____建筑物、_____道路等。
3、对于一般性的区域,可适当减少监测点的密度,但应保证监测范围能够全面覆盖可能受到影响的区域。
爆破监测方案
爆破监测方案引言爆破监测是在爆破作业过程中,有效监测和控制爆破震动与振动的技术方案。
爆破工程中的监测是确保爆破作业安全可控的关键环节。
本文将介绍一种综合的爆破监测方案,以确保爆破作业的安全性和环境保护。
一、爆破监测方案的目标与意义1.1 目标爆破监测方案的目标是通过对爆破作业中产生的震动与振动数据进行监测与分析,以及对爆破作业现场产生的噪声进行控制,减小对周围建筑物和环境的影响,保障爆破作业的安全性和环境保护。
1.2 意义爆破监测方案的实施对于爆破作业具有重要的意义。
首先,通过实时监测及分析,可以及时掌握爆破作业现场的振动情况,评估爆破震动对周围环境的影响程度,从而及时采取措施进行调整,确保爆破作业的安全性。
其次,对爆破作业过程中产生的噪声进行控制,减少对周围居民的干扰,保护环境与生活质量。
二、爆破监测方案的具体措施2.1 爆破震动监测针对爆破作业中产生的震动,可采用地震仪或振动监测器进行实时监测。
监测点的设置应根据具体工程要求和现场实际情况进行选择,关键点应充分考虑周围建筑物、地下管线等敏感目标。
监测过程中应记录并分析震动参数,如加速度、速度、位移等指标,与相应的监测标准进行对比,以确定是否达到安全限值。
如存在超限的情况,需要及时采取措施进行控制或调整作业方案。
2.2 噪音控制爆破作业会产生较大的噪声,对周围居民的生活造成干扰。
因此,需要采取措施对爆破作业现场的噪声进行控制。
一方面,可以通过选择合适的爆破药剂和装药方式,以减少爆破产生的噪声。
另一方面,对于无法避免的噪声,可以采用降噪措施,如设置噪声隔离屏、噪声吸收材料等,减少噪声传播到周围环境中。
2.3 监测数据分析与评估在爆破作业进行过程中,实时监测数据的记录非常重要。
监测数据可以通过专业软件进行分析与处理,得出震动与振动的变化趋势、频谱特性等。
通过对监测数据的分析与评估,可以及时发现异常情况,并采取相应的措施。
同时,将监测数据与相关的国家及行业标准进行对比,以评估监测结果是否达到安全要求。
爆破监测方案
爆破监测方案爆破工程是一项高危行业,在进行爆破作业时,为了保障人员安全和周边环境的稳定,必须建立有效的爆破监测方案。
该方案旨在确保爆破作业的合规性和可控性,有效预防事故发生。
本文将根据爆破监测方案的需求,提供一份详尽而合适的方案。
1. 总体要求爆破监测方案的总体要求是确保爆破作业的安全可靠,有效控制振动、噪音和飞石等对周边环境的影响。
同时,要严格遵守相关法律法规和标准,确保作业过程中不对人员和设备造成伤害,不对周边建筑物和公共设施产生破坏。
2. 规范选择针对不同的爆破工程,应根据地质条件、工程规模和爆破目标等因素,选择适宜的规范进行监测。
常用的规范包括国家标准《爆破振动监测规范》和《爆破噪声监测规范》,以及地方地质环境监测规定。
3. 爆破监测设备为了准确监测爆破振动、噪音和飞石等参数,应选用合适的监测设备。
通常包括振动监测仪、噪音测量仪、高速摄像机、激光扫描仪等。
根据实际情况,还可以配备其它针对性监测设备,如飞石监测器、地质勘探雷达等。
4. 监测点布设监测点的布设是确保监测结果准确性的关键。
根据工程的具体情况,监测点应合理分布在爆破目标周边以及可能受到影响的区域。
监测点的密度应根据工程规模和安全要求进行合理设置,确保监测覆盖全面。
5. 数据采集和处理监测过程中,爆破振动、噪音和飞石等数据应通过监测设备实时采集。
采集的数据应进行合理的处理和分析,与监测记录相结合,形成完整的监测报告。
数据的可追溯性和可靠性非常重要,因此在处理和存档过程中应采用严格的控制措施。
6. 监测结果评估监测结果的评估是爆破监测方案中的关键环节。
根据国家标准和地方规定,将监测数据与限值标准进行比较,判断爆破作业是否符合要求。
对于超过限值标准的情况,应及时采取相应的措施,降低对周边环境和人员的威胁。
7. 方案修订和优化根据实际监测结果和经验总结,爆破监测方案应定期进行修订和优化。
主要包括监测点布设的调整、监测设备更新、监测数据处理方法的改进等方面。
爆破工程爆破振动监测方案
爆破工程爆破振动监测方案一、前言爆破工程是一种在建筑、采矿、隧道等工程中常见的施工方法,它能够在短时间内实现大量的岩石和土壤的破碎和开采,提高工程效率。
然而,爆破工程也会产生大量的振动和冲击波,对周围环境和建筑结构造成影响,因此需要进行爆破振动监测,保证施工安全和环保合规。
二、爆破振动监测的重要性1. 爆破振动监测是确保爆破工程施工安全的重要手段。
由于爆破工程的特殊性,振动和冲击波对周围环境和建筑结构有一定的影响,如果监测不到位,就有可能导致工程安全事故的发生。
2. 爆破振动监测是环境保护和社会责任的需要。
爆破工程产生的振动和冲击波会对周围地质环境、植被和水质造成一定的影响,如果没有有效监测和控制,可能会引发环境污染和生态破坏。
3. 爆破振动监测是保障建筑结构安全的重要手段。
爆破振动对周围建筑结构有一定的影响,需要通过监测和评估来保证建筑结构的安全性,避免振动损害。
三、爆破振动监测的技术原理爆破振动监测主要基于地震学原理和振动测量技术,通过测量地面振动速度和加速度等参数,来评估爆破振动对周围环境、建筑结构和地质构造的影响。
1. 地震学原理:爆破工程产生的振动和冲击波类似于地震波,因此可以采用地震学的相关原理和方法来进行监测和评估。
2. 振动测量技术:爆破振动监测主要通过地面振动传感器和数据采集系统来实现,其中地面振动传感器用于测量地面振动速度和加速度等参数,数据采集系统用于实时采集和记录振动数据。
四、爆破振动监测方案的制定1. 爆破振动监测方案的制定应充分考虑爆破工程的特点和环境背景,采取合理的监测点布设、监测参数选取和监测方法确定等措施,保证监测方案的科学性和有效性。
2. 爆破振动监测方案的制定应与爆破设计和工程施工相衔接,充分考虑爆破设计参数、工程施工方案和现场环境等因素,确保监测方案的针对性和实用性。
3. 爆破振动监测方案的制定应遵循国家和地方相关法规和标准,确定监测指标和限值,保证监测数据的可比性和评估依据的权威性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用科学技术为客户规避风险,创造价值——四川交博环境检测有限公司高速公路爆破振动监测方案四川交博环境检测有限公司目录1监测简况 (3)1.1监测的目的 (3)1.2监测的必要性 (4)1.3施工监测方案制定的原则 (4)1.4编制主要依据 (5)2监测实施项目及要求 (5)2.1监测实施项目 (5)2.2监测实施要求 (9)3信息化监测和成果反馈 (9)3.1信息化监测流程 (9)3.2成果反馈体系 (10)3.3数据的处理与报送 (11)1监测简况1.1监测的目的(1)通过监测信息,提供新建隧隧道地表下沉及爆破振动信息,优化施工方法、调整开挖步序、修正支护参数等最大限度降低隧道施工对东洞口地表苏大山墓及苏懋棋墓的影响,并且使其影响控制在相关规范允许的范围内。
(2)通过监控量测,了解隧道各施工阶段地层与支护结构的动态变化,明确工程施工对地层的影响程度以及可能产生失稳的薄弱环节,把握施工过程中结构所处的安全状态。
(3)用现场实测的结果弥补理论分析的不足,并把监控量测结果反馈到设计和施工中,在施工过程中,及时掌握地层和支护结构的变位和受力信息,以便采取相应的施工技术措施,比如改变施工方法、确定临时支护的拆除时机及二次衬砌施作时机、调整开挖步序、修正支护参数等,以避免出现施工事故。
(4)积累资料。
通过监控量测,了解该工程客观条件下所表现出来的一些地下工程施工规律和特点,为今后类似工程或工法本身的发展提供借鉴,以提高地下工程的设计和施工水平;并为隧道运营后的养护与维修提供可靠的原始数据。
1.2监测的必要性现场监控量测是隧道施工过程中,对围岩及支护系统的稳定状态进行监测,为围岩级别变更、初期支护和二次衬砌的参数调整提供依据,是确保隧道施工安全、指导施工程序、便利施工管理的重要手段,对于采用新奥法施工的隧道,监控量测是新奥法施工过程中必不可少的施工程序。
第三方监测是对工程施工监测的监督、管理和优化,是其施工过程中必不可少的重要环节之一。
由于各种施工开挖方法对土体和支护结构的受力以及周边的环境有较大的影响。
尤其是不良地质现象如果不及时发现和处理,很可能酿成重大施工事故。
为实现施工的安全性和经济性,通过对现场监测的有效管理,及时进行预测、预报,是避免事故,降低施工风险的有效手段。
第三方监测更具有其特殊性和重要性。
1.3施工监测方案制定的原则1)监测方案以确保施工安全监测为首要目的,根据地下工程特点确定监测对象和主要安全监测警戒指标。
2)根据监测对象的重要性确定监测规模和内容、监测项目和测点布置,全面地反映实际工作状态。
3)采用先进、可靠的监测仪器和设备,设计先进的监测系统。
4)为确保提供可靠、连续的监测资料,各监测项目间相互校验映证,以利数值计算、故障分析和状态研究。
5)在满足工程安全的前提下,尽量减少对工程施工的交叉干扰影响。
6)按照国家现行的有关规定、规范及招标文件要求编制监测方案。
1.4编制主要依据1)《建筑变形测量规程》JGJ/T8-97;2)《全球定位系统城市测量技术规程》CJJ73-97;3)《工程测量规范》GB50026-93;4)《城市测量规范》CJJ13-87;5)《地下工程施工及验收规范》(GB50299-1999)6)国家或行业其他测量规范、强制性标准。
7)大坪山非机动车及人行隧道设计资料8)《爆破安全规程》(GB6722-2014)2监测实施项目及要求2.1监测实施项目(1)监测实施项目1)既有高速公路大坪山隧道监测既有隧道内的监测,主要集中在交叉点处以及交叉点前后各26m范围内之间的衬砌力学行为的变化,重点开展以下三项监测内容:①爆破振动监测监测内容主要是隧道路面、隧道衬砌边墙的爆破地震波峰值;隧道路面的质点位移最大值。
a.测点布置隧道路面地震波测点沿既有隧道中线布置,在交叉点以及交叉点前后各10m处各布置一个测点,上下行两洞共布置2×3个测点;隧道衬砌边墙地震波布置测点有:衬砌边墙每断面对称布置两个测点,共三个断面,在交叉点以及交叉点前后各10m 处各布置一个测点,上下行两洞共布置2×6个测点。
隧道路面质点位移的测点布置与路面地震波测点布置相同。
爆破振动监测测点布置位置示意图b.监测方法在测试的目标建(构)筑物上设置采集点,在采集点上放置地震检波器,通过振动记录仪接收爆破产生的信号,最后经过软件对振动信号的处理,产生波形图。
采样频率爆破振动记录是一个连续模拟量曲线,而数据采集则是按每秒种采集点来离散记录振动曲线(量化),采样频率一般选择为5000点/每秒比较合适,这样可完全反应振动记录达1000Hz的信号。
采样时间对于单次爆破,一般记录时间设置为5秒钟已经完全满足记录数据需要。
但对于多次爆破或延时爆破,要根据爆破持续时间确定记录时间。
连续触发选择为确保安全,要把爆破振动记录仪器放置在爆炸现场,设置好仪器记录参数仪器能根据爆破振动信号的幅值是否超过设置的触发门槛电压来记录信号,一般最好选择“多次触发选择”项。
选择了“多次触发选择”项可避免由于误触发而错过振动爆破信号记录。
单次爆破振动信号记录:对于单次爆破,根据单次爆破的持续时间设置采集时间即可,一般设置采集时间为5秒左右可保证记录到完整的振动信号。
多次延时爆破振动信号记录:对于延时爆破,要设置记录时间相对比较长些,确保能记录所有爆破记录。
c.监测仪器监测仪器主要由传感器、振动记录仪、数据中心和客户端四个部分构成。
在爆破现场测试前,固定好传感器后打开记录仪电源即可离开现场,通过远程计算机客户端完成参数设置和启动采集后,记录仪进入工作状态。
当爆破振动信号传来时,系统会自动记录和存储振动信号,并将采集到整个动态波形实时上传至数据中心,测试人员在异地通过客户端控制仪器和管理文件。
图3.5-2.分布式爆破振动测控系统示意图(3)L20-N型爆破测振仪品牌:交博科技产地:四川成都厂家:成都交博科技有限公司爆破测振仪L20-N内置4G通信模块,在任何有手机网络的地方,可以将仪器采集到的爆破振动数据与波形实时上传至专用服务器内,用户可在异地通过客户端或智能手机控制仪器和管理文件,该仪器具有能耗低、耐久性优、操作简便的特点,适用于既有线隧道、输油管道、桥梁、地铁等需要长期振动检测的场合。
技术参数许可证:国家制造计量许可证书(CMC)川制00000488-1通道数:三通道并行采集A/D精度:24Bit采样率:1K-100KSps,多档可调频率范围:1Hz-500Hz幅值量程:0.01cm/s-35.5cm/s测试精度:测试精度±5%,读数精度0.01%记录模式:波形模式、电平模式、时间模式记录长度:1秒-99秒,连续可调触发电平:0.01cm/s-35.5cm/s,连续可调时间间隔:0-3600s上网方式:支持LAN/WAN/ADSL有线网络接入WI-FI局域网接入电信、联通、移动2/3/4G手机网络接入报警:仪器异常或幅值超标时主动以短信/电邮报警通信接口:LAN/USB接口,支持U盘导出数据存储容量:16GB固态硬盘,超10240次爆破事件存储显示屏: 3.7寸LCD屏,全中文显示工作环境:-30-75℃,90%RH尺寸/重量:175*108*72mm(长宽高),含手提箱重3.1Kg质保期:叁年d.监测精度监测最小精度5.0cm/se.监测频率每次爆破均需监测。
f.警戒值我国主要以爆破时质点振动速度(垂直方向)作为安全判定标准,由于建筑物的多样性和自身强度的多变性,每个建筑物的抗振速度都不同,应根据具体情况而定。
根据《爆破安全规程》(GB6722-2014),爆破时质点振动速度与建筑物破坏间的关系如表:砖石建筑物和构筑物的破坏与质点振速的关系建筑物和构筑物破坏情况振速(cm/s) 12抹灰中有细裂缝,掉白粉,原有裂缝有发展,掉小块抹灰0.75~1.5 1.5~3.0抹灰中有裂缝,抹灰成块掉落,墙和墙之间有裂缝1.5~6.0 3.0~6.0抹灰中有裂缝并有破坏现象,墙上有裂缝,墙之间的联系被破坏2.5~66~12墙壁上形成大裂缝,抹灰被大量破坏,砖体分离25~3712~24建筑物严重破坏,构件联系破坏,支撑墙间有裂缝,屋檐、墙壁可能倒塌,质量不太好的新老建筑物被破坏37~6024~481爆破振动监测;监测内容主要是测点的振动速度和振幅,根据监测结果调整和优化爆破参数。
详见1)节的既有高速公路大坪山隧道监测的爆破振动监测内容。
测点布置同地表下沉测点布置。
2.2监测实施要求(1)保证新建大坪山非机动车及人行隧道和围岩的稳定,确保施工安全。
(2)确保泉厦高速公路既有大坪山隧道的安全运营。
(3)最大限度降低隧道施工对东洞口地表苏大山墓及苏懋棋墓的影响,并且使其影响控制在相关规范允许的范围内。
3信息化监测和成果反馈3.1信息化监测流程为达到预定的监测目的,要进行科学合理的组织安排,监测必需严格按监测流程图进行,见监测流程图。
监测流程图3.2成果反馈体系根据我国城市建筑监测规则,大坪山非机动车及人行隧道第三方监测管理水平及管理体制可参照图管理水平及管理体制表。
表中管理水平Ⅰ级按警戒值的50%,管理水平Ⅱ级按警戒值的75%,管理水平Ⅲ级按警戒值的100%考虑。
上述标准可视实际监测项目和其重要程度作适当的调整。
监测成果反馈采用图监测成果反馈管理程序图管理。
同时,建立健全监测工作的质量保证体系,确保各项监测工作严格按监测方案及规范实施,保证监测数据的准确性和真实性。
监测数据收集后,及时整理和分析进行监测值的计算和图表绘制。
并快速、及时、准确地将信息(监测结果)反馈给业主。
每次监测结束后,及时进行数据计算和分析,当监测结果达到警戒值时,必须立即向业主代表进行口头报告,并在24小时内将书面报告递交到业主。
当监测结果未达到警戒值时,须在48小时内将书面报告递交到业主。
及时向业主报告监测成果,按要求提交各种监测报告。
现场监控量测,按监测方案认真组织实施,并与其它环节紧密配合,不得中断。
监测成果反馈管理程序图3.3数据的处理与报送监测数据的处理,采用相关软件对监测数据进行集中管理。
计算变化量、累计变化、变化速率、统计、分析,生成时程图和断面分布图,整理监测数据以规范的格式输出到Excel表格中。
根据合同的要求提供报告,程序生成的图表做为报告的一部分,插入报告中。
存在各种问题,通过我公司在施工监控量测方面多年的经验积累,能积极主动与施工单位沟通、协调、解决存在的问题。
同时我公司可为业主、设计及施工单位提供地质分析、物探管线调查等服务;对监测数据可进行反分析等数值解析等服务。