杜邦AEM产品介绍与应用
EAA 2174 EAA美国杜邦
![EAA 2174 EAA美国杜邦](https://img.taocdn.com/s3/m/01074204de80d4d8d15a4f5b.png)
美国杜邦EAA 2174产品简介EAA产品用途:EAA广泛应用于包装、粉末涂层、粘合剂、热熔胶、密封材料、水性溶剂等方面,下面简要介绍:1、包装:挤出涂覆生产饮料纸盒、牙膏管、电缆屏蔽层等,同时EAA还有抗撕裂、抗穿刺、防腐等保护作用;2、粉末涂层:EAA粉末可以喷涂于管材、钢材、无纺布等材料表面,作为防腐材料;3、热熔胶:高性能高MI的EAA可以生产热熔胶,用于难粘接材料;4、水性溶剂:高AA含量高MI的EAA在适当的反应条件下能溶解于热的碱性溶液,可以配制水性粘合剂,用于服装衣料等;5、降解环保材料:EAA与淀粉基材料共混可以生产降解塑料。
EAA 2174产品物性说明:Bynel Series 2100 resins are anhydride-modified ethylene acrylate resins. They contain a temperature stable ester that makes them functional in high temperature coextrusions. They are available in pellet form for use in conventional extrusion and coextrusion equipment designed to process polyethylene (PE) resins.总体材料状态∙已商用:当前有效供货地区∙北美洲∙非洲和中东∙拉丁美洲∙南美洲∙欧洲∙亚太地区性能特点∙食品接触的合规性用途∙薄膜∙吹塑成型应用∙涂敷应用∙粘合剂∙铸造薄膜机构评级∙FDA 21 CFR 175.105 形式∙颗粒料加工方法∙吹塑薄膜∙吹塑成型∙共挤出成型∙挤出∙挤压层涂法∙铸造薄膜物理性能额定值单位制测试方法比重0.963 g/cm³ASTM D792 熔流率(190°C/2.16 2.8 g/10 min ASTM D1238kg)热性能额定值单位制测试方法维卡软化温度60.0 °C ASTM D1525 熔融温度85.0 °C ASTM D3418 补充信息Freeze Point, ASTM D3418: 62°C挤出额定值单位制第1气缸区温度120 °C第3气缸区温度220 到 235 °C第5气缸区温度235 到 275 °C连接器温度235 到 275 °C熔体温度210 到 220 °C模具温度235 到 275 °C EAA 2174 图片展示:。
ACM橡胶简单介绍
![ACM橡胶简单介绍](https://img.taocdn.com/s3/m/6a87df0014791711cc7917ae.png)
丙烯酸酯橡胶简介以丙烯酸酯为主要单体经共聚而成的一种合成橡胶,具有耐高温、耐油、抗臭氧和耐紫外线辐照等特殊性能,是一种耐热、耐油的特种橡胶。
主要用作汽车和机车的各种耐热耐油密封圈、衬垫和油封。
丙烯酸酯橡胶发展历史1912年,德国人O.勒姆首次研究了聚丙烯酸酯的硫化。
1944年,美国的C.H.费希尔等开发了丙烯酸乙酯与2-氯乙基乙烯基醚共聚橡胶。
1948年,GOODREACH公司将该产品工业化。
1952年,美国单体公司开始生产丙烯酸丁酯与丙烯腈共聚的丙烯酸酯橡胶。
1955年,日本东亚合成化学也生产了丙烯酸丁酯-丙烯腈共聚橡胶。
1975年美国杜邦公司开发成功丙烯酸酯与α-烯烃共聚的橡胶,其典型代表是丙烯酸乙酯-乙烯无规共聚物和其后的丙烯酸乙酯-乙烯交替共聚橡胶。
这就是AEM橡胶。
丙烯酸酯橡胶的合成路线一类是乳液聚合,其主要品种有丙烯酸丁酯-丙烯腈共聚物,丙烯酸乙酯-丙烯酸丁酯-第三单体(如氯代醋酸乙烯酯等)三元共聚物,如高温胶和低温胶等,有良好的耐热、耐油性,但强度低(拉伸强度约10 MPa)、低温性能差(玻璃化温度Tg为-15~-28℃)。
这类高分子聚合物我们称之为聚丙烯酸橡胶-即大家非常熟悉的ACM橡胶。
另一类是溶液聚合。
丙烯酸酯与α-烯烃的溶液聚合橡胶,产品强度高、低温性能好(Tg为-38℃)。
这类烯聚合物的主要代表产品有美国杜邦化学的乙烯-丙烯酸酯橡胶即AEM。
丙烯酸酯橡胶的生产方法乳液法。
采用阴离子型和非离子型混合乳化剂(如十二烷基硫酸钠和烷氧基聚环氧乙烷),在水介质中将丙烯酸酯(包括乙酯和丁酯)或丙烯腈等乳化,并用水溶性引发剂引发聚合。
胶乳经凝聚、洗涤、干燥等工序即得干胶。
生胶的特性粘数[η]为4~6。
溶液法。
以卤代烃(如二氯甲烷)作溶剂,偶氮化合物作引发剂,以路易斯酸作络合剂,在约1MPa下使丙烯酸酯与α-烯烃(如乙烯)进行交替共聚,胶液经凝聚、回收溶剂后,即得交替共聚橡胶。
若采用过氧化物如过氧化三甲基醋酸叔丁酯作引发剂,在约180MPa的高压下使丙烯酸乙酯与乙烯共聚,则所得橡胶为无规共聚物。
杜邦AEM牌号发展过程
![杜邦AEM牌号发展过程](https://img.taocdn.com/s3/m/15313529cfc789eb172dc830.png)
Vamac® Ethylene Acrylic ElastomerUltra Ultra--SeriesRecent High Viscosity AEM Polymers withImproved Processability and PropertiesMakio Mori* and Klaus Kammerer DuPont Performance ElastomersPresented at IRCO2010 November 18th, 2010* Speaker2What is Vamac ®Ethylene Acrylic Elastomer? Heat ResistanceOzone ResistanceFluid ResistanceSuperior heat resistance compared to conventional ACM, H ACM, H--NBR, etc.Excellent ozone resistance due to absence of double bond on the backbone.Better oil resistance than VMQ, CR, etc.Superior resistance Ethylene / Acrylic ElastomerCH 2CH 2xCH CH 2C=O OCH 3yR C=O OH ZDeveloped and launchedin 1974 by DuPont.Made in USADuPont ConfidentialDampingLow Temperatureto EGR condensate.Better low temperature properties than H properties than H--NBR,FKM, etc.Outstanding vibrationdamping properties in awide temperature range.Vamac®Oil Cooler HoseTurbo Charger Hose Seal and Gasket DamperElastomer having good balance of high/low temp properties and oilresistance, mainly used in automotive parts3Vamac ®StructureCH 2CH 2CH CH 2R C=O C=O O OHEthylene Alkylacrylate Cure Site MonomerEthylene Units No Double Double--Bond Heat and ozone resist.High proportion of polym.backboneDuPont ConfidentialR’Ester StructureAlkyl Group Carboxyl Group Mechanical prop Low temp flex Acid resistanceBalance low temp prop and oil resistance (Non-polar)(Polar)Oil ResistanceForm stableamide and imide crosslinksGood Heat StabilityVamac® : R’=methyl Most polar esterIdeal elastomerHigh Viscosity Grades Vamac® -Standard and High Viscosity GradesModerate Oil SwellLow Oil SwellStandard Grade ML (1+4) 100°C, TgVamac® G16.5 MU, -30 °CVamac® GLS18.5 MU, -24 °CDynamic FlexFatigueVamac® GXF17.5 MU, -31 °CDuPont ConfidentialHigh Viscosity Grade ML (1+4) 100°C, TgMajor Features;Main ApplicationsVamac® Ultra IP29 MU, -31 °CVamac® VMX-311030 MU, -25 °CBest CompressionSet, Fast CureBest CompressionSet, Fast Cure, LowOil swellLow HardnessMolded parts, Seals& Gaskets, Highpressure hosesMolded parts withbest fluid andlubricant resistanceVamac® VMX-303830 MU, -32 °CBest Dynamic FatigueResistance;High TemperatureTurbo ChargerHosesVamac® GImproved Processing & Compression setDuPont ConfidentialVamac® Ultra IPHigher Viscosityfaster demolding and shorter cycle timeO-Ring Demolding Trials•Specially designed, self deflashing 120 cavity compression mold•Cavities arranged in 2 sets of 60 to permit side by side demolding evaluations•O-ring cavities with high surface area to promote demolding difficulties•Barwell extruder to make rod pre-form •Loading frame to position pre-formDuPont Confidential•Air line to blow parts off mold (no physical contact)Test Conditions:•Mold is cleaned thoroughly before testing •Mold pressure = 110 bars •Mold temperature = 190°C •Cure time = 90 seconds•Mold is not cleaned during testNo. of O-rings sticking to the mold is counted & reportedO-Ring Demolding Trials20253035O-Ring Compression Testg s S t i c k i n gVamac®GVamac®Ultra IPDuPont Confidential51015051015202530Number of ShotsN o . o f O -r i n Less mold foulingUltra IP has enhanced demolding properties compared to Vamac® G.Vamac® GImproved Oil SwellDuPont Confidential Improved Processing & Compression SetHigher ViscosityVMX 3110Vamac® GLSVamac®GLS vs. VMX-3110 –Physical Properties100 phr Polymer, Standard Process Aid and Antioxidant level,60 phr FEF black, 10 phr Rhenosin® W759, 2 phr Vulcofac® ACT 55, 1.75 phr DIAK TM No.1Vamac GLSVMX-3110Polymer Mooney, ML1+4@100o C 1834Compound Mooney, ML1+4@100o C 4070Hardness (Sh.A, 1 sec)76.675.3M100% (MPa)7.88.2DuPont ConfidentialTensile Strength (MPa)16.618.3Elongation (%)200232Crescent Tear Die C (N/mm)24.628.2CS ISO 815, 70 hrs at 150o C 26.621.1VW CS PV3307, 22 hrs at 150o C55.238.8Cure 5 min at 180 o C and Post-Cure 4 hrs at 175 o C-No significant impact on Compound Hardness-Significant Improvement of Stress-Strain Properties +15 %+16 %+10 %Vamac® GAEM Polymers for Applications with HighestRequirements for Flex FatigueDuPont ConfidentialImproved Processing –High temperatureHigher Viscosity GradeVMX 3038Vamac® GXFComparison of Vamac®GXF and Vamac®VMX-3038GXF VMX-3038Vamac®GXF100Vamac®VMX-3038100Naugard®4452 2 Vanfre®VAM 1 1 Stearic Acid 11FEF black4545 Formulations DuPont ConfidentialAlcaplast®PO 8022Diak TM No.11.11Vulcofac® ACT-5522Mooney viscosity ML1+4@100o C(MU)4666ML5up@121o C(min)8.98.1MDR at 180o C ML (dNm) 0.450.78MH (dNm)11.112.9Ts2 (min) 1.00.9Tc90 (min)6.8 6.113GXFVMX-3038Cure 10 min at 180o C and Post cure 4 hrs at 175 o CTensile at 23o C Hardness (Sh. A)6767M100% (MPa) 3.3 3.3TB (MPa) 18.020.3EB (%)377421Tensile at 175o C M100% (MPa) 3.2 3.7TB (MPa) 4.8 5.5-VMX-3038 hasbetter initial properties-VMX-3038 exhibits very stable DuPont Confidential EB (%)135132Compression Set, 70 hrs at 150o C, ISO-815 CS (%)2624Heat aging, 94 hrs at 200o CHardness (Sh. A)7069TB (MPa) 13.214.6EB (%)324374DeMattia Cut Growth at 150o C(5 Hz) aft aging 94 hrs at 200o CMed. of 5 samples15155Ave. of 5 samples 23325modulus and hardness after aging-VMX-3038 exhibits better retension of propertiesVamac® G Ultra IP VMX-3110 VMX-3038 HT-ACMCure 10 min at 180o C and Post cure 4 hrs at 175 o C Hardness (Sh. A)6858616463 TB (MPa) 15.117.517.518.614.6 EB (%)347407343448344Properties at 23o C aft. aging in EGR solution for 168 hrs at 90o C in liquid contact HS change (pts)10-2-5-8TB change (%)5121413-36Resistance to EGR condensateDuPont ConfidentialEB change (%)40.80.80.8-32Vol. change (%)8771015Properties at 23o C aft. aging in EGR solution for 168 hrs at 90o C in gas contact HS change (pts)-5-4-6-6-11TB change (%)-72-713-42EB change (%)-1-1-212-42Vol. change (%)111110914Vamac® exhibits superior resistance to EGR condensate when contacted with either liquid or gas compared to HT-ACM.Recently introduced, high viscosity AEM Ultra polymers offer significant advantages compared to standard Vamac®gradesHigh compound viscosity and longer Scorch times allow for better dispersion and may cut mixing cycle one-pass mix Faster Cure and cleaner molding processesHigher viscosity and faster cure allow for more compounding possibilitiesBetter physical properties open new opportunitiesSummaryDuPont ConfidentialTensile, Elongation, Tear, Heat Resistance High T, high pressure hoses Abrasion Resistance Shaft SealsFaster cure Suitable for combinations with thermoplastic parts Bright/Colored Compounds with better processing and properties Better retention of sealing force (CSR) Seals and GasketsSuperior acid resistance with improved processability and physical properties may give solution to latest EGR-equiped TC engine system.Blending of Ultra Grades with standard grades may be possible at various ratios for optimum price/performance ratio.The information set forth herein is furnished free of charge and is based on technical data that DuPont Performance Elastomers believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present nohealth or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendationto infringe on patents. While the information presented here is accurate at the time of publication, specifications can change. Please check for the most up-to-date information.Caution : Do not use in medical applications involving permanent implantation in the human body. For other medical applications,discuss with your DuPont Performance Elastomers customer service representative and read Medical Caution Statement H-69237.DuPont ConfidentialDexron® is a registered trademark of General Motors.Vamac® is a registered trademark of DuPont and is brought to market by DuPont Performance Elastomers.DuPont™ and Zytel® are trademarks and registered trademarks of DuPont and its affiliates.Spheron® is a registered tradmark of Cabot Corporation.Naugard® is a registered trademark of Uniroyal.Armeen® is a registered trademark of Akzo Nobel.Vanfre® is a registered trademark of R.T. Vanderbilt.Castrol® is a registered trademark of Castrol, Ltd.Lubrizol® is a registered trademark of Lubrizol Corporation.Di-Cup® is a registered trademark of Hercules Powder Company.Dexron® is a registered trademark of General Motors.Vulcofac® is a registered trademark of Safic-Alcan.Struktol® is a registered trademark of Schill & Seilacher.Rhenogran® and Rhenosin® are registered trademarks of Rheinchemie.DIAK™ is a trademark of DuPont Performance ElastomersCopyright© 2009 DuPont Performance Elastomers L.L.C. All rights reserved.。
杜邦^(TM)Vamac~
![杜邦^(TM)Vamac~](https://img.taocdn.com/s3/m/c5441087dc3383c4bb4cf7ec4afe04a1b071b001.png)
杜邦^(TM)Vamac~AEM产品系列推出超高耐热新弹性体
材料
佚名
【期刊名称】《塑料制造》
【年(卷),期】2015(0)8
【摘要】Vamac VMX5000提升AEM在密封件和垫圈、空气管理系统和高温水管应用领域中的性能瑞士日内瓦,2015年6月29日—在2015年德国国际橡胶工业展览会国际橡胶会议上,杜邦高性能聚合物事业部推出了杜邦
TMVamac VMX5000系列。
这是一个新型已商业化的乙烯丙烯酸酯弹性体(AEM)预混胶系列,它可以将AEM应用温度上限提高15℃到20℃,不仅提供了目前AEM产品中无可匹敌的耐热性能,还改进了它的长期静态热老化寿命。
【总页数】2页(P35-36)
【关键词】AEM;TM)Vamac;弹性体材料;高性能聚合物;橡胶工业;汽车主机厂;温度上限;高温水;热老化;密封件
【正文语种】中文
【中图分类】TQ325.2
【相关文献】
1.杜邦TMVamac AEM产品系列推出超高耐热新弹性体材料 [J], ;
2.杜邦TMVamac(R) AEM产品系列推出超高耐热新弹性体材料 [J],
3.杜邦TMVamac AEM产品系列推出超高耐热新弹性体材料 [J],
4.杜邦推出Vamac~ VMX 5000系列耐热弹性体材料 [J],
5.杜邦^(TM)Vamac~ AEM产品系列推出超高耐热新弹性体材料 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
杜邦的功能主治
![杜邦的功能主治](https://img.taocdn.com/s3/m/7343c3722f3f5727a5e9856a561252d380eb20e5.png)
杜邦的功能主治简介杜邦(英文名:Dupont)是一种常用的材料。
它具有多种功能和主治,在许多领域有着广泛的应用。
本文将介绍杜邦的功能主治,以及它在不同领域的应用情况。
功能主治1. 强度和韧性•杜邦具有出色的强度和韧性,可以承受高度的力量和压力。
它是一种优秀的结构材料,在建筑和工程领域有着重要的应用。
例如,它可以用于制造高强度的桥梁、船舶和飞机部件。
2. 耐热性•杜邦具有优异的耐热性能,可以在高温环境下保持其强度和稳定性。
它常用于制造耐高温设备、汽车引擎部件和航天器零部件。
3. 耐腐蚀性•杜邦对许多化学物质具有良好的耐腐蚀性能,能够长期保持其表面的精美和光滑。
因此,它被广泛用于制作化学储罐、管道和各类容器。
4. 绝缘性•杜邦材料具有优秀的绝缘性能,可以防止电流和热能传导。
它常被应用于制造电子设备、电缆和电气绝缘材料。
5. 轻质•杜邦是一种轻质材料,具有较低的密度。
这使得它在制造航空器和汽车的结构部件时,能够减轻整体重量,提高燃油效率。
6. 环保性•杜邦是一种可回收利用的材料,并且制造过程中不会产生有害气体或污染物。
这使得它成为一种环保的选择,广泛应用于可持续发展的领域。
应用领域1. 建筑和工程•杜邦材料常用于制作建筑结构、桥梁、船舶和飞机部件,以及各种需要强度和韧性的工程设备。
2. 车辆制造•杜邦材料在汽车工业中得到广泛应用。
它可以用于制造车身结构、发动机部件和内饰,提高车辆的安全性和燃油效率。
3. 化学工业•杜邦材料因其耐腐蚀性和良好的化学稳定性,被广泛应用于制造化学储罐、管道和容器。
4. 电子领域•杜邦的绝缘性能使其成为制造电子设备、电缆和电气绝缘材料的理想选择。
5. 航空航天•杜邦材料的强度、耐热性和轻质特性,使其在航空航天领域有着重要的应用。
它可以用于制造飞机部件、火箭推进器和航天器零部件。
6. 医疗器械•杜邦材料常用于制造耐高温、耐腐蚀的医疗器械,如手术工具、人工关节和牙科材料。
总结杜邦是一种多功能的材料,具有强度和韧性、耐热性、耐腐蚀性、绝缘性、轻质和环保性等功能主治。
什么是动态硫化及动态硫化橡胶介绍
![什么是动态硫化及动态硫化橡胶介绍](https://img.taocdn.com/s3/m/37ca377201f69e31433294d4.png)
什么是动态硫化?What is DV?一、动态硫化的定义动态硫化是指将未硫化的生胶与不能硫化的热塑性聚合物如PP、PVC、PA等树脂在高温,强剪切的共混设备中熔融共混,同时在交联剂的作用下将橡胶相硫化,得到大约尺寸在微米级别的硫化橡胶微粒,并均匀的分散于树脂中,并且这种结构非常稳定,在加工过程中不会发生物性变化。
如EPDM/PP、NBR/HPVC、ACM/PA等等。
这正好与传统的橡胶硫化相反,传统橡胶硫化加工,通常采用的是平板硫化机,经过配合的生胶是固定在橡胶模具型腔内,加热到一定温度,然后开始硫化反应,也可以说是一种“静态硫化”。
二、动态硫化弹性体体的优势通过动态硫化制造的热塑性弹性体,因为其中的橡胶分散相得到了交联,所以可大幅提高简单共混型热塑性弹性体的性能,如高温永久变形性、耐热性和耐油性等。
因为连续相基料是热塑性塑料,所以可以采用与通用热塑性塑料一样的成型方法如:注射、挤出、吹塑、压延成型等,所以不需要像传统橡胶制品加工工艺一样,需要炼胶(开炼和密炼)、硫化等工艺,降低了设备投资、劳动力成本,提高了效率。
同时它还可以废料可再生利用,这也是热塑性弹性体共同的特性,对于环保来说是非常有积极意义的。
三、动态硫化工序介绍橡胶生胶、热塑性塑料和适宜的硫化剂体系,在适宜的温度和剪切力作用下熔融共混,熔融共混温度应高于热塑性塑料熔融温度,低于高分子材料热降解温度,而又能使橡胶相发生交联反应。
共混设备应采用能产生可控的最佳温度场和剪切强度的设备,如双螺杆挤出机、密炼机等。
操作时应保持必须的共混和硫化时间,使弹性体组分被高度硫化交联,并被剪切成1~5μm粒子均匀分散在热塑性塑料连续相中。
所以动态硫化是橡胶组分和热塑性塑料在充分熔融共混状态下,橡胶组分能在较短时间呈微米级分散,并同时完成硫化交联的一种共混工艺。
四、动态硫化热塑性弹性体介绍许多塑料和橡胶之间可形成动态硫化热塑性弹性体(因为简称TPV),但仅有个别共混物经过动态硫化后具有实用价值,目前商业化的有PP/PE/EPDM,PP/NBR,PA6/ACM,PP/SEBS, TPEE/AEM。
AEM参数手写
![AEM参数手写](https://img.taocdn.com/s3/m/4c501ae8551810a6f5248665.png)
橡胶性能
乙烯丙烯酸酯橡胶即AEM,由美国杜邦公司生产,商品名为VAMAC的弹性体橡胶。
AEM的使用温度为-40℃~175℃。
它具有优异的长期耐高温性和对维护润滑剂的抗油性,同时还具有良好的低温柔韧性。
具有优异的压缩永久变形和压缩变形回复性。
具有良好的耐臭氧性能。
分子结构
(CH2-CH)n(CH2-CH)m(R)P
COOCH3COOH
产品介绍
*门尼粘度测试 **硫化仪 MDR 更多硬度、颜色可供选择ML1+10:121℃ 177℃×6MIN
试片准备
一段170℃×10min 硬度依据GB/T528-1998测试
二段170℃×4h 硬度依据GB/T531-1998 测试
1.1硫變機簡介(一):
原理:模腔內試樣連續地承受恆定小掁幅和低頻率的正弦剪切變形,
由測力傳桿器測定剪切應力。
硫變曲線:
TS2:表示從最低扭矩上升2個單位所對應的時間。
ML:表示膠料的最小扭力值 (N□M、 LB-IN)
MH:表示膠料在規定的時間內測試之最大扭力(N□M、 LB-IN) TC60:表示膠料在60%硫化程度時之時間
TC90:表示膠料在90%硫化程度時之時間
操作影響硫變的因素:
試驗溫度、膠料樣大小
試樣承受力、轉子模腔的髒污
膠料表面隔離劑。
Vulcofac ACT 55 在杜邦AEM中的应用
![Vulcofac ACT 55 在杜邦AEM中的应用](https://img.taocdn.com/s3/m/6766f20d52ea551810a68779.png)
2 runs 100 phr
2 60 1 10
1 run 100 phr
2 60 1 10
1 run 100 phr
2 60 1 10
100 phr 2 60 1 10
Stearic Acid
1.5
Armeen® 18 D
0.5
Diak™ No. 1
1.5
Ekaland DOTG/C 100%
4
Rhenogram DPG 80%
69.8
69.3
4.8
4
15.6
14.8
Elongation, %
325
369
Tear Crescent Die C. Fmax, dNm/min
26.8
28.2
Figure 3. DOE with Vulcofac® ACT 55 — Mechanical properties
Control 3 (DPG)
Table 1. DOE (Design of Experiment ) with DuPont™ Vulcofac® ACT 55
Control Compounds
1
2
3
Vulcofac® ACT 55 Variations
DuPont™ Vamac® G Naugard® 445
Sterling SO N-550 Vanfre® VAM Rhenosin® W759
3
Table 4. Control Compounds — Mechanical Properties
Control 1
Control 2
(DOTG)
(DOTG/DPG)
Hardness, Shore A, 1 sec Modulus 100%, MPa Tensile Strength, MPa
AEM-5700PK 防霉抗菌膏1
![AEM-5700PK 防霉抗菌膏1](https://img.taocdn.com/s3/m/6af5cec358f5f61fb7366626.png)
AEM-5700PK防霉抗菌膏我们采用独特的键结性的非释放型的抗菌材料,永久地键结在产品表面形成抗菌层,细菌、霉菌等微生物接触到制品表面时,表面上的抗菌层吸引并刺破其细胞薄膜,将其迅速消灭,抑制产生臭味的各种细菌生长繁殖,阻止微生物分解作用,恶臭无从发生,经水洗亦能保持良好的防臭效果。
几乎所有的基质都有良好的结合性,包括自然或合成的纤维、皮革、人造革等。
产品性质:品名:AEM-5700 PK防霉抗菌膏成分:性状:膏体保质期:三年清洁气味:无色无味规格: 5公斤、25公斤/桶包装使用范围:农业、轻工业、制造业、皮革制品、家用小电器、适用:皮质家具、真皮座椅、皮鞋、皮包等特点:1.安全性极高,无毒、无刺激、不燃、无色无味,杰出的耐水洗性。
高效耐久的抗菌性低浓度时即具有优秀的抗菌效果,健康舒适2.广谱型的抗菌活性对革兰氏阴性菌、革兰氏阳性菌、真菌、霉菌具有广谱抗菌活性3.良好的防臭效果能减少由微生物繁殖引起的恶臭,抑制霉菌生长,防止织物发霉、产生霉斑,消除衣物上人体汗液产生的臭味。
清新持久。
4.操作简单,通过在织物表面的牢固结合,赋予纺织品显著的舒适性,形成持久耐水洗的抗菌层,适用于绝大部分纺织品种类及皮革加工,专用于皮鞋类等制品抗菌防霉防臭处理。
5.因为不会被擦掉、没有渗出、游移到环境或人体皮肤,对人体皮肤无任何刺激、毒副作用,不含砷、锡、重金属或多氯酚,也不会造成人体伤害或破坏环境等,更不会使微生物产生适应性或抗药力。
使用方法:1.用海绵或抹布顺时针打圈擦拭。
2.银笔或者污渍多的地方多擦拭几圈。
3.如果表面太脏,建议先用软刷进行清洁,然后再用本品擦拭,能节约用量和达到更好的效果。
注意事项:擦拭效果和所用皮料有关,为了您和您的产品着想,我们建议先在不显眼的地方小面积试用,可恢复原色再大面积使用。
杜邦AEM牌号发展过程
![杜邦AEM牌号发展过程](https://img.taocdn.com/s3/m/a7310556c381e53a580216fc700abb68a982adfd.png)
杜邦AEM牌号发展过程杜邦公司(DuPont)是一家全球化科技公司,致力于开发创新的材料、产品和解决方案,为各个行业带来可持续发展的解决方案。
其中,杜邦AEM(Aramid Electrical Material)牌号是杜邦公司在电气工程领域中所开发的一种特殊材料。
杜邦AEM牌号的发展过程可以追溯到20世纪60年代。
在当时,随着电气设备的不断发展和磁场强度的提高,传统的绝缘材料已经无法满足需求。
为了应对这一问题,杜邦公司开始研发一种新的电气绝缘材料,以提供更好的性能和可靠性。
最初,杜邦公司聚焦于研发新型的纸介电材料。
在研究过程中,他们意外地发现了一种非常特殊的聚酰亚胺纤维。
这种纤维具有出色的电气绝缘性能、高温耐受能力和化学稳定性,被称为“奇异聚合物”。
鉴于其特殊性质,杜邦公司决定专门将其应用于电气领域,从而诞生了杜邦AEM牌号。
随后,杜邦公司对AEM进行了进一步的研发和改良,以提高其性能和满足不同应用领域的需求。
他们引入了新的聚酰亚胺工艺,通过调整纤维的结构和化学组成,将AEM进一步优化为可用于高温、高压和高频环境的理想材料。
在此过程中,杜邦公司与各界合作伙伴紧密合作,共同推动杜邦AEM牌号的发展。
他们与电力公司、电气设备制造商和研究机构合作,共同研究和验证AEM在电气工程领域中的应用潜力。
通过实地测试和样品制造,他们验证了AEM材料的优越性能,并推动了其在电力输配、电缆绝缘和电动车辆等领域的广泛应用。
随着时间的推移,杜邦AEM牌号逐渐成为电气工程领域中的标准材料之一、不仅在传统的电力领域得到广泛应用,如发电、变电、配电等,还在新兴的领域如可再生能源、电动车辆和智能电网等方面发挥了重要作用。
杜邦AEM牌号的成功发展离不开杜邦公司对科学研究和技术创新的持续投入。
他们致力于不断改进AEM的性能、耐久性和安全性,以满足不断变化的市场需求。
通过持续的研发和技术改良,杜邦公司不断推动AEM材料向更高级别、更广泛的领域发展,并为电气工程行业的可持续发展做出了重要贡献。
Vamac乙烯丙烯酸酯弹性体用途介绍
![Vamac乙烯丙烯酸酯弹性体用途介绍](https://img.taocdn.com/s3/m/3300440403d8ce2f0066238a.png)
Vamac乙烯/丙烯酸酯弹性体在汽车中的应用Vamac是杜邦公司为乙烯/丙烯酸酯(AEM)弹性体注册的商标名称。
该产品于1974年商业化,并按照美国材料协会ASTMD2000的有关内容将名称缩写为AEM。
Vamac是一种特殊的弹性体,与CR、Hypalon、EPDM、CPE和ECO等弹性体相比,它在耐热、耐油性方面均有显著的提高;而与氟弹性体、氟硅橡胶和HN—BR相比,它的价格则低许多。
它适用于生产汽车工业中性能要求较高的橡胶部件。
今天,Vamac混炼胶的应用也日益多样化。
它被用于汽车发动机和传动系统的各种密封部件和软管,以使部件具有良好的综合性能和可靠性,如耐高低温性和耐油性。
AEM在动力系统密封部件的应用实例有:活塞密封、凸轮盖垫片、汽缸前盖密封、油盘垫片和各种O 形圈等。
现有的软管应用包括:发动机涡轮增压管、发动机空气冷却管、传动油冷却管、动力转向管(低压)、空调管、各种气管和燃油通风管(PVC管)等。
Vamac混炼胶同时也是用生产同轴扭力阻尼器的一种极好的高温材料,它在宽广的温度范围内具有较高并且连续稳定的阻尼作用(tano)。
Vamac®G是一种由乙烯、甲基丙烯酸酯及硫化单体组成的三元共聚物,它的硫化采用的是以胺为基础的橡胶硫化体系。
它含有少量加工助剂,比重为1.03。
有轻微的丙烯酸酯味道,故在加工、混炼及贮存过程中必须有适当的通风,以防止丙烯酸酯气体聚集。
本产品具有良好的贮存稳定性。
本文旨在与业界一起回顾有关Vamac的一些技术信息,例如:产品、混炼胶性能和在汽车中的应用等。
l Vamac产品类型及牌号Vamac产品可分为两类,即VamacG型三元共聚物和D型二元共聚物。
这两种类型产品的分子结构如图l所示。
G型三元共聚物由乙烯、甲基丙烯酸酯(MA)和一个有机酸硫化单元构成,它通常采用二胺硫化体系。
D型二元共聚物则仅由乙烯和甲基丙烯酸酯构成,硫化是采用过氧化物进行的。
G型和D型聚合物的主链为完全饱和结构,因此都有极佳的抗臭氧、氧气和紫外线的作用。
常用橡胶材料的特点与使用范围
![常用橡胶材料的特点与使用范围](https://img.taocdn.com/s3/m/8f0a09238e9951e79b8927cb.png)
常用橡胶材料的特点及使用范围 种类与缩写 化学名称 主要特点 主要应用范围 使用温度范围℃天然胶(NR ) 聚异戊二烯 弹性最佳,耐磨耗,机械性能佳; 耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。
胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。
特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品-60~+80合成天然胶(IR ) 由异戊二烯单体聚合而成的一种顺式结构橡胶 具有天然橡胶的大部分优点,耐老化优于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差 可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。
-50~+100 苯乙烯橡胶(SBR ) 丁二烯-苯乙烯的共聚物 耐磨耗性比天然橡胶好,抗老化性好; 弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。
以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品;可用于乙醇及汽车刹车油密封,不能用于矿物油中 -50~+100丁二烯橡胶(BR ) 聚丁二烯 弹性和耐磨性好,耐老化,耐低温,在动态负荷下发热量小,易于金属粘合。
缺点是强度较低,抗撕裂性差,加工性能与自粘性差与天然橡胶相同 -60~+100 氯丁胶(CR ) 聚氯丁二烯 它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然主要用于制造要求抗臭氧、耐老化性高的电缆护套及各种防护套、保护罩;耐油、耐化学腐蚀的胶管、胶带和化工衬里;耐-45~+100橡胶好, 耐寒性较差,比重较大、相对成本高,电绝缘性不好,加工时易粘滚、易焦烧及易粘模。
此外,生胶稳定性差,不易保存。
燃的地下采矿用橡胶制品,以及各种模压制品、密封圈、垫、粘结剂等。
不能用于低温的矿物油中丁基胶(HR ) 异丁烯-异戊乙烯共聚物 气密性好,耐臭氧、耐老化性能好,耐热性较高,长期工作温度可在130℃以下;能耐无机强酸(如硫酸、硝酸等)和一般有机溶剂,吸振和阻尼特性良好,电绝缘性也非常好。
AEM多层陶瓷式保险丝应用指南
![AEM多层陶瓷式保险丝应用指南](https://img.taocdn.com/s3/m/c7b2d8e79b89680203d8252e.png)
AEM新型叠层多元陶瓷片式熔断器应用指南AEM科技(苏州)有限公司应用工程师铁生武摘要熔断器在电路保护中起着关键作用。
对熔断器的基本要求是不该断的时候不能断(比如在出现浪涌电流的时候),该断的时候一定要断(比如出现需要切断的过载电流的时候)。
选择正确的熔断器至关重要,本文对熔断器的选择做一详细介绍。
一.熔断器的工作原理:当电流通过导体时,因导体存在一定的电阻,所以导体将会发热且发热量遵循着Q=I²Rt,其中Q是发热量,I是通过导体的电流,R是导体的电阻,t是电流通过导体的时间。
当制做熔断器的材料及其形状确定,其电阻R就相对确定了(若不考虑电阻温度系数),当通电流后就会发热,随时间增加其发热量亦增加,如果产生的热量超过散发的热量,熔断器的温度就会增加,当温度升到熔断器的熔丝熔点时熔断器就发生熔断亦即断开电路起到保护作用。
二.熔断器的主要参数:1,工作温度: 指熔断器周围的温度,AEM熔断器的工作温度范围为-55℃到+125℃。
2,尺寸:片式熔断器通常采用EIA/EIAJ规定的标准尺寸:1206,0603,0402。
3,额定电压: 熔断器在切断过载电流过程中所能承受的最高电压。
4,额定电流: 熔断器所能承载的工作电流,目前AEM熔断器可提供的额定电流范围由0.25A到8A不等。
5,额定分断能力:又称短路截流能力,额定电压下能安全切断的最大故障电流。
6, 熔断特性:在给定过载电流情况下的熔断速度。
7,熔化热能:I²t指熔断器熔断所需要的能量。
三.熔断器选用时须考虑的主要参数:1,工作温度:熔断器工作时的环境温度应在规定的工作温度范围之内,当环境温度超过25℃时,应参照温度折减曲线降级使用。
2,额定电压:熔断器所在电路中的最高电压不应超过熔断器的额定电压。
3,额定电流:通过熔断器的工作电流不应超过额定电流的75%。
4,短路截流能力:熔断器所在的电路中可能出现的最大短路电流不应超过熔断器的短路截流能力。
杜邦AEM产品介绍与应用
![杜邦AEM产品介绍与应用](https://img.taocdn.com/s3/m/be7a3e02fbd6195f312b3169a45177232f60e4fb.png)
杜邦AEM产品介绍与应用Technical Information — Rev. 2, July 2010The principles of compounding are similar to conventional technology in that curatives, fillers, antidegradants, plasticizers and process aids all are used. As with other high-performance, heat-resistant elastomers, the choice of potential additives tends to be smaller, and their selection more specific. Equal attention must be given to avoid ingredients that could give detrimental effects.Polymer SelectionDuPont? Vamac? terpolymers are the most widely used grades of Vamac?. However, the terpolymers and dipolymer are similar in major properties such as heat and oil resistance. There are some differences in processing characteristics.Vamac? G, the general-purpose terpolymer, has a higher-viscosity variant, Vamac? HVG, which can be considered for applications requiring increased green strength or generous loadings of plasticizer. Vamac? GLS, a higher methylacrylate grade, offers improved oil resistance, in exchange for slightly reduced low-temperature flexibility. Vamac? GXF improves the elevated temperature tensile properties and dynamic fatigue resistance while exhibiting a longer cure and higher compression set.Vamac? DP is a dipolymer analog of Vamac? G. Compared with the diamine-cured terpolymer, it contains no reactive curesite and must be cured via a peroxide/coagent system.The following table summarizes the most important differences between the terpolymers and dipolymer.Table 1. Vamac? Polymer SelectionNominal ML 1+4 100 °C TerpolymersGood physicals/compression setGood metal bondingLow hardness compounds possibleGood flex resistanceModerate scorch timesNeed post-curingG 16.5VamacVamac HVG 26GLS 18.5VamacVamac GXF 17.5 DipolymerMinimized need for post-cure to attain low compressionsetLong scorch timesLess affected by oil additivesVamac DP 22AntidegradantsDuPont? Vamac? terpolymers, G, GLS, GXF and HVG, require the addition of two parts of asemi-staining diphenylamine antioxidant in black formulations. Only one part is used in Vamac? dipolymercompounds, because the antioxidant interferes with the peroxide cure. If ultimate aging performance is necessary in the dipolymer, then the level of diphenylamine antioxidant can be increased to two parts, with a slight increase in the peroxide level to minimize the effect on cure state and compression set. Two parts of a nonstaining phenolic antioxidant, such as Santowhite powder, can be used in nonblack compounds.Contact with zinc (e.g., hose couplings) catalyzes heat aging in Vamac?, including dipolymer compounds. Hydrazine antioxidants are effective in preventing the zinc-catalyzed attack. One part of ADK STABCDA-6 or two parts of inhibitor OABH are suggested. No antiozonants are necessary in any Vamac?formulation.FillersCarbon black is the preferred filler for Vamac?. It has no effect on its heat aging properties, and is beneficial to compression set and flex resistance. The majority of Vamac? compounds contain N762 orN774 SRF blacks, or N550 FEF black. All give good reinforcement with or without plasticizer.High-structure blacks such as N-683 or Spheron? 5000 also are suitable. Highly reinforcing blacks such as ISAF tend to respond best without accompanying plasticizer, probably due to the limited shear dispersion available from the polymer during mixing. Low-structure blacks also can be difficult to disperse. MT black may be used as a filler and diluent.Mineral fillers should be selected with care. For high physical properties, tensile and tear, a fumed silica is most effective and has the least effect on heat aging properties. Fumed silica significantly increases compound viscosity and increasescompression set, and therefore is normally incorporated at moderate levels of up to 25 parts. Surface-treated talc also is reinforcing, with much less effect on compression set compared with fumed silica.Calcium carbonate may be used at quite high levels without too much effect on heat aging; the best reinforcement comes from the precipitated form. Barium sulfate also is suitable as a high-level filler.Aluminum hydroxide is used frequently as a flame-retarding filler in Vamac?. However, it should berecognized that ultimate heat aging performance will be sacrificed when this filler is used. Compoundmodulus will usually increase with time as ionic crosslinks form in the terpolymer under the influence ofaluminum hydroxide. This effect is not present in dipolymer compounds.Magnesium hydroxide can only be used in Vamac? dipolymer. Other active metal oxides should beavoided in terpolymer, although low levels of iron and chrome oxides may be used as pigments. Limitedamounts of antimony trioxide can also be tolerated in flame retarded compounds. Metal stearates,present in some grades of calcium carbonate, can affect heat aging.Zinc compounds are harmful to all Vamac? types.Table 2. Reinforcing Agents/FillersPermissible Preferred UnsuitableCarbon blacks Metal oxides Titanium dioxide (to 5 parts)Fumed Colloidal silica (up to 25 parts) Metal stearate coated fillers Chromium oxide (to 5 parts)Uncoated calcium carbonate Clay Antimony trioxide (to 5 parts)Blanc fixe High levels of silica Iron oxide (to 3 parts)Coated talcTable 3. PlasticizersFor Vamac? Dipolymer:Linear trimellitate –45 to 155 °C trioctyl trimellitateLow volatility alkyl trimellitate –40 to 170 °C Bisoflex? T810T, Pasthall 810TMTri isononyl trimellitate –40 to 170 °C ADK cizerC-9NPolyester –30 to 170 °C Plasthall? 670For Vamac? Terpolymers:Linear polyester types Best heat stability (–25 °C to 180 °C) Mixed ether/ester types Optimum balance of low and high-temperature properties–45 °C to 160 °C Thi ocol TP 759/Nycoflex ADB30–40 °C to 175 °C ADK Cizer RS735Monomeric esters –55 °C to 125 °C dioctyl sebicatePlasticizersA frequent cause of poor aging performance is a poor choice of plasticizer. It is important that theselected plasticizer be nonvolatile and stable at the highest expected service temperature. For the besthigh-temperature performance, polyester plasticizers are recommended. Most polyesters are effective upto or over 180°C. However, this class of plasticizer is not very useful for improving low-temperatureflexibility. Standard monomeric ester plasticizers such as DOS produce the best low-temperatureflexibility, but are limited to 125 °C to 135 °C in continuoususe.The most useful plasticizer and best compromise for high- and low-temperature performance is the mixedether/ester type such as Nycoflex ADB 30, Thiocol TP 759 and ADK Ciser RS 735. An approximatetemperature range of –40 °C to 170 °C can be covered with these materials, depending upon final choiceand mode of test.The ether/ester types are unsuitable for Vamac? dipolymer, because they retard the peroxide cure.T8 10T, ADK Ciser C-9N and Plasthall 670 having theTrimellitate types are more suitable with Bisoflex??lowest volatility. Trioctyl trimellitate is a good general-purpose example. The level of plasticizer is normally5-15 parts for dipolymer, but terpolymer types can tolerate much higher loadings.Cure SystemsMost articles made from Vamac terpolymer are cured with a combination of a guanidine and a blocked primary diamine (Diak ? No. 1). Permanent cross-links are formed by reaction with the carboxylic sites on the polymer backbone. This system gives a good blend of cure rate and physical properties. Small variations in diamine level and selection of guanidine type can effectively highlight certain performance features such as compression set and flex resistance. Other curatives known to be reasonable substitutes for Diak ? No. 1 are triethylene tetramine, and methylene dianiline (MDA). Some of these materials may be preferred in dispersed form to reduce handling hazards. MDA may not be permitted in some countries.Peroxide systems may be used in Vamac ?terpolymer, particularly for cable applications where fast cures under continuous pressurized vulcanization are desired. Peroxides are not recommended for molded articles where poor hot tear strength and mold sticking may cause difficulties.Compression set may be poor when peroxide cures are used with terpolymers. Best results are obtained from DOTG/Diak ?? No. 1 combinations and DPG/Diak No.1 combinations.Table 4. DuPont Vamac Cure SystemsFor TerpolymersGeneral PurposeCure SystemParts Cure RateDiak ?No. 1 GuanidineDiak ?For compression set1.5 FastNo. 1DOTG4 Diak ? 1.25 MediumFor flex resistance No. 1 DPG4 Diak ?No. 1 AlternativesHigh modulus Triethylene tetramine FastSafe scorch Methylene dianiline Slow Thick Sections (Guanidine Substitution)Diak ?1.25 1.5 No.1Secondary amine 6 (Armeen 2C)4 Cables (fast continuous cure) Peroxide 7.5 (Perkadox 14/40)HVA-2 2 For DipolymerMoldings and Best PropertiesPeroxide 5 (Di-Cup ? or Vul-Cup ? 40%)HVA-2 2 Hose/General PurposeVarox ?50% DBPH5TAC 2Vamac ?dipolymer may only be cured with peroxides. Because no acid cure site monomer is present, mold release is easier than with peroxide-cured terpolymer. The level of peroxide should be moderate to help demolding elongation and suppress blisters. Compression set resistance is good without post-curing and rivals that of post-cured terpolymer.HVA-2 is a good all-around coagent, giving fast cures and optimized physical properties. However, the lower-cost, triallylcyanurate often can be substituted. Zinc methacrylates should be avoided.Very thick molded articles can be made from Vamac ?terpolymer, but require a special variation on the guanidine/DIAK ? No. 1 system, where the guanidine is replaced by a secondary amine,Armeen ? 2C.Page intentionally left blank.Visit us at Contact DuPont at the following regional locations:North America Latin America Europe, Middle East, Africa 800-222-8377+0800 17 17 15+41 22 717 51 11Greater China+86-400-8851-888ASEAN Japan+65-6586-3688 +81-3-5521-8484The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable and falls within the normal range of properties. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont customer service representative and read Medical Caution Statement H-50103-3.Copyright ? 2010 DuPont. The DuPont Oval Logo, DuPont?, The miracles of science?, Diak?, Viton?, and Vamac? are trademarks or registered trademarksof E.I. du Pont de Nemours and Company or its affiliates. All rights reserved.Bisoflex? is a registered trademark of British PetroleumCompany; Varox? is a registered trademark of R. T. Vanderbilt; Plasthall?is a registered trademark of C. P. Hall Company; Di-Cup? and Vulcup? are registered trademarks of Hercules, Inc.; Armeen?is a registered of Akzo Nobel; Spheron? is a trademark of Cabot Corporation.(01/08) Reference No. VME-A10652-00-B0710。
如何提高拉伸强度
![如何提高拉伸强度](https://img.taocdn.com/s3/m/10d0dd8d580216fc710afd0c.png)
在橡胶工业中,极限拉伸强度是一个基本的力学性能。
这个实验参数测量的是硫化胶料的极限强度。
即便一种橡胶制品永远都不会被拉扯到接近其极限拉伸强度,很多橡胶制品的使用者仍然把它看成是胶料整体质量的一个重要指标。
因此,拉伸强度就是一个非常通用的规范性能,虽然具体制品的最终使用与它没有什么关系,配方人员往往也要想尽办法去满足。
如果需要提高拉伸强度,配方人员可能会在实验室里考虑下面提到的各种实验方案。
对书中的相关文献来源,包括后面引用的文献,读者都应该自己研究和阅读。
注意:这些通用的实验方案不一定适用于每一个具体情况。
能改善拉伸强度的任何一个变量都一定会影响其他性能,或好或坏,但本书不对其他性能的改变加以阐述。
本书也不对安全和健康问题加以解释。
1.一般原则为了获得最高的拉伸强度,通常应该从能发生应变诱导结晶的弹性体开始,例如天然胶(NR)、氯丁胶(CR)、异戊胶(IR)、'氢化丁腈胶(HNBR)或聚氨酯(PU)。
2.天然胶NR基于天然胶的胶料通常比氯丁胶胶料有更高的拉伸强度。
在各种级别的天然胶中,1号烟胶片有最高的拉伸强度。
据报道,至少在有炭黑填充的胶料中,3号烟胶片比1号烟胶片能赋予胶料更高的拉伸强度。
对天然胶胶料,要避免使用化学增塑剂(塑解剂),如双苯酰胺硫酚或者五氯硫酚(PCTP),因为它们会降低胶料的拉伸强度。
3.氯丁胶CR氯丁胶(CR)是一种应变诱导结晶的橡胶,在没有填料的情况下都能赋予胶料较高的拉伸强度。
事实上,有时会通过减少填料用量而提高拉伸强度。
分子量更大的CR能赋予胶料更高的拉伸强度。
4.丁苯胶SBR低温乳液聚合的SBR (5℃)相比高温乳液聚合的SBR (50℃)能赋予胶料更高的拉伸强度。
通常乳液聚合SBR比溶液聚合SBR有更高的拉伸强度。
在调整胶料总填充油量相当的情况下,用填充油高分子量的SBR替代无填充油的SBR,会得到较高的拉伸强度。
5.丁腈胶NBR丙烯腈(ACN)含量高的NBR会赋予胶料更高的拉伸强度。
aem膜成分
![aem膜成分](https://img.taocdn.com/s3/m/d1570b07590216fc700abb68a98271fe900eaf45.png)
aem膜成分AEM膜成分AEM膜,全称为Anion Exchange Membrane,中文译为阴离子交换膜。
它是一种在能源领域中广泛应用的高性能膜材料。
AEM膜的主要成分包括聚合物基质、离子交换基团和添加剂等,下面将详细介绍AEM膜的成分及其特点。
一、聚合物基质AEM膜的聚合物基质一般采用氟碳聚合物,如聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)等。
这些聚合物具有优异的化学稳定性、热稳定性和机械强度,能够保证AEM膜在复杂的工作环境中具有良好的稳定性和耐久性。
二、离子交换基团AEM膜中的离子交换基团是其最关键的组成部分之一。
离子交换基团能够吸附和释放离子,实现阴离子的传输。
常见的离子交换基团有季铵基团、胺基团和吡啶基团等。
这些基团具有良好的离子交换能力和稳定性,能够有效地传导阴离子,并具有优异的选择性和传输速率。
三、添加剂AEM膜中的添加剂主要包括填料和稳定剂。
填料可以改善膜的机械强度和热稳定性,常见的填料有纳米硅胶和碳纳米管等。
稳定剂可以提高膜的化学稳定性和耐久性,常见的稳定剂有抗氧化剂和紫外吸收剂等。
这些添加剂能够提高AEM膜的整体性能,并保证其在使用过程中的稳定性和可靠性。
AEM膜的成分对其性能具有重要影响。
聚合物基质的选择决定了膜的力学性能和热性能,离子交换基团的选择决定了膜的离子传输性能,而添加剂的选择则能够进一步改善膜的稳定性和耐久性。
因此,合理选择和调控AEM膜的成分是提高其性能的关键。
在实际应用中,AEM膜被广泛应用于电池、燃料电池、电解池和电解器等能源转换和储存领域。
例如,在燃料电池中,AEM膜作为电解质,能够有效传导氢氧根离子,并实现氢氧根离子的选择性传输,从而实现电能的转化。
在电解池中,AEM膜能够有效分离阳离子和阴离子,实现电解反应的高效进行。
因此,AEM膜的成分和性能对于提高能源转换和储存设备的效率和稳定性具有重要意义。
总结起来,AEM膜的成分主要包括聚合物基质、离子交换基团和添加剂等。
杜邦产品手册
![杜邦产品手册](https://img.taocdn.com/s3/m/4eb1a63d6d85ec3a87c24028915f804d2b1687e1.png)
杜邦产品手册
杜邦产品手册
杜邦是一家专注于材料科学的全球化公司,提供多种高性能材料
用于各个行业。
以下是杜邦产品的介绍:
1. 法兰绒
法兰绒是一种柔软、舒适的织物,用于制作衣物、寝具和室内装饰。
杜邦的法兰绒产品具有非常好的保暖性能和柔软性能,并采用环
保型染色技术,以确保产品质量。
2. 涂层材料
杜邦的涂层材料适用于汽车、建筑、电子和医疗等行业。
这些产
品提供防水、防腐和粘着性能,并能够适应各种环境和应用场景。
3. 工程塑料
杜邦的工程塑料是一种高性能材料,具有很高的强度、耐热性和
耐腐蚀性能。
这些产品广泛应用于汽车、电子、医疗、工业和航空航
天等领域。
4. 3D打印材料
杜邦的3D打印材料适用于各种3D打印技术,包括光固化、热熔
喷射和粉末烧结等。
这些产品具有很高的耐热性、耐化学性和机械性能,并可用于制作复杂的零部件和组件。
5. 包装材料
杜邦的包装材料适用于食品、制药、医疗和工业等行业,能够保
护产品质量和保鲜期。
这些产品包括薄膜、涂层、纸张和复合材料等,可根据客户需求提供定制化解决方案。
总之,杜邦的产品涵盖了多个领域,并且不断投资于研发和技术
创新。
我们致力于提供高质量、高性能的材料,以满足客户的需求和
期望。
AEM橡胶市场分析报告
![AEM橡胶市场分析报告](https://img.taocdn.com/s3/m/a2547f52640e52ea551810a6f524ccbff121ca30.png)
AEM橡胶市场分析报告1.引言1.1 概述概述:AEM橡胶是一种具有优异耐热性、耐油性和耐臭氧性的合成橡胶材料,具有广泛的应用领域。
本报告旨在对AEM橡胶市场进行全面的分析,包括市场概况、特性和应用、市场发展趋势等方面的内容。
通过对市场的深入分析,可以为相关行业提供决策参考,同时也可以为橡胶市场的发展提供有益的参考信息。
1.2 文章结构文章结构部分的内容可以包括对整篇文章的框架和组织进行详细介绍。
可以介绍文章的主要分为引言、正文和结论三个部分,每个部分分别包括哪些内容和重点讨论的内容。
也可以描述每个部分的主题和目的,以及各部分之间的逻辑关系和衔接方式。
此外,也可以简要说明每个部分的篇幅和重点,以便读者了解整篇文章的整体结构和主要内容安排。
文章1.3 目的部分的内容如下:目的部分旨在明确本篇长文的撰写目的。
通过本篇长文的撰写,旨在对AEM橡胶市场进行深入分析,包括市场概况、特性和应用,以及市场发展趋势。
通过对AEM橡胶市场的全面了解,可以帮助读者更好地把握市场动向,有效制定市场策略,以及为相关行业的从业者提供参考和指导。
同时,通过对AEM橡胶市场的分析,也可以为未来的市场前景展望提供支持和参考,为相关企业提供决策支持和发展建议。
希望本篇长文能够为读者提供全面、准确、有价值的市场信息,以促进AEM橡胶市场的发展和行业的繁荣。
1.4 总结总结本报告通过对AEM橡胶市场的概况、特性和应用以及发展趋势进行分析,揭示了AEM橡胶市场的现状和未来发展方向。
从市场规模、行业竞争格局、产品特性和应用领域等方面进行了详细的分析,为相关企业和投资者提供了深入的市场洞察和发展建议。
总的来说,AEM橡胶市场在未来有望继续保持稳定增长,并在汽车、航空航天、工程机械等领域发挥越来越重要的作用。
但我们也要意识到市场仍然面临着一些挑战,需要进一步提高产品质量、拓展应用领域、加强品牌建设,以及加大技术创新和研发投入等方面的努力。
相信随着行业的不断发展和市场需求的不断变化,AEM橡胶的市场前景一定会更加广阔。
氨乙基氨丙基三甲氧基
![氨乙基氨丙基三甲氧基](https://img.taocdn.com/s3/m/dcc85abbdc88d0d233d4b14e852458fb770b3803.png)
氨乙基氨丙基三甲氧基
氨乙基氨丙基三甲氧基,也称为AEM,是一种常用于合成聚合物材料的化学物质。
它是一种无色、透明的液体,具有良好的化学稳定性和低粘度特性。
AEM在聚合物材料的合成中通常作为交联剂或功能单体使用,能够提高聚合物的耐热性、耐化学性和机械强度等性能。
由于其在能量转化和传递方面的优异表现,在太阳能电池、LED、液晶显示屏等领域也有广泛的应用。
同时,AEM还能与金属离子形成配位化合物,从而在催化反应中发挥作用。
然而,AEM也存在着一定的安全隐患。
它可能会引起眼睛和皮肤的刺激,甚至对人体健康造成损害。
因此,在使用AEM时需要严格遵守安全规范,采取足够的防护措施,杜绝事故发生。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Technical Information — Rev. 2, July 2010The principles of compounding are similar to conventional technology in that curatives, fillers, antidegradants, plasticizers and process aids all are used. As with other high-performance, heat-resistant elastomers, the choice of potential additives tends to be smaller, and their selection more specific. Equal attention must be given to avoid ingredients that could give detrimental effects.Polymer SelectionDuPont™ Vamac® terpolymers are the most widely used grades of Vamac®. However, the terpolymers and dipolymer are similar in major properties such as heat and oil resistance. There are some differences in processing characteristics.Vamac® G, the general-purpose terpolymer, has a higher-viscosity variant, Vamac® HVG, which can be considered for applications requiring increased green strength or generous loadings of plasticizer. Vamac® GLS, a higher methylacrylate grade, offers improved oil resistance, in exchange for slightly reduced low-temperature flexibility. Vamac® GXF improves the elevated temperature tensile properties and dynamic fatigue resistance while exhibiting a longer cure and higher compression set.Vamac® DP is a dipolymer analog of Vamac® G. Compared with the diamine-cured terpolymer, it contains no reactive cure site and must be cured via a peroxide/coagent system.The following table summarizes the most important differences between the terpolymers and dipolymer.Table 1. Vamac® Polymer SelectionNominal ML 1+4 100 °C Terpolymers• Good physicals/compression set•Good metal bonding•Low hardness compounds possible•Good flex resistance•Moderate scorch times•Need post-curing® G 16.5Vamac®Vamac HVG 26® GLS 18.5Vamac®Vamac GXF 17.5 Dipolymer•Minimized need for post-cure to attain low compressionset•Long scorch times•Less affected by oil additives®Vamac DP 22AntidegradantsDuPont™ Vamac® terpolymers, G, GLS, GXF and HVG, require the addition of two parts of asemi-staining diphenylamine antioxidant in black formulations. Only one part is used in Vamac® dipolymer compounds, because the antioxidant interferes with the peroxide cure. If ultimate aging performance is necessary in the dipolymer, then the level of diphenylamine antioxidant can be increased to two parts, with a slight increase in the peroxide level to minimize the effect on cure state and compression set. Two parts of a nonstaining phenolic antioxidant, such as Santowhite powder, can be used in nonblack compounds.Contact with zinc (e.g., hose couplings) catalyzes heat aging in Vamac®, including dipolymer compounds. Hydrazine antioxidants are effective in preventing the zinc-catalyzed attack. One part of ADK STABCDA-6 or two parts of inhibitor OABH are suggested. No antiozonants are necessary in any Vamac®formulation.FillersCarbon black is the preferred filler for Vamac®. It has no effect on its heat aging properties, and is beneficial to compression set and flex resistance. The majority of Vamac® compounds contain N762 orN774 SRF blacks, or N550 FEF black. All give good reinforcement with or without plasticizer.High-structure blacks such as N-683 or Spheron® 5000 also are suitable. Highly reinforcing blacks such as ISAF tend to respond best without accompanying plasticizer, probably due to the limited shear dispersion available from the polymer during mixing. Low-structure blacks also can be difficult to disperse. MT black may be used as a filler and diluent.Mineral fillers should be selected with care. For high physical properties, tensile and tear, a fumed silica is most effective and has the least effect on heat aging properties. Fumed silica significantly increases compound viscosity and increases compression set, and therefore is normally incorporated at moderate levels of up to 25 parts. Surface-treated talc also is reinforcing, with much less effect on compression set compared with fumed silica.Calcium carbonate may be used at quite high levels without too much effect on heat aging; the best reinforcement comes from the precipitated form. Barium sulfate also is suitable as a high-level filler.Aluminum hydroxide is used frequently as a flame-retarding filler in Vamac®. However, it should berecognized that ultimate heat aging performance will be sacrificed when this filler is used. Compoundmodulus will usually increase with time as ionic crosslinks form in the terpolymer under the influence ofaluminum hydroxide. This effect is not present in dipolymer compounds.Magnesium hydroxide can only be used in Vamac® dipolymer. Other active metal oxides should beavoided in terpolymer, although low levels of iron and chrome oxides may be used as pigments. Limitedamounts of antimony trioxide can also be tolerated in flame retarded compounds. Metal stearates,present in some grades of calcium carbonate, can affect heat aging.Zinc compounds are harmful to all Vamac® types.Table 2. Reinforcing Agents/FillersPermissible Preferred UnsuitableCarbon blacks Metal oxides Titanium dioxide (to 5 parts)Fumed Colloidal silica (up to 25 parts) Metal stearate coated fillers Chromium oxide (to 5 parts)Uncoated calcium carbonate Clay Antimony trioxide (to 5 parts)Blanc fixe High levels of silica Iron oxide (to 3 parts)Coated talcTable 3. PlasticizersFor Vamac® Dipolymer:Linear trimellitate –45 to 155 °C trioctyl trimellitateLow volatility alkyl trimellitate –40 to 170 °C Bisoflex® T810T, Pasthall 810TMTri isononyl trimellitate –40 to 170 °C ADK cizerC-9NPolyester –30 to 170 °C Plasthall® 670For Vamac® Terpolymers:Linear polyester types Best heat stability (–25 °C to 180 °C)Mixed ether/ester types Optimum balance of low and high-temperature properties–45 °C to 160 °C Thiocol TP 759/Nycoflex ADB30–40 °C to 175 °C ADK Cizer RS735Monomeric esters –55 °C to 125 °C dioctyl sebicatePlasticizersA frequent cause of poor aging performance is a poor choice of plasticizer. It is important that theselected plasticizer be nonvolatile and stable at the highest expected service temperature. For the besthigh-temperature performance, polyester plasticizers are recommended. Most polyesters are effective upto or over 180°C. However, this class of plasticizer is not very useful for improving low-temperatureflexibility. Standard monomeric ester plasticizers such as DOS produce the best low-temperatureflexibility, but are limited to 125 °C to 135 °C in continuous use.The most useful plasticizer and best compromise for high- and low-temperature performance is the mixedether/ester type such as Nycoflex ADB 30, Thiocol TP 759 and ADK Ciser RS 735. An approximatetemperature range of –40 °C to 170 °C can be covered with these materials, depending upon final choiceand mode of test.The ether/ester types are unsuitable for Vamac® dipolymer, because they retard the peroxide cure.T8 10T, ADK Ciser C-9N and Plasthall 670 having theTrimellitate types are more suitable with Bisoflex®®lowest volatility. Trioctyl trimellitate is a good general-purpose example. The level of plasticizer is normally5-15 parts for dipolymer, but terpolymer types can tolerate much higher loadings.Cure Systems®Most articles made from Vamac terpolymer are cured with a combination of a guanidine and a blocked primary diamine (Diak ™ No. 1). Permanent cross-links are formed by reaction with the carboxylic sites on the polymer backbone. This system gives a good blend of cure rate and physical properties. Small variations in diamine level and selection of guanidine type can effectively highlight certain performance features such as compression set and flex resistance. Other curatives known to be reasonablesubstitutes for Diak ™ No. 1 are triethylene tetramine, and methylene dianiline (MDA). Some of these materials may be preferred in dispersed form to reduce handling hazards. MDA may not be permitted in some countries.Peroxide systems may be used in Vamac ®terpolymer, particularly for cable applications where fast cures under continuous pressurized vulcanization are desired. Peroxides are not recommended for molded articles where poor hot tear strength and mold sticking may cause difficulties.Compression set may be poor when peroxide cures are used with terpolymers. Best results are obtained from DOTG/Diak ™™ No. 1 combinations and DPG/Diak No.1 combinations.Table 4. DuPont Vamac Cure Systems™®For TerpolymersGeneral PurposeCure SystemParts Cure RateDiak ™No. 1 GuanidineDiak ™For compression set1.5 FastNo. 1DOTG4 Diak ™ 1.25 MediumFor flex resistance No. 1 DPG4 Diak ™No. 1 AlternativesHigh modulus Triethylene tetramine FastSafe scorch Methylene dianiline Slow Thick Sections (Guanidine Substitution)Diak ™1.25 1.5 No.1®Secondary amine 6 (Armeen 2C)4 Cables (fast continuous cure) Peroxide 7.5 (Perkadox 14/40)HVA-2 2 For DipolymerMoldings and Best PropertiesPeroxide 5 (Di-Cup ® or Vul-Cup ® 40%)HVA-2 2 Hose/General PurposeVarox ®50% DBPH5TAC 2Vamac ®dipolymer may only be cured with peroxides. Because no acid cure site monomer is present, mold release is easier than with peroxide-cured terpolymer. The level of peroxide should be moderate to help demolding elongation and suppress blisters. Compression set resistance is good without post-curing and rivals that of post-cured terpolymer.HVA-2 is a good all-around coagent, giving fast cures and optimized physical properties. However, the lower-cost, triallylcyanurate often can be substituted. Zinc methacrylates should be avoided.Very thick molded articles can be made from Vamac ®terpolymer, but require a special variation on the guanidine/DIAK ™ No. 1 system, where the guanidine is replaced by a secondary amine,Armeen ® 2C.Page intentionally left blank.Visit us at Contact DuPont at the following regional locations:North America Latin America Europe, Middle East, Africa 800-222-8377+0800 17 17 15+41 22 717 51 11Greater China+86-400-8851-888ASEAN Japan+65-6586-3688 +81-3-5521-8484The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable and falls within the normal range of properties. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont customer service representative and read Medical Caution Statement H-50103-3.Copyright © 2010 DuPont. The DuPont Oval Logo, DuPont™, The miracles of science™, Diak™, Viton®, and Vamac® are trademarks or registered trademarksof E.I. du Pont de Nemours and Company or its affiliates. All rights reserved.Bisoflex® is a registered trademark of British Petroleum Company; Varox® is a registered trademark of R. T. Vanderbilt; Plasthall®is a registered trademark of C. P. Hall Company; Di-Cup® and Vulcup® are registered trademarks of Hercules, Inc.; Armeen®is a registered of Akzo Nobel; Spheron® is a trademark of Cabot Corporation.(01/08) Reference No. VME-A10652-00-B0710。