数学分析教案华东师大版第十九章含参量积分

合集下载

华东师范版八年级下数学第十九章教案(全)

华东师范版八年级下数学第十九章教案(全)

19.1 命题与定理第一课时命题教学目标1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。

会区分命题的条件和结论。

知道判断一个命题是假命题的方法。

2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。

3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

重点与难点 1、重点:找出命题的条件(题设)和结论。

2、难点:命题概念的理解。

教学过程一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。

根据我们已学过的图形特性,试判断下列句子是否正确。

1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。

二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的。

像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。

教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。

题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。

用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。

例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。

有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。

例如,命题5可写成“如果两个角是直角,那么这两个角相等。

”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。

学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。

【优质文档】数学分析教案(华东师大版)第十九章含参量积分

【优质文档】数学分析教案(华东师大版)第十九章含参量积分

第十九章含参量积分教学目的:1.掌握含参量正常积分的概念、性质及其计算方法; 2.掌握两种含参量反常积分的概念、性质及其计算方法; 3.掌握欧拉积分的形式及有关计算。

教学重点难点:本章的重点是含参量积分的性质及含参量反常积分的一致收敛性的判定;难点是一致收敛性的判定。

教学时数:12学时§1含参量正常积分一. 含参积分:以实例和引入.定义含参积分和.含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分.1. 含参积分的连续性:Th19.5 若函数在矩形域上连续, 则函数在上连续 . ( 证) P172Th19.8 若函数在矩形域上连续, 函数和在上连续, 则函数在上连续. ( 证) P1732. 含参积分的可微性及其应用:Th 19.10 若函数及其偏导数都在矩形域上连续, 则函数在上可导, 且.( 即积分和求导次序可换) . ( 证) P174Th 19.11 设函数及其偏导数都在矩形域上连续,函数和定义在, 值域在上, 且可微, 则含参积分在上可微, 且. ( 证)P174 例1 计算积分. P176.例2设函数在点的某邻域内连续 . 验证当充分小时, 函数的阶导数存在, 且. P177.§2 含参反常积分一. 含参无穷积分:1.含参无穷积分:函数定义在上( 可以是无穷区间) . 以为例介绍含参无穷积分表示的函数.2. 含参无穷积分的一致收敛性:逐点收敛( 或称点态收敛) 的定义: , , 使.引出一致收敛问题 .定义(一致收敛性) 设函数定义在上 . 若对, 使对成立, 则称含参无穷积分在( 关于)一致收敛.Th 19.5 ( Cauchy收敛准则) 积分在上一致收敛,对成立 .例1 证明含参量非正常积分在上一致收敛,其中. 但在区间内非一致收敛 .P180。

数学分析第十九章含参量积分

数学分析第十九章含参量积分

特别地,c和d为常数时,得到定理19.3.
练习2:求F ( y )
解:F ( y )
sin y y2 y cos( xy )dx 2 y
y2
y 2 sin( xy ) dx的导数. y x 3
sin y 2 2y y
sin xy sin y 3 sin y 2 3 sin y 3 2 sin y 2 2 2y . y y y y y
第19章Байду номын сангаас
§1
含参量积分
含参量正常积分
一、含参量积分的概念
从本章开始我们讨论多元函数的各种积分问题, 首先本章研究 含参量积分. 设f ( x, y )是定义在矩形区域R [a, b] [c, d ]上的二元函数. 当固
定x [a, b]时, f ( x, y )是定义在[c, d ]上的以y为自变量的一元函 数. 若此时f ( x, y )在[c,d ]上可积, 则其积分值是在[a, b]上取值的 x的函数, 记为I ( x), 就有 d I ( x) c f ( x, y )dy, x [a, b]. (1)
1 练习1 求0 arctan x dx( y : y
0)对于参数y的导数.
x 连续,故 x2 y 2
解:当y 0时, arctan x 和[arctan x ]y y y
d 1 x dx 1[arctan x ] dx 0 arctan y 0 y y dy
x dx 1 ln( x 2 2 x y2
arctanx 1 1 ln(1 x 2 ) 1 ln(1 x) 1 0 2 0 0 1 2 1 1 ln 2 ln(1 ) 1 2 4 2 1 I ( )d ln(1 2 ) 1 1 ln 2 arctan 1 I (1) I (1) I (0) 0 0 8 0 2 1

华东师范大学本科生数学分析教案

华东师范大学本科生数学分析教案

数学分析教案第一章 第一章 实数集与函数§1 实数(一) 教学目的:掌握实数的基本概念和最常见的不等式,以备以后各章应用. (二) 教学内容:实数的基本性质和绝对值的不等式. (1) 基本要求:实数的有序性,稠密性,阿基米德性. (2) 较高要求:实数的四则运算. (三) 教学建议:(1) 本节主要复习中学的有关实数的知识.(2) 讲清用无限小数统一表示实数的意义以及引入不足近似值与过剩近似值的作用.§2 数集.确界原理(一) 教学目的:掌握实数的区间与邻域概念,掌握集合的有界性和确界概念. (二) 教学内容:实数的区间与邻域;集合的上下界,上确界和下确界;确界原理.(1) 基本要求:掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合,能指出其确界;能用一种方式,证明集合 A 的上确界为 λ.即: ,,λ≤∈∀x A x 且 ,λ<∀a ∃0x 0,x A ∈a >;或 ,,λ≤∈∀x A x 且 ,,00A x ∈∃>∀ε ελ->0x .(2) 较高要求:掌握确界原理的证明,并用确界原理认识实数的完备性. (三) 教学建议:(1) 此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置证明具体集合的确界的习题.(2) 此节难点亦是确界概念和确界原理.对较好学生可布置证明抽象集合的确界的习题.§3 函数概念(一) 教学目的:掌握函数概念和不同的表示方法.(二) 教学内容:函数的定义与表示法;复合函数与反函数;初等函数. (1) 基本要求:掌握函数的定义与表示法;理解复合函数与反函数;懂得初等函数的定义,认识狄利克莱函数和黎曼函数.(2) 较高要求:函数是一种关系或映射的进一步的认识. (三) 教学建议:通过狄利克莱函数和黎曼函数,使学生对函数的认识从具体上升到抽象.§4 具有某些特性的函数(一) 教学目的:掌握函数的有界性,单调性,奇偶性和周期性. (二) 教学内容:有界函数,单调函数,奇函数,偶函数和周期函数. (三) 教学建议:(1) 本节的重点是通过对函数的有界性的分析,培养学生了解研究抽象函数性质的方法.(2) 本节的难点是要求用分析的方法定义函数的无界性.对较好学生可初步教会他们用分析语言表述否命题的方法.第二章 第二章 数列极限§1 数列极限概念(一) 教学目的:掌握数列极限概念,学会证明数列极限的基本方法. (二) 教学内容:数列极限.(1) 基本要求:理解数列极限的分析定义,学会证明数列极限的基本方法,懂得数列极限的分析定义中 ε与 N 的关系.(2) 较高要求:学会若干种用数列极限的分析定义证明极限的特殊技巧. (三)教学建议:(1) 本节的重点是数列极限的分析定义,要强调这一定义在分析中的重要性.具体教学中先教会他们证明 ∞→n lim 01=k n ; ∞→n lim n a 0=;( )1||<a ,然后教会他们用这些无穷小量来控制有关的变量(适当放大但仍小于这些无穷小量). (2) 本节的难点仍是数列极限的分析定义.对较好学生可要求他们用数列极限的分析定义证明较复杂的数列极限,还可要求他们深入理解数列极限的分析定义.§2 数列极限的性质(一) 教学目的:掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限. (二) 教学内容:数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则和数列的子列及有关子列的定理.(1) 基本要求:理解数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用其中某些性质计算具体的数列的极限.(2) 较高要求:掌握这些性质的较难的证明方法,以及证明抽象形式的数列极限的方法. (三) 教学建议:(1) 本节的重点是数列极限的性质的证明与运用.可对多数学生重点讲解其中几个性质的证明,多布置利用这些性质求具体数列极限的习题. (2) 本节的难点是数列极限性质的分析证明.对较好的学生,要求能够掌握这些性质的证明方法,并且会用这些性质计算较复杂的数列极限,例如: ∞→n limnn =1,等.§3 数列极限存在的条件(一) 教学目的:掌握单调有界定理,理解柯西收敛准则. (二) 教学内容:单调有界定理,柯西收敛准则.(1) 基本要求:掌握单调有界定理的证明,会用单调有界定理证明数列极限的存在性,其中包括 1lim(1)n n n →∞+存在的证明.理解柯西收敛准则的直观意义.(2) 较高要求:会用单调有界定理证明数列极限的存在性,会用柯西收敛准则判别抽象数列(极限)的敛散性.(三) 教学建议:(1) 本节的重点是数列单调有界定理.对多数学生要求会用单调有界定理证明数列极限的存在性.(2) 本节的难点是柯西收敛准则.要求较好学生能够用柯西收敛准则判别数列的敛散性.第三章 函数极限 1 函数极限概念(一) 教学目的:掌握各种函数极限的分析定义,能够用分析定义证明和计算函数的极限. (二) 教学内容:各种函数极限的分析定义.基本要求:掌握当 0x x →; ∞→x ; ∞+→x ; ∞-→x ; +→0x x ;-→0x x 时函数极限的分析定义,并且会用函数极限的分析定义证明和计算较简单的函数极限.(三) 教学建议:本节的重点是各种函数极限的分析定义.对多数学生要求主要掌握当 0x x →时函数极限的分析定义,并用函数极限的分析定义求函数的极限.§2 函数极限的性质(一) 教学目的:掌握函数极限的性质.(二) 教学内容:函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则.(1) 基本要求:掌握函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用这些性质计算函数的极限.(2) 较高要求:理解函数极限的局部性质,并对这些局部性质作进一步的理论性的认识. (三) 教学建议:(1) (1) 本节的重点是函数极限的各种性质.由于这些性质类似于数列极限中相应的性质,可着重强调其中某些性质与数列极限的相应性质的区别和联系. (2) 本节的难点是函数极限的局部性质.对较好学生,要求懂得这些局部的 δ(的大小)不仅与 ε有关,而且与点 0x 有关,为以后讲解函数的一致连续性作准备.§3 函数极限存在的条件(一) 教学目的:掌握函数极限的归结原理和函数极限的单调有界定理,理解函数极限的柯西准则.(二) 教学内容:函数极限的归结;函数极限的单调有界定理;函数极限的柯西准则. (1) 基本要求:掌握函数极限的归结,理解函数极限的柯西准则. (2) 较高要求:能够写出各种函数极限的归结原理和柯西准则. (三) 教学建议:(1) 本节的重点是函数极限的归结原理.要着重强调归结原理中数列的任意性. (2) 本节的难点是函数极限的柯西准则.要求较好学生能够熟练地写出和运用各种函数极限的归结原理和柯西准则.§4两个重要的极限(一) 教学目的:掌握两个重要极限: 0lim →x 1sin =x x ; ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.(二) 教学内容:两个重要极限: 0lim →x 1sin =x x; ∞→x limxx ⎪⎭⎫⎝⎛+11e =.(1) 基本要求:掌握 0lim→x 1sin =xx的证明方法,利用两个重要极限计算函数极限与数列极限.(2) 较高要求:掌握 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =证明方法.(三) 教学建议:(1) 本节的重点是与两个重要的函数极限有关的计算与证明.可用方法:1)()(sin lim 0)(=→x x x ϕϕϕ; e x x x =⎪⎪⎭⎫⎝⎛+∞→)()()(11lim ψψψ,其中 )(x ϕ、 )(x ψ分别为任一趋于0或趋于∞的函数.(2) 本节的难点是利用迫敛性证明 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.§5 无穷小量与无穷大量(一) 教学目的:掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 教学内容:无穷小量与无穷大量,高阶无穷小,同阶无穷小,等阶无穷小,无穷大. (1) 基本要求:掌握无穷小量与无穷大量以及它们的阶数的概念. (2) 较高要求:能够写出无穷小量与无穷大量的分析定义,并用分析定义证明无穷小量与无穷大量.在计算及证明中,熟练使用“ o ”与“ O ”. (三) 教学建议:(1) 本节的重点是无穷小量与无穷大量以及它们的阶数的概念. (2) (2) 本节的难点是熟练使用“ o ”与“ O ”进行运算.第四章 第四章 函数的连续性§1 连续性概念(一) 教学目的:掌握函数连续性概念.(二) 教学内容:函数在一点和在区间上连续的定义,间断点的分类.(1) 基本要求:掌握函数连续性概念,可去间断点,跳跃间断点,第二类间断点,区间上的连续函数的定义.(2) 较高要求:讨论黎曼函数的连续性. (三) 教学建议:(1) (1) 函数连续性概念是本节的重点.对学生要求懂得函数在一点和在区间上连续的定义,间断点的 分类.(2) 本节的难点是用较高的分析方法、技巧证明函数的连续性,可在此节中对较好学生布置有关习题.§2 连续函数的性质(一) 教学目的:掌握连续函数的局部性质和闭区间上连续函数的整体性质.(二) 教学内容:连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.(1) 基本要求:掌握函数局部性质概念,可去间断点,跳跃间断点,第二类间断点;了解闭区间上连续函数的性质.(2) 较高要求:对一致连续性的深入理解.(三)教学建议:(1)函数连续性概念是本节的重点.要求学生掌握函数在一点和在区间上连续的定义,间断点的分类,了解连续函数的整体性质.对一致连续性作出几何上的解释.(2)(2)本节的难点是连续函数的整体性质,尤其是一致连续性和非一致连续性的特征.可在此节中对较好学生布置判别函数一致连续性的习题.§3 初等函数的连续性(一) 教学目的:了解指数函数的定义,掌握初等函数的连续性.(二) 教学内容:指数函数的定义;初等函数的连续性.(1) 基本要求:掌握初等函数的连续性.(2) 较高要求:掌握指数函数的严格定义.(三)教学建议:(1) 本节的重点是初等函数的连续性.要求学生会用初等函数的连续性计算极限.(2) 本节的难点是理解和掌握指数函数的性质.第五章导数和微分§1 导数的概念(一) 教学目的:掌握导数的概念,了解费马定理、达布定理.(二) 教学内容:函数的导数,函数的左导数,右导数,有限增量公式,导函数.(1) 基本要求:掌握函数在一点处的导数是差商的极限.了解导数的几何意义,理解费马定理.(2) 较高要求:理解达布定理.(三) 教学建议:(1) 本节的重点是导数的定义和导数的几何意义.会用定义计算函数在一点处的导数.(2) 本节的难点是达布定理.对较好学生可布置运用达布定理的习题.§2 求导法则(一) 教学目的:熟练掌握求导法则和熟记基本初等函数的求导公式.(二) 教学内容:导数的四则运算,反函数求导,复合函数的求导,基本初等函数的求导公式.基本要求:熟练掌握求导法则和熟记基本初等函数的求导公式.(三) 教学建议:求导法则的掌握和运用对以后的学习至关重要,要安排专门时间督促和检查学生学习情况.§3 参变量函数的导数(一) 教学目的:掌握参变量函数的导数的求导法则.(二) 教学内容:参变量函数的导数的求导法则.基本要求:熟练掌握参变量函数的导数的求导法则.(三) 教学建议:通过足量习题使学生掌握参变量函数的导数的求导法则.§4高阶导数(一) 教学目的:掌握高阶导数的概念,了解求高阶导数的莱布尼茨公式.(二) 教学内容:高阶导数;求高阶导数的莱布尼茨公式.(1)基本要求:掌握高阶导数的定义,能够计算给定函数的高阶导数.(2) 较高要求:掌握并理解参变量函数的二阶导数的求导公式.(三) 教学建议:(1) 本节的重点是高阶导数的概念和计算.要求学生熟练掌握.(2) 本节的难点是高阶导数的莱布尼茨公式,特别是参变量函数的二阶导数.要强调对参变量求导与对自变量求导的区别.可要求较好学生掌握求参变量函数的二阶导数.§5 微分(一) 教学目的:掌握微分的概念和微分的运算方法,了解高阶微分和微分在近似计算中的应用.(二) 教学内容:微分的概念,微分的运算法则,高阶微分,微分在近似计算中的应用.(1) 基本要求:掌握微分的概念,微分的运算法则,一阶微分形式的不变性.(2) 较高要求:掌握高阶微分的概念.(三) 教学建议:(1) 本节的重点是掌握微分的概念,要讲清微分是全增量的线性主部.(2) 本节的难点是高阶微分,可要求较好学生掌握这些概念.第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(一) 教学目的:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(二) 教学内容:罗尔中值定理;拉格朗日中值定理.(1) 基本要求:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(2) 较高要求:掌握导数极限定理.(三) 教学建议:(1)(1)本节的重点是掌握罗尔中值定理和拉格朗日中值定理,要求牢记定理的条件与结论,知道证明的方法.(2)(2)本节的难点是用拉格朗日中值定理证明有关定理与解答有关习题.可要求较好学生掌握通过设辅助函数来运用微分中值定理.§2 柯西中值定理和不定式极限(一) 教学目的:了解柯西中值定理,掌握用洛必达法则求不定式极限. (二) 教学内容:柯西中值定理;洛必达法则的使用.(1) 基本要求:了解柯西中值定理,掌握用洛必达法则求各种不定式极限.(2) 较高要求:掌握洛必达法则 0型定理的证明.(三) 教学建议:(1) (1) 本节的重点是掌握用洛必达法则求各种不定式极限.可强调洛必达法则的重要性,并总结求各 种不定式极限的方法. (2) 本节的难点是掌握洛必达法则定理的证明,特别是 ∞∞型的证明.§3 泰勒公式(一) 教学目的:理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.(二) 教学内容:带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.(1) 基本要求:了解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式,熟记六个常见函数的麦克劳林公式. (2) 较高要求:用泰勒公式计算某些 0型极限.(三) 教学建议:(1) 本节的重点是理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式. (2) 本节的难点是掌握带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.对较好学生可要求掌握证明的方法. §4函数的极值与最大(小)值(一) 教学目的:掌握函数的极值与最大(小)值的概念. (二) 教学内容:函数的极值与最值.(1) 基本要求:掌握函数的极值的第一、二充分条件;学会求闭区间上连续函数的最值及其应用.(2) 较高要求:掌握函数的极值的第三充分条件. (三) 教学建议:教会学生以函数的不可导点和导函数(以及二阶导数)的零点(稳定点)分割函数定义域,作自变量、导函数(以及二阶导数)、函数的性态表,这个表给出函数的单调区间,凸区间,极值.这对后面的函数作图也有帮助.§5 函数的凸性与拐点(一) 教学目的:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式. (二) 教学内容:函数的凸性与拐点.(1) 基本要求:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.(2) 较高要求:运用詹森不等式证明或构造不等式,左、右导数的存在与连续的关系. (三) 教学建议:(1) 教给学生判断凸性的充分条件即可,例如导函数单调. (2) 本节的难点是运用詹森不等式证明不等式.§6 函数图象的讨论(一) 教学目的:掌握函数图象的大致描绘.(二) 教学内容:作函数图象.(1) 基本要求:掌握直角坐标系下显式函数图象的大致描绘.(2) 较高要求:能描绘参数形式的函数图象.(三)教学建议:教会学生根据函数的性态表,以及函数的单调区间,凸区间,大致描绘函数图象.第七章实数的完备性§1关于实数集完备性的基本定理(一)教学目的:掌握区间套定理和柯西判别准则的证明,了解有限覆盖定理和聚点定理(较熟练运用致密性定理).(二)教学内容:区间套定理、柯西判别准则的证明;聚点定理;有限覆盖定理.(1) 基本要求:掌握和运用区间套定理、致密性定理.(2)较高要求:掌握聚点定理和有限覆盖定理的证明与运用.(三) 教学建议:(1)(1)本节的重点是区间套定理和致密性定理.教会学生在什么样情况下应用区间套定理和致密性定理以及如何应用区间套定理和致密性定理.(2) 本节的难点是掌握聚点定理和有限覆盖定理.教会较好学生如何应用聚点定理和有限覆盖定理.§2 闭区间上的连续函数性质的证明(一) 教学目的:证明闭区间上的连续函数性质.(二) 教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.(1)(1)基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.(2) 较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性.(三) 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题.第八章不定积分§1不定积分的概念与基本积分公式(一) 教学目的:掌握原函数的概念和基本积分公式(二) 教学内容:原函数的概念;基本积分公式;不定积分的几何意义.基本要求:熟练掌握原函数的概念和基本积分公式.(三) 教学建议:(1) 不定积分是以后各种积分计算的基础,要求熟记基本积分公式表.(2) 适当扩充基本积分公式表.§2 换元积分法与分部积分法(一) 教学目的:掌握第一、二换元积分法与分部积分法.(二) 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.(三) 教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.§3 有理函数和可化为有理函数的不定积分(一) 教学目的:会计算有理函数和可化为有理函数的不定积分.(二) 教学内容:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(1) 基本要求:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(2) 较高要求:利用欧拉代换求某些无理根式的不定积分.(三) 教学建议:(1) 适当布置有理函数的不定积分,三角函数有理式的不定积分,某些无理根式的不定积分的习题.(2) 本节的难点是利用欧拉代换求某些无理根式的不定积分,可要求较好学生掌握.第九章定积分§1 定积分的概念(一) 教学目的:引进定积分的概念.(二) 教学内容:定积分的定义.基本要求:掌握定积分的定义,了解定积分的几何意义和物理意义.(三) 教学建议:要求掌握定积分的定义,并了解定积分的几何意义.§2 牛顿-莱布尼茨公式(一) 教学目的:熟练掌握和应用牛顿-莱布尼茨公式.(二) 教学内容:牛顿-莱布尼茨公式.(1) 基本要求:熟练掌握和应用牛顿-莱布尼茨公式.(2) 较高要求:利用定积分的定义来处理一些特殊的极限.(三) 教学建议:(1) 要求能证明并应用牛顿-莱布尼茨公式.(2) 利用定积分的定义来处理一些特殊的极限是一个难点,对学习较好的学生可布置这种类型的题目.§3 可积条件(一) 教学目的:理解定积分的充分条件,必要条件和充要条件.(二) 教学内容:定积分的充分条件和必要条件;可积函数类(1) 基本要求:掌握定积分的第一、二充要条件.(2) 较高要求:掌握定积分的第三充要条件.(三) 教学建议:(1) 理解定积分的第一、二充要条件是本节的重点,要求学生必须掌握.(2) 证明定积分的第一、二、三充要条件是本节的难点.对较好学生可要求掌握这些定理的证明以及证明某些函数的不可积性.§4定积分的性质(一) 教学目的:掌握定积分的性质.(二) 教学内容:定积分的基本性质;积分第一中值定理.(1) 基本要求:掌握定积分的基本性质和积分第一中值定理.(2) 较高要求:较难的积分不等式的证明.(三) 教学建议:(1) 定积分的基本性质和积分第一中值定理是本节的重点,要求学生必须掌握并灵活应用.(2) 较难的积分不等式的证明是本节的难点.对较好学生可布置这方面的习题.§5 微积分学基本定理(一) 教学目的:掌握微积分学基本定理.(二) 教学内容:变上限的定积分;变下限的定积分;微积分学基本定理;积分第二中值定理,换元积分法;分部积分法;泰勒公式的积分型余项.(1) 基本要求:掌握变限的定积分的概念;掌握微积分学基本定理和换元积分法及分部积分法.(2) 较高要求:掌握积分第二中值定理和泰勒公式的积分型余项.(三)教学建议:(1) 微积分学基本定理是本节的重点,要求学生必须掌握微积分学基本定理完整的条件与结论.(2) 积分第二中值定理和泰勒公式的积分型余项是本节的难点.对较好学生要求他们了解这些内容.第十章定积分的应用§1平面图形的面积(一) 教学目的:掌握平面图形面积的计算公式.(二) 教学内容:平面图形面积的计算公式.(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.(2) 较高要求:提出微元法的要领.(三) 教学建议:(1)本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.(二) 教学内容:无穷积分;瑕积分.基本要求:掌握无穷积分与瑕积分的定义与计算方法.(三) 教学建议:讲清反常积分是变限积分的极限.(2) 领会微元法的要领.§2 由平行截面面积求体积(一) 教学目的:掌握由平行截面面积求体积的计算公式(二) 教学内容:由平行截面面积求体积的计算公式.基本要求:掌握由平行截面面积求体积的计算公式.(三) 教学建议:(1) 要求学生必须熟记由平行截面面积求体积的计算公式并在应用中熟练掌握.(2) 进一步领会微元法的要领.§3 平面曲线的弧长与曲率(一) 教学目的:掌握平面曲线的弧长与曲率(二) 教学内容:平面曲线的弧长与曲率的计算公式.(1) 基本要求:掌握平面曲线的弧长计算公式.(2) 较高要求:掌握平面曲线的曲率计算公式.(三) 教学建议:(1) 要求学生必须熟记平面曲线的弧长计算公式.(2) 对较好学生可要求他们掌握平面曲线的曲率计算公式.§4 旋转曲面的面积(一) 教学目的:掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式.(三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.(1) 基本要求:要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.十一章反常积分§1反常积分的概念(一) 教学目的:掌握反常积分的定义与计算方法.。

数学分析之含参量积分

数学分析之含参量积分

第十九章含参量积分教学目的:1.掌握含参量正常积分的概念、性质及其计算方法;2.掌握两种含参量反常积分的概念、性质及其计算方法;3.掌握欧拉积分的形式及有关计算。

教学重点难点:本章的重点是含参量积分的性质及含参量反常积分的一致收敛性的判定;难点是一致收敛性的判定。

教学时数:12学时§1含参量正常积分一. 含参积分:以实例和引入.定义含参积分和.含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分.1. 含参积分的连续性:Th19.5 若函数在矩形域上连续, 则函数在上连续 . ( 证) P172Th19.8 若函数在矩形域上连续, 函数和在上连续, 则函数在上连续. ( 证) P1732. 含参积分的可微性及其应用:Th 19.10 若函数及其偏导数都在矩形域上连续, 则函数在上可导, 且.( 即积分和求导次序可换) . ( 证) P174 Th 19.11 设函数及其偏导数都在矩形域上连续,函数和定义在, 值域在上, 且可微, 则含参积分在上可微, 且. ( 证)P174例1 计算积分. P176.例2设函数在点的某邻域内连续 . 验证当充分小时, 函数的阶导数存在, 且. P177.§2 含参反常积分一. 含参无穷积分:1.含参无穷积分:函数定义在上( 可以是无穷区间) . 以为例介绍含参无穷积分表示的函数.2. 含参无穷积分的一致收敛性:逐点收敛( 或称点态收敛) 的定义: , , 使.引出一致收敛问题 .定义(一致收敛性) 设函数定义在上 . 若对, 使对成立, 则称含参无穷积分在( 关于)一致收敛.Th 19.5 ( Cauchy收敛准则) 积分在上一致收敛,对成立 .例1 证明含参量非正常积分在上一致收敛, 其中. 但在区间内非一致收敛 . P1803. 含参无穷积分与函数项级数的关系:Th 19.6 积分在上一致收敛, 对任一数列, ↗, 函数项级数在上一致收敛. ( 证略)二. 含参无穷积分一致收敛判别法:1. Weierstrass M 判别法: 设有函数, 使在上有. 若积分, 则积分在一致收敛.例2 证明含参无穷积分在内一致收敛. P1822. Dirichlet判别法和Abel判别法: P182三. 含参无穷积分的解析性质: 含参无穷积分的解析性质实指由其所表达的函数的解析性质.1. 连续性: 积分号下取极限定理.Th 19.7 设函数在上连续 . 若积分在上一致收敛, 则函数在上连续. ( 化为级数进行证明或直接证明)推论在Th.7的条件下, 对, 有2. 可微性: 积分号下求导定理.Th 19.8 设函数和在上连续. 若积分在上收敛, 积分在一致收敛. 则函数在上可微,且.3. 可积性: 积分换序定理.Th 19.9 设函数在上连续. 若积分在上一致收敛, 则函数在上可积, 且有.例3 计算积分P186四.含参瑕积分简介:§3 Euler积分本节介绍用含参广义积分表达的两个特殊函数, 即和. 它们统称为Euler积分. 在积分计算等方面, 它们是很有用的两个特殊函数.一. Gamma函数——Euler第二型积分:1. Gamma函数: 考虑无穷限含参积分,当时, 点还是该积分的瑕点 . 因此我们把该积分分为来讨论其敛散性 .: 时为正常积分 .时, .利用非负函数积的Cauchy判别法, 注意到时积分收敛 . (易见时, 仍用Cauchy判别法判得积分发散). 因此, 时积分收敛 .: 对R成立,.因此积分对R收敛.综上, 时积分收敛 . 称该积分为Euler第二型积分.Euler 第二型积分定义了内的一个函数, 称该函数为Gamma函数, 记为,即=, .函数是一个很有用的特殊函数 .2. 函数的连续性和可导性:在区间内非一致收敛 . 这是因为时积分发散. 这里利用了下面的结果: 若含参广义积分在内收敛, 但在点发散, 则积分在内非一致收敛 .但在区间内闭一致收敛 .即在任何上,一致收敛 . 因为时, 对积分, 有, 而积分收敛.对积分, , 而积分收敛. 由M—判法, 它们都一致收敛, 积分在区间上一致收敛 .作类似地讨论, 可得积分也在区间内闭一致收敛. 于是可得如下结论:的连续性: 在区间内连续 .的可导性: 在区间内可导, 且.同理可得: 在区间内任意阶可导, 且.3. 凸性与极值:, 在区间内严格下凸.( 参下段), 在区间内唯一的极限小值点( 亦为最小值点) 介于1与2 之间 .4. 的递推公式函数表:的递推公式: .证..于是, 利用递推公式得:,,, …………, ,一般地有.可见, 在上, 正是正整数阶乘的表达式 . 倘定义, 易见对,该定义是有意义的. 因此, 可视为内实数的阶乘. 这样一来, 我们很自然地把正整数的阶乘延拓到了内的所有实数上,于是, 自然就有, 可见在初等数学中规定是很合理的.函数表: 很多繁杂的积分计算问题可化为函数来处理. 人们仿三角函数表、对数表等函数表, 制订了函数表供查. 由函数的递推公式可见, 有了函数在内的值, 即可对, 求得的值. 通常把内函数的某些近似值制成表, 称这样的表为函数表也有在内编制的函数表.)5. 函数的延拓:时, 该式右端在时也有意义 . 用其作为时的定义, 即把延拓到了内.时, 依式, 利用延拓后的, 又可把延拓到内 .依此, 可把延拓到内除去的所有点. 经过如此延拓后的的图象如P192图表19—2.例1 求, , . ( 查表得.)解.), .6. 函数的其他形式和一个特殊值:某些积分可通过换元或分部积分若干次后化为函数 . 倘能如此, 可查函数表求得该积分的值.常见变形有:ⅰ> 令, 有=,因此, , .ⅱ> 令.注意到P7的结果, 得的一个特殊值.ⅲ> 令, 得. 取, 得.例2 计算积分, 其中.解I.二. Beta函数——Euler第一型积分:1.Beta函数及其连续性:称( 含有两个参数的)含参积分为Euler第一型积分. 当和中至少有一个小于1 时, 该积分为瑕积分. 下证对, 该积分收敛. 由于时点和均为瑕点. 故把积分分成和考虑.: 时为正常积分; 时, 点为瑕点. 由被积函数非负,和,( 由Cauchy判法) 积分收敛 . ( 易见时积分发散).: 时为正常积分; 时, 点为瑕点. 由被积函数非负,和,( 由Cauchy判法) 积分收敛 . ( 易见时积分发散).综上, 时积分收敛. 设D,于是, 积分定义了D内的一个二元函数. 称该函数为Beta函数, 记为, 即=不难验证, 函数在D内闭一致收敛. 又被积函数在D内连续, 因此, 函数是D内的二元连续函数.2. 函数的对称性: .证=.由于函数的两个变元是对称的, 因此, 其中一个变元具有的性质另一个变元自然也具有.3. 递推公式: .证,而,代入式, 有,解得.由对称性, 又有.4. 函数的其他形式:ⅰ> 令, 有,因此得, .ⅱ> 令, 可得, .特别地, , .ⅲ> 令, 有==,即,ⅳ> 令, 可得.ⅴ> , .三. 函数和函数的关系: 函数和函数之间有关系式,以下只就和取正整数值的情况给予证明. 和取正实数值时, 证明用到函数的变形和二重无穷积分的换序.证反复应用函数的递推公式, 有,而.特别地, 且或时, 由于, 就有.余元公式——函数与三角函数的关系:对,有.该公式的证明可参阅: Фихтенгалъц, 微积分学教程Vol 2 第3分册, 利用余元公式, 只要编制出时的函数表, 再利用三角函数表, 即可对, 查表求得的近似值.四.利用Euler积分计算积分:例3 利用余元公式计算.解, .例4 求积分.解令, 有I.例5 计算积分.解, 该积分收敛 . ( 亦可不进行判敛,把该积分化为函数在其定义域内的值, 即判得其收敛 . )I.例6 , 求积分,其中V : .解.而.因此, .第二十章曲线积分教学目的:1.理解第一、二型曲线积分的有关概念;2.掌握两种类型曲线积分的计算方法,同时明确它们的联系。

第十九章含参量正常积分

第十九章含参量正常积分

第十九章含参量正常积分§19.1含参量正常积分教学要求:(1) 了解含参量正常积分的连续性,可微性和可积性定理的证明(2) 熟练掌握含参量正常积分的导数的计算公式.(3) 掌握含参量正常积分的连续性,可微性和可积性定理的应用教学重点:含参量正常积分定义及其性质;掌握含参量正常积分的连续性,可微性和可积性定理的应用教学难点:含参量正常积分的连续性,可微性和可积性;一、含参量正常积分的概念定义定义设二元函数f (x, y)在矩形区域R=[a,b][c,d]上有定义,且对[a,b]内每一点x,函数f(x, y)关于y在闭区间[c,d]上可积,则定义了x的函数dI (x) = J f (x, y)dy,x匸[a,b](1)设二元函数 f (x, y) 在区域G ={( x, y) | c(x)三y三d (x), a三x巴b}上有定义,函数c(x),d(x)为[a,b]上的连续函数,且对[a,b]内每一点x,函数f (x, y)关于y在闭区间[c(x),d(x)]上可积,则定义了x的函数d(x) / 、F(x)二eg f(x, y)dy,x [a,b](2)称I (x) = f f (x,y)dy和F(x) = [:(:f (x, y) dy为含参量x的正常积分,x称为参变量。

L c 匕(x)类似可定义含参量y的正常积分.含参量积分在形式上是积分,但积分值随参量的取值不同而变化,因此实质上是一个函数。

即含参量正常积分是以积分形式表达的函数,含参积分提供了表达函数的又一手段•二、含参量正常积分的连续性、可微性与可积性1.连续性:定理19.1(连续性)若二元函数f(x,y)在矩形区域R=[a,b][c,d]上连续,则函数l(x)二:f(x, y)dy 在[a,b]上连续.分析设[a,b],对充分小的x,有x*x・[a,b](若x为区间端点则考虑x 0或.■:x ::: 0),要证I (x)在[a, b]上连续,只须证I (x)在任意x [a, b]上连续,只须证-;0,_ -「0, 当| ■'■:x | :::-;时,| I (x * =x) - I (x)卜:;,即 - ;• 0,二心a 0,当|卜::时,d d| c[ f (x .X y) - f(x,y)]dy c | f(x .:x, y) - f (x, y) | dy :::;.要使上式成立,只须| f (x • :x, y) - f (x, y)卜:;(d -c).由f (x, y)在R上连续,从而一致连续可得结果.证明思路:连续的定义+—致连续。

数学分析第二册答案第十九章 含参变量的积分

数学分析第二册答案第十九章  含参变量的积分

第十九章 含参变量的积分§1 含参变量的正常积分1.求下列极限: (1)⎰-→+11220lim dx x αα; (2)⎰→220cos lim xdx x αα;(3)⎰+→++αααα122011limdx x .解(1)由于22),(αα+=x x f 在]1,1[]1,1[-⨯-上连续,故⎰-+=1122)(dx x I αα在]1,1[-连续,所以,12)0()(lim lim 1112011220=====+⎰⎰⎰-→-→xdx dx x I I dx x αααα.(2)由于x x x f ααcos ),(2=在]2,0[]2,0[⨯上连续,故⎰=22cos )(xdx x I αα在]2,0[连续,所以,38)0()(lim cos lim 2202020====⎰⎰→→dx x I I xdx x αααα. (3)⎰⎰⎰⎰+++++++-++=++αααααααα11222212212211111111dx x dx x dx x dx x ,由于2211),(αα++=x x f 在]1,0[]1,0[⨯上连续,故⎰++=102211)(dx xI αα在]1,0[连续,所以,411)0()(lim 11lim 10201220παααα=+===++⎰⎰→→dx x I I dx x .而对R ∈∀α,R x ∈有,ααα≤++⎰2211dx x ,ααα≤++⎰+112211dx x ,因此 011lim 0220=++⎰→αααdx x ,011lim 11220=++⎰+→αααdx x , 因而,⎰⎰⎰++-++=++→→+→ααααααααα2201220122011lim 11lim 11lim dx x dx x dx x411lim 11220πααα=++-⎰+→dx x2.求)(x F ',其中: (1)⎰-=22)(x xxy dy e x F ; (2)⎰-=xxy xdy e x F cos sin 12)(;(3)⎰++=xb x a dy y xy x F )sin()(;(4)⎰⎰=xx t dt ds s t f x F 0]),([)(22.解(1)35222222222)(2)(2x x x xxy xx x x x xxy e xe dy y e ex edy y ex F -------+-=-⋅+-='⎰⎰.(2))(sin )(cos 1)(222sin 1cos 1cos sin 21'-'+-='---⎰x e x e dy y e x F xxxx xxy xx e x edy y e xx xx xxy xcos sin 1cos sin cos sin 212---=⎰-.(3))())(sin()())(sin()cos()('+++-'++++='⎰++x a xz x a x x b x b x b x dy xy x F xb xa=)](sin[)11()](sin[)11(a x x x a xb x x x b x +++-+++. (4)⎰⎰⎰⎰=+∂∂='xx x x x t dt x t xf ds s x f dt ds s t f x x F 020),(2),()),(()(2222.3.设)(x f 为连续函数,⎰⎰++=xxd d x f h x F 02])([1)(ξηηξ,求)(x F ''.解 由于⎰⎰⎰⎰++=++=xx x x x du u f d h d x f d h x F 022002)(1)(1)(ξξξηηξξ,所以, ]))(()([1)(02322⎰⎰⎰++∂∂+='x x x xx d du u f x du u f hx F ξξξ})]()2(2[)({10322⎰⎰+-++=x xxd x f x f du u f h ξξξ,)]2(3)3(5[1)]2()3(2)2(2)3(3[1)(22x f x f hx f x f x f x f h x F -=-+-=''.注记 该题的函数应为⎰⎰++=h hd d x f hx F 002])([1)(ξηηξ(这从该教材第二版亦可得到印证),则⎰⎰⎰⎰+++=++=xhx x hhdu u f d h d x f d h x F 022)(1)(1)(ξξξηηξξ,所以,⎰⎰⎰+-++=∂∂='+++hx h x x d x f h x f hd du u f x h x F 0202)]()([1])([1)(ξξξξξξ ])()([122⎰⎰+++-=h x x hx hx du u f du u f h , )]()()2([1)]()()()2([1)(22x f h x f h x f hx f h x f h x f h x f h x F ++-+=++-+-+=''.4.研究函数⎰+=122)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数.解 当0≠y 时,被积函数在相应的闭矩形上是连续的,因此)(y F 在0≠y 连续.当0=y 时,0)0(=F .而0>y 时,设m 为)(x f 在]1,0[上的最小值,则0>m .由于y m dx yx y m y F 1arctan )(122=+≥⎰,而21arctan lim 0π=+→y y , 故有)(lim 0y F y +→若存在,必然)0(02)(lim 0F m y F y =>≥+→π或不存在,因而)(y F 在0=y 时间断. 5.应用积分号下求导法求下列积分:(1)⎰-222)sin ln(πdx x a (1>a );(2))1()cos 21ln(02<+-⎰a dx a x a π;(3))0,()cos sin ln(202222≠+⎰b a dx x b x a π;(4))1(tan )tan arctan(20<⎰a dx xx a π.解(1)设⎰-=2022)sin ln()(πdx x a a I ,则有⎰⎰-=-∂∂='20222022sin 2)]sin ln([)(ππdx x a a dx x a xa I)11arctan 11(arctan 12)sin 1sin 1(22220--+-+-=-++=⎰a a a a a dx x a x a π12-=a π,即c a a da a a I +-+=-=⎰)1ln(1)(22ππ.c 的确定较为困难,可如下进行.)1ln()sin ln()1ln()(220222-+--=-+-=⎰a a dx x a a a a I c πππ)1ln()]sin 1ln([ln 220222-+--+=⎰a a dx axa ππa a a dx ax 1ln)sin 1ln(22022-+--=⎰ππ, 令+∞→a ,2ln 1ln 2ππ→-+aa a ,又1sin 1110222≤-<-<a x a ,所以, 0)sin 1ln()11ln(222≤-≤-a xa ,)(0)11ln(2)11ln()sin 1ln()sin 1ln(22022022222+∞→→-=-≤-≤-⎰⎰⎰a adx a dx a x dx a x ππππ,2ln π=⇒c ,即21ln 2ln )1ln()(22-+=--+=a a a a a I πππ.(2)设⎰+-=π2)cos 21ln()(dx a x a a I ,则⎰⎰+--=+--='ππ02202cos 2111cos 21)cos (2)(dx ax a a a dx a x a x a a I ⎰⎰+-+--=-+--=ππππ0222022cos 1211)1(1cos 2)1(11dx x aa a a a a dx xa a aa a222022212)1(2)11arctan()1()1()1(2)1(1a a a a a x a a a a a a a a a +=+-=-++--+--=πππππ,所以,)1ln(21)0()()(202a da a a I a I a I a+=+=-=⎰ππ. (3)将a 看作参变量,b 认为是常数,记⎰+=202222)cos sin ln()(πdx x b x a a I .可先设0>a ,0>b ,则⎰⎰+=+∂∂='2020222222222cos sin sin 2)]cos sin ln([)(ππdx xb x a x a dx x b x a a a I . 若b a =,则bxdx b a I 2sin 2)(202ππ=='⎰,若b a ≠作代换x t tan =,得⎰⎰∞+∞+++=++='022222022222))(1(212)(a b t t dt t a t dt b t a at a Iba ))(111(2222202222222222+=---=+--+-=⎰∞+πππba bba adt a bt b a b t b a a a ,所以,c b a πda b a πa I ++=+=⎰)ln()(,而c b b b I +==)2ln(ln )(ππ2ln π-=⇒c ,于是2ln 2ln )ln()(ba b a πa I +=-+=ππ.若0<a 或0<b ,则可以a -或b -代替a 或b ,因而总有2ln)()(b a a I a I +==π.(4)记⎰=20tan )tan arctan()(πdx xx a a I ,令x x a a x f tan )tan arctan(),(=,当2,0π=x 时,f 无定义,但a a x f x =+→),(lim 0,0),(lim 2=-→a x f x π,故补充定义a a f =),0(,0),2(=a f π,则f 在],[]2,0[b b -⨯π连续(10<<b ),从而)(a I 在)1,1(-连续.⎪⎪⎩⎪⎪⎨⎧=∈+=,2,0 ,0,)2,0( ,tan 11),(22ππx x x a a x f a显然)0,(x f a 在2π=x 点不连续,但),(a x f a 分别在)0,1(]2,0[-⨯π和)1,0(]2,0[⨯π连续,故有⎰⎰+=='2222tan 11),()(ππdx xa dx a x f a I a ,)0,1(-∈a 或)1,0(∈a .令t x =tan ,⎰⎰∞+∞+++--+-=++='0222222222222)1)(1(111)1)(1(1)(dt t a t a t a t a a dt t a t a I)1(2])1()1(1[11022222a dt t a a t a +=+-+-=⎰∞+π,)0,1(-∈a 或)1,0(∈a . 积分之1)1ln(2)(c a a I ++=π,)1,0(∈a ;2)1l n (2)(c a a I +--=π,)0,1(-∈a .因为)(a I 在)1,1(-连续,故)(lim 0)(lim )0(0a I a I I a a -+→→===,得021==c c ,从而得|)|1ln(sgn 2)(a a a I +=π,1||<a .6.应用积分交换次序求下列积分: (1))0,0(ln 1>>-⎰b a dx xx x ab ; (2))0,0(ln )1sin(ln 10>>-⎰b a dx xx x x ab . 解(1)b a b a b a yb a y a b y dy y dx x dx dy x dx dx xx x |)1ln(11ln 10101+=+===-⎰⎰⎰⎰⎰⎰aba b ++=+-+=11ln)1ln()1ln(. (2)⎰⎰⎰⎰⎰==-b a y b a y a b dx xx dy dx dy x x dx x x x x 101010)1sin(ln ])1[sin(ln ln )1sin(ln . 记⎰=1)1sin(ln )(dx x xy I y,则 ])1()1cos(ln )1sin(ln [11)1sin(ln 11)(10111101⎰⎰--+=+=+++dx x x x x x y dx x y y I y y y ])1()1sin(ln ()1cos(ln [)1(1)1cos(ln 11101101210⎰⎰---+=+=++dx x x x x x y dx x x y y y y ))(1()1(1))1sin(ln 1()1(12102y I y dx x x y y -+=-+=⎰, 所以,1)1(1)(2++=y y I ,因此, )1)(1(1arctan 1)1(1)(ln )1sin(ln 210b a ab dy y dy y I dx x x x x b a b a a b +++-=++==-⎰⎰⎰. 7.设f 为可微函数,试求下列函数的二阶导数: (1)⎰+=xdy y f y x x F 0)()()(; (2))()()(b a dy y x y f x F ba<-=⎰.解(1))(2)()(0x xf dy y f x F x+='⎰,)(2)(3)(x f x x f x F '+=''.(2)⎰-=bady y x y f x F )()(⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤-=⎰⎰⎰⎰,,))((,,))(())((,,))((b x dy y x y f b x a dy x y y f dy y x y f a x dy x y y f ba b x xa b a⎪⎪⎩⎪⎪⎨⎧≥<<-≤-='⎰⎰⎰⎰,,)(,,)()(,,)()(b x dy y f b x a dy y f dy y f a x dy y f x F bab x xa b a⎩⎨⎧≥≤<<=⎪⎩⎪⎨⎧≥<<≤=''.b x or a x b x a x f b x b x a x f a x x F ,0,,)(2,0,,)(2,,0)(8.证明:⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .证明 ⎰⎰⎰⎰⎰+-+=+-101022102222101022222]1)(12[)(dy y x dy y x x dx dy y x y x dx 4|arctan 11112π==+=⎰x dx x , ⎰⎰⎰⎰⎰+-+=+-10102221022101022222]121[)(dx y x y dx y x dy dx y x y x dy 4|arctan 11112π-=-=+-=⎰y dy y , 所以,⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .9.设⎰+=122ln )(dx y x y F ,问是否成立⎰=+∂∂='10022ln )0(dx y x yF y .解 1ln ln )0(110-===⎰⎰xdx dx x F ,所以,]11[ln 1)1ln (1)0()(101022221022+-+++=++=-⎰⎰⎰dx dx yx y y y dy y x y y F y F)0(21arctan 2)1ln(]arctan 1[ln 12102+→→++=++=y y y y y x y y y π, 即2)0(π='+F ,同样2)0(π-='-F ,因此)0(F '不存在,而00ln 112210022==+=+∂∂⎰⎰⎰==dx dx y x y dx yx y y y ,因此,⎰=+∂∂='10022ln )0(dx y x yF y 不成立.10.设⎰=πθθθ20cos )sin cos()(d x e x F x ,求证π2)(≡x F .证明 R x ∈∀0,函数)sin cos(),(cos θθθx e x f x =在矩形域]2,0[]1,)1([00π⨯++-x x 连续,θθθθθθθsin )]sin sin([)sin cos(cos ),(cos cos x e x e x f x x x -+=亦在矩形域]2,0[]1,)1([00π⨯++-x x 连续,故由积分号下求导数可得⎰⎰==-=∂∂='πθθπθθθθθθθ20cos cos 20000]sin )sin sin()sin cos(cos [),()(d x e x e d x f x x F x x x x x x⎰⎰-=πθπθθθθθ200c o s 200c o ss i n )s i n s i n ()s i n s i n (100d x e x d ex x x (00≠x )⎰-⋅-=πθπθθθθθ200cos 00200cos 0)sin ()sin sin(1|)sin sin(100d x e x x x e x x x⎰-πθθθθ200cos sin )sin sin(0d x e x0=,当00=x 时,显然0sin cos )0(2020==='⎰ππθθθd F .由R x ∈0的任意性,0)(='x F ,因此,C x F ≡)(,而πθπ2)0(20===⎰d F C ,所以,π2)(≡x F .11.设)(x f 为两次可微函数,)(x ϕ为可微函数,证明函数⎰+-+++-=atx atx dz z a at x f at x f t x u )(21)]()([21),(ϕ满足弦振动方程22222xu a t u ∂∂=∂∂ 及初始条件)()0,(x f x u =,)()0,(x x u t ϕ=.证明)]()([21)]()([21at x at x aat x f at x f x u --+++'+-'=∂∂ϕϕ, )]()([21)]()([2122at x at x a at x f at x f xu -'-+'++''+-''=∂∂ϕϕ, )]()([21)]()([21at x a at x a aat x f a at x f a t u -++++'+-'-=∂∂ϕϕ )]()([21)]()([2at x at x at x f at x f a -++++'+-'-=ϕϕ,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 所以,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 2222)]}()([21)]()([21{x u a at x at x a at x f at x f a ∂∂=-'-+'++''+-''=ϕϕ, 即满足弦振动方程.又)()(21)]()([21)0,(x f dz z ax f x f x u xx =++=⎰ϕ, )()]()([21)]()([2)0,(x x x x f x f a x u t ϕϕϕ=++'+'-=,即满足初始条件.§2 含参变量的广义积分1.证明下列积分在指定的区间内一致收敛:(1)⎰+∞+022)cos(dy yx xy (0>≥a x ); (2))(1)cos(02+∞<<-∞+⎰+∞x dy y xy ;(3))(1b x a dy e y y x ≤≤⎰+∞-;(4)⎰+∞-1cos dy y ye pxy(0>p ,0≥x ); (5))0(1sin 02≥+⎰∞+p dx xx p. 证明(1)因为当0>≥a x 时,],0[+∞∈∀y ,有22222211)cos(ya y x y x xy +≤+≤+, 而dy ya ⎰+∞+0221收敛,由M 判别法,⎰+∞+022)cos(dy y x xy 在0>≥a x 是一致收敛的. (2)因为,),(+∞-∞∈∀x ,),0[+∞∈y 成立22111)cos(y y xy +≤+,而⎰+∞+0211dy y 收敛,由M 判别法,⎰+∞+021)cos(dy y xy 在+∞<<∞-x 一致收敛.(3)因为],[b a x ∈∀,),1[+∞∈y ,成立{}y M yb a y x e y eye y ---≤≤,max ,其中{}0,max ≥=b a M , 而⎰+∞-1dy e y yM 收敛,所以⎰+∞-1dy e y y x 在b x a ≤≤一致收敛.(4)用Abel 判别法.已知⎰+∞1cos dy yyp收敛(见第十一章§3习题3(3)),又对每一个),0[+∞∈x ,函数xye-关于y 是单调函数,且),0[+∞∈∀x ,),1[+∞∈y ,有1≤-xye,由Abel 判别法知 ⎰+∞-1cos dy y ye pxy在),0[+∞一致收敛.(5)由于⎰+∞2sin dx x 收敛(见p56-§11.1-例10),又对每一个),0[+∞∈p ,函数px +11是单调减函数,且),0[+∞∈∀x ,),0[+∞∈p ,有111≤+p x,由Abel 判别法,)0(1sin 02≥+⎰∞+p dx x x p 在),0[+∞一致收敛.2.讨论下列积分在指定区间上的一致收敛性: (1))0(2+∞<<-+∞⎰αααdx e x ;(2)⎰+∞-0dy xe xy ,(i ))0(],[>∈a b a x , (ii )],0[b x ∈; (3)⎰+∞∞---dx e x 2)(α,(i )b a <<α, (ii )+∞<<∞-α; (4))0(sin 0)1(22+∞<<⎰+∞+-x xdy e y x.解(1))0(2)(0)(0222>===⎰⎰⎰∞+-∞+--∞+απαααααdu e ux x d e dx e u x x ,当0=α时积分为0.0>∀A ,由于2lim lim 0222πααααα===⎰⎰⎰∞+-∞+-→∞+-→++du e du e dx e u Au o Ax o,故0ε∃:200πε<<,00>∃α,使得有0020εαα>⎰+∞-Ax dx e ,因此积分非一致收敛.(2)积分对于每一个定值0≥x 是收敛的.当0=x 时,00=⎰+∞-dy xe xy ;当0>x 时1|0=-=∞+-+∞-⎰xy xy e dy xe . (i ))0(],[>∈a b a x ,由于aA xA Axy e e dy xe --+∞-≤=<⎰0,故εε1ln 1,00a A =∃>∀,使当0A A >时,就有ε=<-+∞-⎰0aA Axy e dy xe ,于是,在区间)0(],[>∈a b a x 上积分一致收敛.(ii )由于+→0x 时,1→-Axe ,故10:00<<∃εε,对于足够小的0x 值,00ε>-Axe ,故在],0[b 上,积分⎰+∞-0dy xe xy 不一致收敛.(3)对任意固定的α,积分⎰+∞∞---dx ex 2)(α都收敛,且(作代换t x =-α)πα==⎰⎰+∞∞--+∞∞---dt e dx e t x 22)(.(i )取正数R 充分大,使得R b a R <<<-,显然,当R x ≥时,对一切b a <<α,有22)()(0R x x ee----<<α,而积分⎰⎰+∞--+∞∞---=0)()(222dx e dx eR x R x 收敛,由M 判别法,积分⎰+∞∞---dx e x 2)(α在b a <<α一致收敛.(ii )0>∀A ,有παααα===⎰⎰⎰+∞∞--+∞--+∞→+∞--+∞→dt e dt e dx e t A t Ax 222limlim)(,故当α充分大时,0)(22επα=>⎰∞+--Ax dx e ,由此可知⎰+∞--0)(2dx e x α在+∞<<∞-α非一致收敛,因而⎰+∞∞---dx e x 2)(α在+∞<<∞-α更非一致收敛.(4)0>∀A ,有)0(sin sin 0)1(22222++∞-+∞--+∞+-→→=⎰⎰⎰x dt e dt e e xx xdy e t Ax t x Ay x,因此,积分⎰+∞+-0)1(sin 22xdy e y x在+∞<<x 0非一致收敛.3.设)(t f 在0>t 连续,⎰+∞)(dt t f t λ当a =λ,b =λ时皆收敛,且b a <.求证:⎰+∞)(dtt f t λ关于λ在],[b a 一致收敛.证明 ⎰⎰⎰+∞--+∞+=110)()()(dt t f t t dt t f t t dt t f t b b a a λλλ.由于⎰1)(dt t f t a 收敛,因而,对],[b a ∈λ一致收敛,αλ-t 当λ固定时,对t 在]1,0[单调,且1≤-αλt ,因此,由Abel 判别法,积分⎰⎰=-11)()(dt t f t dt t f t t a a λλ在],[b a 一致收敛.又因为⎰+∞1)(dt t f t b 收敛,故对],[b a ∈λ亦一致收敛,b t -λ当λ固定时,对t 在],1[+∞单调递减,且1≤-btλ,由Abel 判别法,积分⎰⎰+∞+∞-=11)()(dt t f t dt t f t t b b λλ在],[b a 一致收敛.因此,⎰+∞0)(dt t f t λ在],[b a 上一致收敛.4.讨论下列函数在指定区间上的连续性: (1)⎰+∞+=22)(dy yx xx F ,),(+∞-∞∈x ; (2)⎰∞++=21)(dy yy x F x,3>x ; (3)⎰--=ππ02)(sin )(dy y y yx F xx ,)2,0(∈x .解(1)当0≠x 时,⎪⎪⎩⎪⎪⎨⎧><-==+=+=∞+∞+∞+⎰⎰,0,2,0,2arctan )()(11)(0222x x x yx y d xy dy y x xx F ππ而0)0(=F ,因此,)(x F 在0≠x 连续,在0=x 间断(第一类间断点).(2)因为)1(,1112222≥<+=+---y yy y y y x x x , 而当3>x 时,无穷积分⎰+∞-121dx y x 收敛,⎰+=1021)(dy y y x F x在3>x 是常义积分,因而)(x F 在3>x 有意义.30>∀x ,03x b <<∃,当1≥y 时, ),[+∞∈∀b x ,有222221111----≤<+=+b x x x y y y y y y , 而⎰+∞-121dy yb 收敛,因而⎰∞++021dy yy x 在),[+∞b 一致收敛,因此,⎰∞++=021)(dx y y x F x 在),[0+∞∈b x 连续,由),3(0+∞∈x 的任意性可知,)(x F 在3>x 连续.(3)⎰⎰----+-=ππππππ2222)()sin()(sin )(dy y y y dy y y yx F x x x x , 所以,)2,0(0∈∀x ,0>∃δ,使得δδ-<<<200x ,当]2,[δδ-∈x 时,有δδδδπππππ)2(1)2(1)(1)(sin 11212-----=-≤-≤-y y y y y y y xx x x ,]1,0(∈y ,δδπππππ-----≤-≤--1212)()2(1)(1)()sin(y y y y y y xx x x ,),1[ππ-∈y ,⎰-11)2(1dy y δδ及⎰----ππδδπ112)()2(1dy y 均收敛,所以⎰--22)(sin ππdx y y yxx 及⎰--πππ22)(sin dx y y y x x 均在]2,[δδ-∈x 一致收敛,因而⎰--ππ02)(sin dy y y yxx 在]2,[δδ-∈x 一致收敛. 因此,)(x F 在]2,[δδ-∈x 连续,因而在δδ-<<<200x 连续,由)2,0(0∈x 的任意性,知)(x F 在)2,0(连续.5.若),(y x f 在),[],[+∞⨯c b a 上连续,含参变量广义积分⎰+∞=cdy y x f x Ι),()(在),[b a 收敛,在b x =时发散,证明)(x I 在),[b a 不一致收敛.证明 目的在于证明:00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,使得0'''),(ε≥⎰A A dy y x f . (1)因为⎰⎰⎰+-='''''''''),()],(),([),(A AA A A A dy y b f dy y b f y x f dy y x f⎰⎰--≥'''''')],(),([),(A A A A dy y b f y x f dy y b f ,因此,若能证明00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,02),('''ε≥⎰A A dy y b f ,0'''),(),([ε<-⎰A A dy y b f y x f , (2)则(1)式即可得到.剩下的问题在于证明(2).01 因⎰+∞cdy y b f ),(发散,故00>∃ε,c A >∀0,0'''A A A >>∃,使得02),('''ε≥⎰A A dy y b f .02 但),(y x f 在),[],[+∞⨯c b a 连续,从而在有界闭区域b x a ≤≤,A y A ''≤≤'上一致连续,于是对上述01中00>ε,0>∃δ,当 δ<''-'x x ,δ<''-'y y 且],[,b a x x ∈''',],[,A A y y '''∈'''时,有A A y x f y x f '-''<''''-''0),(),(ε,从而δ<-b x 时,有A A y b f y x f '-''<-0),(),(ε,由此推得0'''),(),([ε<-⎰A A dy y b f y x f .6.含参变量的广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上一致收敛.证明 必要性.⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛,故0>∀ε,c A >∃0,当0A A >时,有ε<⎰+∞Ady y x f ),(,对],[b a x ∈一致地成立.对任意递增数列{}n A :)(1c A A n =∞→,首先,∑⎰∑⎰∑=∞→∞=∞=++==nk A A n n A A n n k kn ndy y x f dy y x f x u 11111),(lim ),()()(),(),(lim 1x I dy y x f dy y x f cA cn n ===⎰⎰+∞∞→+,],[b a x ∈∀成立.其次,由于{}n A 单调递减趋于∞+,故对上述c A >0,N ∃满足0A A N ≥,因此当N n >时,0A A A N n ≥>,因此,有ε<==⎰∑⎰∑∞+∞=∞=+nk kA n k A A nk kdy y x f dy y x f x u),(),()(1,],[b a x ∈∀一致地成立,因此级数∑∞=1)(n n x u 在],[b a 上一致收敛于)(x I .充分性.采用反证法.若不然,设对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 上一致收敛,但广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 不一致收敛,因此00>∃ε,c A >∀0,0A A >∃,],[0b a x ∈∃,使得00),(ε≥⎰+∞Ady y x f .取01][)1(0>+=c A ,)1(02A A >∃,],[1b a x ∈∃,使得012),(ε≥⎰+∞A dy y x f ;取11)2(0+=A A,)2(03AA >∃,],[2b a x ∈∃,使得023),(ε≥⎰+∞A dy y x f ; 取12)3(0+=A A ,)3(04A A >∃,],[3b a x ∈∃,使得034),(ε≥⎰+∞A dy y x f ;如此一直下去.得到一列单调递增序列{}n A (令C A =1),且)(∞→+∞→n A n 和一列{}],[b a x n ⊂,使得01),(ε≥⎰+∞+n A n dy y x f ,即函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 非一致收敛,矛盾!因此,⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛.7.用上题的结论证明含参变量广义积分⎰+∞=cdy y x f x I ),()(在],[b a 的积分交换次序定理(定理19.12)和积分号下求导数定理(定理19.13).证明 积分交换次序定理 设),(y x f 在),[],[+∞⨯c b a 上连续,且含参变量的广义积分⎰+∞=cdy y x f x I ),()(在],[b a 上一致收敛,则⎰⎰⎰+∞=cbabadx y x f dy dx x I ),()(,即⎰⎰⎰⎰+∞+∞=cbab a cdx y x f dy dy y x f dx ),(),(.由于⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛⇒对任意递增趋于∞+的数列{}n A (c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 一致收敛于)(x I ,由已知条件,),(y x f 在),[],[+∞⨯c b a 上连续,因而亦在],[],[1+⨯n n A A b a 上连续,故⎰+=1),()(n nA A n dy y x f x u 在],[b a 连续,因此利用函数项级数和函数的逐项积分定理,有∑⎰⎰∑⎰⎰∑⎰⎰∞=∞=∞=++===11111),(),()()(n A A ban baA A n ban ban nn ndx y x f dy dy y x f dx dx x u dx x I⎰⎰⎰⎰∑⎰⎰+∞∞→=∞→===++cbaA cban nk A A ban dx y x f dy dx y x f dy dx y x f dy n k k),(),(lim ),(lim111.积分号下求导数定理 设),(y x f 和),(y x f x 都在),[],[+∞⨯c b a 上连续,若⎰+∞cdy y x f ),(在],[b a 上收敛,⎰+∞cx dy y x f ),(在],[b a 上一致收敛,则⎰+∞=cdy y x f x I ),()(在],[b a 可导,且⎰+∞='cx dy y x f x I ),()(,即⎰⎰+∞+∞∂∂=c c x dy y x f xdy y x f dx d ),(),(. 由于⎰+∞cdy y x f ),(在],[b a 上收敛,故对任意趋于∞+的递增函数列{}n A (C A =1),级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上收敛于)(x I ,又⎰+∞cx dy y x f ),(在],[b a 上一致收敛,故函数项级数∑∑⎰∞=∞='=+11)(),(1n nn A A x x u dy y x f n n在],[b a 上一致收敛,用函数项级数和函数的逐项求导定理,知 ⎰∑⎰∑+∞∞=∞==='='+cx n A A x n ndy y x f dy y x f x u x I n n),(),()()(111.8.利用微分交换次序计算下列积分: (1)⎰+∞++=12)()(n n a x dxa I (n 为正整数,0>a ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ); (3)⎰+∞-0sin 2bxdx xe ax (0>a ).解(1)由于积分⎰+∞+02ax dx对一切00>a 在0a a ≥上一致收敛,得)()()1(10220202a I a x dx dx ax a a x dx da d -=+-=+∂∂=+⎰⎰⎰+∞+∞+∞, 由00>a 的任意性,知上式对一切0>a 成立.同理对积分⎰+∞+02ax dx逐次求导,得)(!)1()(!)1(01202a I n a x dx n a x dx da d n nn n nn -=+-=+⎰⎰∞++∞+, 但320212)2(aa da d a x dx da d ππ-==+⎰+∞,5323202221231)1()12(aada d ax dx da d ππ⋅-=-=+⎰∞+,用数学归纳法,可得121212!)!12()1(++∞+--=+⎰n n n nn an a x dx da d π,所以,)21()21(1!)!2(!)!12(2!2!)!12()(+-+-+-⋅=⋅⋅-=n n n n a n n a n n a I ππ.(2)当0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,下设0≠m . 由于0sin lim0=---→+mx xe e bxax x ,因此0=x 不是瑕点,从而当0>a ,0>b 时,被积函数在+∞<≤x 0内连续(0=x 的函数值理解为极限值0),又由于)0(sin >-≤-----x xe e mx x e e bxax bx ax , 而积分⎰∞+---1dx x e e bx ax 收敛,由比较判别法,积分⎰∞+---0sin mxdx xe e bxax收敛.当00>≥a a 时,积分⎰⎰∞+-∞+---=-∂∂00sin )sin (mxdx e dx mx xe e a ax bxax 是一致收敛的.事实上,由)0(sin 0≥≤--x emx exa ax立即得到此结论.于是⎰∞+---=0sin )(mxdx xe e a I bxax 在00>≥a a 时可以在积分号下求导数,得220sin )(ma mmxdx e a I ax +-=-='⎰+∞-, 由00>a 的任意性知,上式对一切0>a 均成立,从而c m ada m a m a I +-=+-=⎰arctan )(22,其中c 为待定常数,令b a =,则得c m b b I +-==arctan 0)(mbc arctan =⇒.所以, )0()(arctan arctan arctan sin 20≠+-=-=-⎰∞+--m abm a b m m a m b mxdx x e e bx ax . (3)⎰⎰⎰+∞-+∞-+∞-+∞-+-=-=0000cos 2sin 21)(sin 21sin 2222bxdx e a b bx e a e bxd a bxdx xeax ax ax ax ⎰+∞-=0cos 22bxdx e ab ax 设⎰+∞-=0cos )(2bxdx eb I ax ,由于bx e ax cos 2-与bx xe bx e bax ax sin )cos (22---=∂∂都是0≥x ,+∞<<∞-b 上的连续函数,且此时22cos ax ax e bx e --≤,22sin ax ax xe bx xe --≤,而积分⎰+∞-02dx e ax 与⎰+∞-02dx xe ax 都收敛,因此积分⎰+∞-0cos 2bxdx e ax 与⎰+∞-0sin 2bxdx xe ax 均在),(+∞-∞上一致收敛,从而可以在积分号下求导数.所以,)(2sin )(02b I abbxdx xe b I ax -=-='⎰+∞-, 解得,ab ceb I 42)(-=,其中c 是待定常数.但21)0(02πa dx e I ax ==⎰∞+-,得ab a b axe aa b e a a b b I a b bxdx xe 42402224212)(2sin --∞+-===⎰ππ. 9.利用对参数的积分法计算下列积分:(1)⎰∞+---022dx xeebx ax (0>a ,0>b ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ). 解(1)⎰⎰⎰⎰⎰∞+-∞+-∞+--=-=-b atx abtx bx ax dx xedt dt exdx dx xe e2222⎰⎰⎰+∞-+∞--=--=b a tx ba tx dt e t tx d e dt t 0022221)(21ab a b t dt t b a b a ln 21)ln (ln 21ln 2121=-===⎰. (2)⎰⎰⎰⎰⎰∞+-∞+-∞+--==-b a tx b a tx bxax mxdx e dt dt e mxdx mxdx xe e 000sin sin sinabm a b m m a m b m t dt m t m ba ba+-=-==+=⎰222)(arctanarctan arctan arctan ()0≠m , 而0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,这也可以归结到前面最终答案中0=m 的情形,所以, abm a b m mxdx x e e bx ax +-=-⎰∞+--20)(arctan sin . 10.利用⎰+∞+-=+0)1(2211dy e xx y 计算Laplace 积分 ⎰+∞+=021cos dx x x L α和 ⎰+∞+=0211sin dx xx x L α. 解 先计算⎰+∞+=021cos dx xxL α. 若0=α,则2arctan 111cos 00202πα==+=+=∞++∞+∞⎰⎰x dx x dx x x L ,故下设0≠α.⎰⎰⎰⎰⎰+∞+∞--+∞+∞+-+∞==+=0000)1(02cos cos )(1cos 22xdx e dy e xdx dy e dx xx L yx y x y ααα ⎰⎰⎰∞++-∞++-∞+--==⋅=0)2(0)4(04222221dt eedt ety dy e yett tt yyααααπππ,其中第四个等号应用了8(3)中)(b I 的结果.下面计算⎰∞++-=0)2(2dt eI tt α.设u tt =-2α,则+∞<<t 0时,+∞<<∞-u ,αα222+=+u tt )2(212α++=⇒u u t , 从而有du u u u du u u dt ααα2221)2221(21222+++=++=,代入得⎰⎰∞+∞-+-∞++-+++==du u u u e dt eI u tt αααα222122)2(0)2(22)2222(21022)2(022)2(22⎰⎰∞++-∞-+-+++++++=du u u u e du u u u e u u αααααα)2222(21022)2(022)2(22⎰⎰∞++-∞++-+++++-+=du u u u e du u uu e u u αααααα(前者作负代换)ααααπ2020)2(0)2(2221222-∞+--∞++-∞++-====⎰⎰⎰edu e e du e du e u u u ,所以,αααααππππ--∞++-=⋅=⋅=⎰eeedt eeL tt 2220)2(2.再计算⎰+∞+=0211sin dx x xx L α.显然 ⎰⎰⎰⎰⎰⎰--+∞+∞==+=+=ααααππ000020021221cos 1cos du e du e dx x ux du du x ux dx L uu απαπαπααπαααααsgn )1(20,)1(2,0,)1(20,,0,200----=⎪⎪⎩⎪⎪⎨⎧<-≥-=⎪⎩⎪⎨⎧<≥=⎰⎰e e e du e du e u u . 11.利用)0(2102>=⎰+∞-x dy e xxy π计算Fresnel 积分⎰⎰+∞+∞==002sin 21sin dx xxdx x F ,和 ⎰⎰+∞+∞==0021cos 21cos dx xxdx x F . 解 在积分⎰+∞-=221dy e xxy π的两端乘以x sin ,再在100x x x ≤≤<上积分,则得⎰⎰⎰+∞-=121sin 2sin x x xy x x dy xe dx dx xx π.由于202sin y x xy e ex --≤⋅,而⎰+∞-020dy e y x 收敛,故积分⎰+∞-02sin dy xe xy 对10x x x ≤≤一致收敛,从而可以进行积分顺序的交换,得⎰⎰⎰⎰∞+-∞+-++-=⋅=420102121]1)cos sin ([2sin 2sin dy yx x y e dx e x dy dx xx x x xy x x xy x x ππ⎰⎰∞+-∞+-+++=04004201cos 21sin 22020dy y e x dy y y e x y x y x ππ⎰⎰∞+-∞+-+-+-04104211cos 21sin 22121dy y e x dy y y e x y x y x ππ, 上述等式右端的诸积分分别对+∞<≤00x ,+∞<≤10x 都是一致收敛的(120≤-y x e,121≤-y x e ,且⎰∞++0421dy yy 及⎰+∞+041y dy 均收敛).于是,它们分别是10,x x (+∞<≤00x ,+∞<≤10x )的连续函数,从而令+→00x ,可在积分号下取极限,得⎰⎰⎰⎰∞+-∞+-∞++-+-+=04104210401cos 21sin 212sin 21211dy y e x dy y y e x y dy dx xx y x y x x πππ, 且由于上式右端后两个积分均不超过积分)(0211121+∞→→=⎰∞+-x x dy e y x π.故0104221→+⎰∞+-dy y y e y x ,)(0110421+∞→→+⎰∞+-x dy y e y x ,令+∞→1x 取极限,222212sin 04ππππ=⋅=+=⎰⎰∞+∞+y dy dx xx ,。

19-2——华东师范大学数学分析课件PPT

19-2——华东师范大学数学分析课件PPT

解 若 x 0, 令 u xy, 则
xe xydy eudu e xA ,
A
xA
于是
( A) sup xexydy 1, x0, A
因此, 含参量积分在 (0, ) 上非一致收敛.
而对于任何正数 , 有
(A) sup x[ ,)
xe xydy
A
e A 0 ( A ),
性质
含参量无界函数的反常积分
证 必要性 由(1)在 I 上一致收敛, 故 0, M c,
使得当 A A M时,对一切 x J, 总有
A
其中
F (A)=sup
+
f ( x, y)dy
xI A
数学分析 第十九章 含参量积分
高等教育出版社
§2 含参量反常积分 一致收敛性 一致收敛性的判别
性质
含参量无界函数的反常积分
例2 证明含参量反常积分
sin xy
0
dy y
(4)
在 [ , )上一致收敛 (其中 0), 但在 (0, )内
不一致收敛.
证 作变量代换 u xy, 得
sin xy
sin u
dy
du ,
Ay
Ax u
(5)
其中 A 0, 由于 sin udu 收敛, 故对任给的正数 0u , 总存在某一实数M , 当 A M 时就有
sin udu .
A u
数学分析 第十九章 含参量积分
高等教育出版社
( x) c f ( x, y)dy
(1)
都收敛,则 ( x) 是区间 I 上的函数.
称(1)为定义在 I 上的含参量 x 的无穷限反常积分, 或称含参量反常积分.
数学分析 第十九章 含参量积分

数学分析(下)19-1含参量正常积分

数学分析(下)19-1含参量正常积分

§1含参量正常积分对多元函数其中的一个自变量进行积分形成的函数称为含参量积分, 它可用来构造新的非初等函数. 含参量积分包含正常积分和非正常积分两种形式.一、含参量正常积分的定义二、含参量正常积分的连续性三、含参量正常积分的可微性四、含参量正常积分的可积性五、例题返回一、含参量正常积分的定义(,)f x y [,][,]R a b c d =´设是定义在矩形区域上的定义在[,]c d 上以y 为自变量的一元函数. 倘若这时(,)f x y [,]c d 在上可积, 则其积分值()(,)d ,[,](1)d c I x f x y y x a b =Îò是定义在[,]a b 上的函数.一般地, 设(,)f x y 为定义在区域二元函数.当x 取[,]a b 上的定值时,函数是(,)f x yG数在闭区间[(),()]c x d x 上可积, 则其积分值()()()(,)d ,[,] (2)d x c x F x f x y y x a b =Îò是定义在[,]a b 上的函数.()I x ()F x 用积分形式(1) 和(2) 所定义的这函数与通称为定义在[,]a b 上的含参量x 的(正常)积分, 或简称为含参量积分.二、含参量正常积分的连续性()I x 的连续性(,)f x y 定理19.1() 若二元函数在矩形区域[,][,]R a b c d =´上连续, 则函数=ò()(,)d dc I x f x y y 在[ a , b ]上连续.证设对充分小的[,],x a b Î,[,]x x x a b +Î有D D (若x 为区间的端点,则仅考虑00x x D D ><或), 于是()()[(,)(,)]d ,(3)dc I x x I x f x x y f x y y +-=+-òD D 由于(,)f x y 在有界闭区域R 上连续, 从而一致连续,0,e >0,d >即对任意总存在对R 内任意两点1122(,)(,)x y x y 与,只要1212||,||,x x y y d d -<-<就有-<1122|(,)(,)|. (4)f x y f x y e 所以由(3), (4)可得, ||,x d D 当时<+-£+-ò|()()||(,)(,)|d dc I x x I x f x x y f x y yD D d ().d c x d c e e <=-ò即I (x ) 在[,]a b 上连续.同理可证:若(,)f x y 在矩形区域R 上连续,则含参量y 的积分=ò()(,)d (5)b a J y f x y x 在[c ,d ]上连续.注1对于定理19.1的结论也可以写成如下的形式:若(,)f x y 在矩形区域R 上连续,则对任何Î0[,],x a b 都有®®=òò00lim (,)d lim (,)d .d d c c x x x x f x y y f x y y 这个结论表明,定义在矩形区域上的连续函数,其极限运算与积分运算的顺序是可以交换的.[,][,][,],a b c d c d ´Á´上连续可改为在上连续其中Á为任意区间.注2 由于连续性是局部性质,定理19.1中条件f 在()F x 的连续性(,)f x y 定理19.2() 若二元函数在区域=££££{(,)|()(),}G x y c x y d x a x b 上连续, 其中c (x ), d (x )为[,]a b 上的连续函数, 则函数=ò()()()(,)d (6)d x c x F x f x y y在[,]a b 上连续.证对积分(6)用换元积分法, 令()(()()).y c x t d x c x =+-当y 在c (x )与d (x )之间取值时, t 在[0, 1] 上取值,且d (()())d .y d x c x t =-所以从(6)式可得=ò()()()(,)d d x c x F x f x y y 10(,()(()()))(()())d .f x c x t d x c x d x c x t =+--ò由于被积函数+--(,()(()()))(()())f x c x t d x c x d x c x 在矩形区域[,][0,1]a b ´上连续,由定理19.1得积分(6)所确定的函数F (x ) 在[a , b ]连续.Dx x a b +Î[,](,)(,),f x x y f x y q e D =+-<d d注由于可微性也是局部性质, 定理19.3 中条件f 与[,][,][,],x f a b c d c d ´Á´在上连续可改为在上连续其中Á为任意区间.四、含参量正常积分的可积性由定理19.1与定理19.2推得:()I x 的可积性(,)f x y 定理19.5() 若在矩形区域[,][,]R a b c d =´[,]a b 上连续,则I (x )与J (x )分别在和[,]c d 上可积.这就是说: 在(,)f x y 连续性假设下, 同时存在两个求积顺序不同的积分:éùêúëûòò(,)d d bda c f x y y x éùêúëûòò(,)d d .dbca f x y x y 与为书写简便起见, 今后将上述两个积分写作òòd (,)d bdacx f x y yòòd (,)d .dbcay f x y x 与前者表示(,)f x y 先对y 求积然后对x 求积, 后者则表示求积顺序相反. 它们统称为累次积分.在(,)f x y 连续性假设下,累次积分与求积顺序无关.(,)f x y =´[,][,]R a b c d 定理19.6若在矩形区域上连续, 则d (,)d d (,)d .(8)bddbaccax f x y y y f x y x =òòòò证记定理19.3,五、例题ln(1)xy +例3计算积分x x1a a+æö另一方面解由于(9)中被积函数1(,)()()n F x t x t f t -=-以及同理()()().n x f x j =()x j 于是附带说明:当x = 0 时,及复习思考题()(,)d ,dc I x f x y x =ò()I x [,)a +¥能否推得在上一致连续?。

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。

数学分析PPT课件第四版华东师大研制 第19章 含参量积分

数学分析PPT课件第四版华东师大研制  第19章 含参量积分

则函数
d
I( x) c f ( x, y)dy
在[ a, b]上可微, 且
d
dx
d
d
c
f ( x, y)dy c
fx ( x, y)dy .
前页 后页 返回
证 对于[a, b]内任意一点x, 设 x x [a, b] (若 x为 区间的端点, 则讨论单侧函数), 则
I( x x) I( x) d f ( x x, y) f ( x, y)dy .
(1)
是定义在 [ a,b]上的函数.
一般地, 设 f ( x, y)为定义在区域
前页 后页 返回
G {( x, y) | c( x) y d( x) ,a x b}
上的二元函数, 其中c (x), d (x)为定义在[a, b]上的连
续函数(图19-1),
y
y d(x)
G
y c(x)
限运算与积分运算的顺序是可以交换的.
注2 由于连续性是局部性质, 定理19.1中条件 f 在 [a,b][c,d ] 上连续可改为在 [c,d ] 上连续, 其中 为任意区间.
前页 后页 返回
定理19.2 ( F ( x)的连续性 ) 若二元函数 f ( x, y)在区 域 G {( x, y) | c( x) y d( x) ,a x b}上连续, 其
前页 后页 返回
dy (d( x) c( x))dt . 所以从(6)式可得
d(x)
F ( x) f ( x, y)dy c( x) 1 0 f ( x, c( x) t(d( x) c( x)))(d( x) c( x))dt.
由于被积函数 f ( x, c( x) t(d( x) c( x)))(d( x) c( x))

数学分析 第十九章 课件 含参变量的积分

数学分析 第十九章 课件 含参变量的积分


d c
| x | ,就有 | f ( x x, y ) f ( x. y ) | 因此只要
y [c, d ] 都成立,因而
| I ( x x) I ( x) | | f ( x + x) f ( x, y ) | dy
c d
d c
d
,对
d c

I ( x, u ) 在 ( x0 , u0 ) 点连续,由 I ( x0 , u0 ) [a, b] [c, d ]
的任意性,便证得 I ( x, u ) 在[a, b] [c, d ]连续。 (2)由微积分基本定理,I 对u有连续的偏导数
I f ( x, u ) u
又由定理19.2,I对x也有连续的偏导数
注意到 I(0)=0,故
I (1) I (1) I (0) I ( ) d
0
1
1 1 [ ln 2 ln(1 )]d 2 0 1 4 2 1 ln(1 ) 1 1 2 [ ln(1 ) ln 2 arctan ]| d 0 0 1 2 8 2


0
dx 1 cos x 0
1 arctan t 1 0 1 2 1 2 2
因此
I ( ) 1 2 1 2 (1 1 2 )
积分得
I ( )
d 1 2 (1 1 2 )
则 F ( x)

d ( x)
c( x)
f ( x, y)dy 在[a, b]连续。
证明: 令u=d (x) ,v=c (x), I ( x, u ) f ( x, y)dy

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。

第十九章含参量积分

第十九章含参量积分

(ii) 、 可微性:
d
R (a x b, c y d ) 上连续,则
若函数 f ( x, y) 与其偏导数 f ( x, y) 都在矩形域 x
I(x) f ( x, y)dy 在 [a, b] 上可微, 且 c d d d f ( x, y )dy f ( x, y )dy c x dx c
d
c
f ( x, y) dy dx dy f ( x, y ) dx dy
b d a c d b c a
b
a d
dx dy

d
c b
f ( x, y ) dy f ( x, y ) dx
c

a
要研究这两个积分是否相等?
(iii )、 可积性 : 若二元函数 f ( x, y) 在矩形域R(a x b, c y d ) 上连续,
y1 y2 ,
有 f ( x1, y1 ) f ( x2 , y2 ) .
故当x 时有
I(x x) - I(x) f ( x x, y) f ( x, y) dy. dx (d c).
c c d
d
从而I ( x)在[a, b]上连续. 同理可证: 若f ( x, y)在矩形域R上连续, 则含参量y的积分
d u c a
其中u [a, b],则
u a
d u I (u ) I ( x)dx I (u ). dx a
J(y) f ( x, y)dx 在[c, d ]上连续. a 注 : 由连续性, 若f ( x, y)在矩形域R上连续, 则x0 [a, b], 都有
x x0 c

数学分析19.1含参量积分之含参量正常积分(含练习及答案)

数学分析19.1含参量积分之含参量正常积分(含练习及答案)

第十九章 含参量积分 1含参量正常积分概念:1、设f(x,y)是定义在矩形区域R=[a,b]×[c,d]上的二元函数. 当x 取[a,b]上某定值时,函数f(x,y)则是定义在[c,d]上以y 为自变量的一元函数. 若这时f(x,y)在[c,d]上可积,则其积分值是x 在[a,b]上取值的函数,记作φ(x)=⎰dc dy y x f ),(, x ∈[a,b].2、设f(x,y)是定义在区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}上的二元函数, 其中c(x),d(x)为定义在[a,b]上的连续函数,若对于[a,b]上每一固定的x 值,f(x,y)作为y 的函数在闭区间[c(x),d(x)]上可积,则其积分值是x 在[a,b]上取值的函数,记为F(x)=⎰)()(),(x d x c dy y x f , x ∈[a,b].3、上面两个函数通称为定义在[a,b]上含参量x 的(正常)积分,或简称含参量积分.定理19.1:(连续性)若二元函数f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则函数φ(x)=⎰dc dy y x f ),(在[a,b]上连续.证:设x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 于是 φ(x+△x)-φ(x)=⎰-∆+d c dy y x f y x x f )],(),([.∵f(x,y)在有界闭域R 上连续,从而一致连续,即∀ε>0, ∃δ>0, 对R 内任意两点(x 1,y 1)与(x 2,y 2),只要|x 1-x 2|<δ, |y 1-y 2|<δ, 就有|f(x 1,y 1)-f(x 2,y 2)|<ε. ∴当|△x |<δ时, |φ(x+△x)-φ(x)|≤⎰-∆+d c dy y x f y x x f |),(),(|<⎰dc dy ε=ε(d-c). 得证!注:1、同理:若f(x,y)在R 上连续,则含参量y 的积分ψ(y)=⎰ba dx y x f ),(在[c,d]上连续.2、若f(x,y)在R 上连续,则对任何x 0∈[a,b], 有⎰→dcx x dy y x f ),(lim0=⎰→dc x x dy y x f ),(lim 0.定理19.2:(连续性)设区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}, 其中c(x),d(x)为定义在[a,b]上的连续函数. 若二元函数f(x,y)在G 上连续,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上连续.证:令y=c(x)+t(d(x)-c(x)),∵y ∈[c(x),d(x)],∴t ∈[0,1],且dy=(d(x)-c(x))dt, ∴F(x)=⎰)()(),(x d x c dy y x f =⎰--+10))()()))(()(()(,(dt x c x d x c x d t x c x f . 由 被积函数f(x,c(x)+t(d(x)-c(x)))(d(x)-c(x))在矩形区域[a,b]×[0,1]上连续知, F(x)在[a,b]上连续.定理19.3:(可微性)若函数f(x,y)与其偏导数x∂∂f(x,y)都在矩形区域 R=[a,b]×[c,d]上连续,则φ(x)=⎰dc dy y x f ),(在[a,b]上可微, 且⎰dcdy y x f dx d ),(=⎰∂∂d c dy y x f x ),(. 证:设任一x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 则xx x x ∆-∆+)()(ϕϕ=⎰∆-∆+dcdy xy x f y x x f ),(),(. 由拉格朗日中值定理及f x (x,y)在有界闭域R 上连续(从而一致连续), ∀ε>0, ∃δ>0, 只要|△x|<δ,就有),(),(),(y x f xy x f y x x f x -∆-∆+=|f x (x+θ△x,y)-f x (x,y)|<ε, θ∈(0,1).∴⎰-∆∆d cx dy y x f x ),(ϕ≤⎰-∆-∆+d c x dy y x f x y x f y x x f ),(),(),(<ε(d-c). 即 对一切x ∈[a,b], 有⎰dc dy y x f dxd ),(=⎰∂∂d c dy y x f x),(.定理19.4:(可微性)设f(x,y), f x (x,y)在R=[a,b]×[p,q]上连续,c(x), d(x)为定义在[a,b]上其值含于[p,q]内的可微函数,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上可微,且F ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x). 证:作复合函数F(x)=H(x,c,d)=⎰dc dy y x f ),(, c=c(x), d=d(x). 由复合函数求导法则及变上限积分的求导法则有:F ’(x)=H x +H c c ’(x)+H d d ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x).定理19.5:(可积性)若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则 φ(x)=⎰dc dy y x f ),(和ψ(y)=⎰ba dx y x f ),(分别在[a,b]和[c,d]上可积.注:即在f(x,y)连续性假设下,同时存在两个求积顺序不同的积分:⎰⎰⎥⎦⎤⎢⎣⎡ba d c dx dy y x f ),(与⎰⎰⎥⎦⎤⎢⎣⎡d c b a dy dx y x f ),(,或⎰⎰b a d c dy y x f dx ),(与⎰⎰d c b a dx y x f dy ),(.它们统称为累次积分,或二次积分.定理19.6:若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则⎰⎰bad cdy y x f dx ),(=⎰⎰d cbadx y x f dy ),(.证:记φ1(u) =⎰⎰ua dc dy y x f dx ),(, φ2(u) =⎰⎰dc ua dx y x f dy ),(, u ∈[a,b], 则φ1’(u)=⎰uc dx x dud )(ϕ=φ(u). 令H(u,y)=⎰u a dx y x f ),(, 则φ2(u) =⎰d c dy y u H ),(,∵H(u,y)与H u (u,y)=f(u,y)都在R 上连续, ∴φ2’(u)=⎰dc dy y u H dud ),(=⎰d c u dy y u H ),(=⎰d c dy y u f ),(=φ(u). ∴φ1’(u)=φ2’(u), ∴对一切u ∈[a,b], 有φ1(u)=φ2(u)+k (k 为常数). 当u=a 时,φ1(a)=φ2(a)=0, ∴k=0, 即得φ1(u)=φ2(u), u ∈[a,b]. 取u=b, 证得:⎰⎰ba dc dy y x f dx ),(=⎰⎰dc ba dx y x f dy ),(.例1:求⎰+→++aaa a x dx12201lim .解:记φ(a)=⎰+++a a a x dx 1221, ∵a, 1+a, 2211ax ++都是a 和x 的连续函数, 由定理19.2知φ(a)在a=0处连续, ∴)(lim 0a a ϕ→=φ(0)=⎰+1021xdx =4π.例2:设f(x)在x=0的某个邻域U 上连续, 验证当x ∈U 时, 函数φ(x)=⎰---x n dt t f t x n 01)()()!1(1的各阶导数存在, 且φ(n)(x)=f(x). 证:∵F(x,t)=(x-t)n-1f(t)及其偏导数F x (x,t)在U 上连续,由定理19.4可得:φ’(x)=⎰----x n dt t f t x n n 02)())(1()!1(1+)()()!1(11x f x x n n --- =⎰---x n dt t f t x n 02)()()!2(1. 同理φ”(x)=⎰---x n dt t f t x n 03)()()!3(1. 如此继续下去,求得k 阶导数为φ(k)(x)=⎰-----x k n dt t f t x k n 01)()()!1(1.当k=n-1时,有φ(n-1)(x)=⎰xdt t f 0)(. ∴φ(n)(x)=f(x).例3:求I=⎰-1ln dx xx x ab . (b>a>0)解:∵⎰baydy x =x x x ab ln -, ∴I=⎰⎰b a y dy x dx 10. 又x y 在[0,1]×[a,b]上满足定理19.6的条件, ∴I=⎰⎰10dx x dy y ab =⎰+ab dy y 11=ln ab ++11.例4:计算积分I=⎰++121)1ln(dx xx . 证:记φ(a)=⎰++1021)1ln(dx x ax , 则有φ(0)=0, φ(1)=I, 且函数21)1ln(x ax ++在R=[0,1]×[0,1]上满足定理19.3的条件,于是φ’(a)=⎰++102)1)(1(dx ax x x =⎰⎪⎭⎫ ⎝⎛+-+++10221111dx ax a x xa a =⎪⎭⎫ ⎝⎛+-++++⎰⎰⎰10101022211111dx ax a dx x x dx x a a =⎥⎦⎤⎢⎣⎡+++++10102102)1ln()1ln(21arctan 11ax x x a a =⎥⎦⎤⎢⎣⎡+-++)1ln(2ln 214112a a aπ. ∴⎰'1)(da a ϕ=⎰⎥⎦⎤⎢⎣⎡+-++102)1ln(2ln 21411da a a a π=102)1ln(8a +π+10arctan 2ln 21a -I =2ln 4π-I. 又⎰'10)(da a ϕ=φ(1)-φ(0)=I, ∴I=2ln 4π-I, 解得I=2ln 8π.习题1、设f(x,y)=sgn(x-y), 试证由含参量积分F(y)=⎰10),(dx y x f 所确定的函数在(-∞,+∞)上连续,并作函数F(y)的图像.证:∵x ∈[0,1], ∴当y<0时, f(x,y)=1; 当y>1时, f(x,y)=-1; 当0≤y ≤1时, F(y)=⎰ydx y x f 0),(+⎰1),(y dx y x f =⎰-y dx 0)1(+⎰1y dx =1-2y.∴F(y)=⎪⎩⎪⎨⎧>-≤≤-<11102101y ,y y ,y ,在(-∞,+∞)上连续,图像如图:2、求下列极限:(1)⎰-→+11220lim dx a x a ;(2)⎰→220cos lim axdx x a . 解:(1)∵函数f(x,a)=22a x +在矩形区域R=[-1,1]×[-1,1]上连续,∴⎰-→+11220lim dx a x a =⎰-→+11220lim dx a x a =⎰-11||dx x =1. (2)∵函数f(x,a)=x 2cosax 在矩形区域R=[0,2]×[-1,1]上连续,∴⎰→2020cos lim axdx x a =⎰→2020cos lim axdx x a =⎰202dx x =38.3、设F(x)=⎰-22x x xy dy e , 求F ’(x). 解:F ’(x)=-⎰-222x x y x dy e y +2x 5x e --3x e -.4、应用对参量的微分法,求下列积分:(1)⎰+202222)cos sin ln(πdx x b x a (a 2+b 2≠0);(2)⎰+-π02)cos 21ln(dx a x a .解:(1)若a=0, 则b ≠0,原式=⎰2022)cos ln(πdx x b =πln|b|+2⎰20)ln(cos πdx x =πln|b|-πln2=πln 2||b ; 同理,若b=0, 则a ≠0, 原式=πln 2||a ; 若a ≠0,b ≠0, 可设 I(b)=⎰+202222)cos sin ln(πdx x b x a , 则 I ’(b)=⎰+2022222cos sin cos ||2πdx x b x a x b =⎰⎪⎪⎭⎫⎝⎛+22tan 1||2πx b a dx b . 记u=ba, t=utanx, 则 I ’(b)=⎰∞+⋅+022211||2dt t u u t b =⎰∞⎪⎭⎫ ⎝⎛+-+-022222111)1(2dt t u t u b u =||||b a +π.又I(0)=⎰2022)sin ln(πdx x a =πln2||a , I(x)=⎰+x dt t a 0||π+πln 2||a =πln(|a|+x)-πln2. ∴⎰+202222)cos sin ln(πdx x b x a =πln(|a|+|b|)-πln2=πln 2||||b a +. (2)设I(a)=⎰+-π02)cos 21ln(dx a x a .当|a|<1时,1-2acosx+a 2≥1-2|a|+a 2=(1-|a|)2>0,∴ln(1-2acosx+a 2)为连续函数,且具有连续导数, ∴I ’(a)=⎰+--π2cos 21cos 22dx ax a x a =⎰⎪⎪⎭⎫ ⎝⎛+--+π022cos 21111dx a x a a a =a π-⎰⎪⎭⎫ ⎝⎛+-++-π222cos 121)1(1x a a dx a a a =a π-π02tan 11arctan 2⎪⎭⎫⎝⎛-+x aa a =0. ∴当|a|<1时,I(a)=c(常数),又I(0)=0, ∴I(a)=0. 当|a|<1时,令b=a1, 则|b|<1,有I(b)=0, 于是 I(a)=⎰⎪⎪⎭⎫⎝⎛+-π221cos 2ln dx b x b b =I(b)-2πln|b|=2πln|a|. 当|a|=1时,I(1)=⎰-π0)2cos ln 22ln 2(dx x=0; 同理I(-1)=0, ∴I(a)=⎩⎨⎧>≤1||||ln 21||0a ,a a ,π .注:由(2)或推出(1), 即⎰+202222)cos sin ln(πdx x b x a =⎰-++202222)2cos 22ln(πdx x b a b a=⎰-++π02222)cos 22ln(21dt t b a b a=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-++--π02||||||||cos ||||||||21ln 21dt b a b a t b a b a +πln 2||||b a +=πln 2||||b a +.5、应用积分号下的积分法,求下列积分:(1)⎰-⎪⎭⎫ ⎝⎛10ln 1ln sin dx x x x x a b (b>a>0);(2)⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x xx x ab (b>a>0). 解:(1)记g(x)=xxx x ab ln 1ln sin -⎪⎭⎫ ⎝⎛, ∵+→0lim x g(x)=0,∴令g(0)=0时,g(x)在[0,1]连续,于是有I=⎰10)(dx x g =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y .记f(x,y)=x y sin ⎪⎭⎫⎝⎛x 1ln (x>0), f(0,y)=0, 则f(x,y)在[0,1]×[a,b]上连续,∴I=⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a y dy dx x x 101ln sin =⎰⎰⎥⎦⎤⎢⎣⎡∞+-b a t y dydt t e 0)1(sin=⎰⎰⎥⎦⎤⎢⎣⎡∞+-ba t y dy dt t e 0)1(sin =⎰++b a y dy 2)1(1=arctan(1+b)-arctan(1+a). (2)类似于(1)题可得:⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x x x x ab =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a ydy dx x x 101ln cos =dy y y b a ⎰+++2)1(11=2222ln 2122++++a a b b .6、试求累次积分:⎰⎰+-102222210)(dy y x y x dx 与⎰⎰+-102222210)(dx y x y x dy ,并指出,它们为什么与定理19.6的结果不符.解:∵22222)(y x y x +-=-⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x ,22222)(y x y x +-=-⎪⎪⎭⎫⎝⎛+∂∂22y x y y , ∴⎰⎰+-102222210)(dy y x y x dx =⎰⎪⎪⎭⎫⎝⎛+-101022dy y x x=-⎰+1021y dy =-4π.∵22222)(y x y x +-在点(0,0)不连续,∴与定理19.6的结果不符.7、研究函数F(y)=⎰+1022)(dx y x x yf 的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:∵f(x)在[0,1]上是正的连续函数, ∴存在正数m, 使得f(x)≥m>0, x ∈[0,1]. 当y>0时, F(y)=⎰+1022)(dx y x x yf ≥m ⎰+1022dx y x y=marctan y 1; 当y<0时, F(y)=⎰+122)(dx y x x yf ≤m ⎰+1022dx y x y =marctan y 1; ∴+→0lim y F(y)≥+→0lim y marctan y 1=2πm >0, -→0lim y F(y)≤-→0lim y marctan y 1=-2πm <0.∵+→0lim y F(y)≠-→0lim y F(y), ∴F(y)在y=0处不连续. 又当0∉[c,d]时,22)(y x x yf +在[0,1]×[c,d]上连续,∴当y ≠0时,F(y)连续.8、设函数f(x)在闭区间[a,A]上连续,证明:⎰-+→xah dt t f h t f h )]()([1lim0=f(x)-f(a) (a<x<A). 证:⎰-+xa dt t f h t f )]()([=⎰++hx h a dt t f )(-⎰xa dt t f )(=⎰++hx h a dt t f )(-⎰+xh a dt t f )(-⎰+ha a dt t f )(=⎰+hx xdt t f )(-⎰+ha adt t f )(=hf(ξ1)-hf(ξ2), x ≤ξ1≤x+h, a ≤ξ2≤a+h. 当h →0时,ξ1→x, ξ2→a, ∴⎰-+→xa h dt t f h t f h )]()([1lim 0=0lim →h [f(ξ1)-f(ξ2)]=f(x)-f(a).9、设F(x,y)=⎰-xyyx dz z f yz x )()(, 其中f(z)为可微函数, 求F xy (x,y).解:F x (x,y)=⎰xyyxdz z f )(+(x-xy 2)f(xy)y-(x-y·y x )f(y x )·y 1=⎰xy yx dz z f )(+xy(1-y 2)f(xy).F xy (x,y)=xf(xy)+f(y x )·2yx +x(1-y 2)f(xy)-2xy 2f(xy)+x 2y(1-y 2)f ’(xy).10、设E(k)=⎰-2022sin 1πϕϕd k , F(k)=⎰-2022sin 1πϕϕk d . 其中0<k<1.(这两个积分称为完全椭圆积分)(1)试求E(k)与F(k)的导数,并以E(k)与F(k)来表示它们; (2)证明E(k)满足方程:E ”(k)+k1E ’(k)+211k -E(k)=0. (1)解:E ’(k)=-⎰-20222sin 1sin πϕϕϕd k k =-⎰⎪⎪⎭⎫ ⎝⎛----20222222sin 1sin 1sin 111πϕϕϕϕd k k k k =- ⎝⎛-⎰2022sin 111πϕϕd k k +⎪⎪⎭⎫-⎰2022sin 1πϕϕd k =k 1E(k)-k 1F(k). F ’(k)=ϕϕϕπd k k ⎰-203222)sin 1(sin =⎰-20322)sin 1(1πϕϕk d k -⎰-2022sin 11πϕϕk d k . 又322)sin 1(1ϕk -=ϕ222sin 111k k ---ϕϕϕϕ2222sin 1cos sin 1k d d k k --. ∴⎰-20322)sin 1(πϕϕk d =⎰--2222sin 111πϕϕd k k =211k-E(k). 从而有F ’(k)=)1(12k k -E(k)-k1F(k).(2)证:∵E ”(k)=[k 1E(k)-k 1F(k)]’=-21k E(k)+21k F(k)+k 1E ’(k)-k 1F ’(k),k 1E ’(k)=21k E(k)-21kF(k), ∴E ”(k)=-k 1F ’(k). 又F ’(k)=)1(12k k -E(k)-k 1F(k)=)1(12k k -E(k)+E ’(x)-k 1E(k)=E ’(x)+21k k -E(k).∴E ”(k)=-k 1E ’(x)-211k -E(k), 即E ”(k)+k 1E ’(k)+211k -E(k)=0.。

第十九章含参量积分

第十九章含参量积分

第十九章含参量积分§1 含参量正常积分教学目的掌握含参量正常积分的连续性,可微性和可积性定理,掌握含参量正常积分的求导法则.教学要求(1)了解含参量正常积分的连续性,可微性和可积性定理的证明,熟练掌握含参量正常积分的导数的计算公式.(2)掌握含参量正常积分的连续性,可微性和可积性定理的证明.教学建议(1) 要求学生必须理解含参量正常积分的定义.(2) 要求较好学生掌握含参量正常积分的连续性,可微性和可积性定理的证明.教学程序一、含参量正常积分的概念定义设二元函数()y x f,在矩形区域=R[][]d cba,,⨯上有定义,且对[]b a,内每一点x,函数()y x f,关于y在闭区间[]d c,上可积,则定义了x的函数()x I=()⎰dcdyyxf,,x∈[]b a,(1)设二元函数()y x f,在区域G=()()(){}bxaxdyxcyx≤≤≤≤,,上有定义,函数()x c,()x d为[]b a,上的连续函数,且对[]b a,内每一点x,函数()y x f,关于y在闭区间()()[]x dxc,上可积,则定义了x的函数()x F=()()()⎰x dxcdyyxf,,x∈[]b a,(2)称(1)和(2)为含参量x的正常积分.类似可定义含参量y的正常积分.二、含参量正常积分的连续性、可微性与可积性(一)、连续性定理19.1(连续性) 若二元函数()y x f ,在矩形区域R =[][]d c b a ,,⨯上连续,则函数()x I =()⎰dcdy y x f ,在[]b a ,上连续.证明 设[]b a x ,∈,对充分小的x ∆,有[]b a x x ,∈∆+(若x 为区间端点则考虑0>∆x 或0<∆x ),于是()()x I x x I -∆+=()()[]⎰-∆+dcdy y x f y x x f ,, (3)由于()y x f ,在有界闭区域R 上连续,从而一致连续,即对任给的正数ε,总存在某个正数δ,对R 内任意两点()11,y x 与()22,y x ,只要δ<-21x x ,δ<-21y y就有 ()()ε<-2211,,y x f y x f (4) 所以由(3)(4)可得:当δ<∆x ,()()x I x x I -∆+≤()()⎰-∆+dcdyy x f y x x f ,,≤⎰dcdy ε=()c d -ε这就证得()x I 在[]b a ,上连续.(同理,若二元函数()y x f ,在矩形区域R =[][]d c b a ,,⨯上连续,则函数()y J =()⎰badx y x f ,在[]d c ,上连续.)定理19.1的结论可写成:[]b a x ,0∈∀ ()()⎰⎰→→=dc x xd cx x dyy x f dy y x f ,lim ,lim(极限运算与积分运算交换顺序).定理19.2(连续性) 设二元函数()y x f ,在区域G =()()(){}b x a x d y x c y x ≤≤≤≤,,上连续,其中函数()x c ,()x d 为[]b a ,上的连续函数,则函数()x F =()()()⎰x d x c dy y x f ,,x ∈[]b a , (6) 在[]b a ,上的连续.证明: 对积分(6)作换元,令()()()()x c x d t x c y -+=,则()x F =()()()⎰x d x c dy y x f ,=()()()()()()()()⎰--+1,dt x c x d c c x d t x c x f()()()()()()()()x c x d c c x d t x c x f --+,在矩形[]b a ,[]1,0⨯上连续,由定理19.1即得结论 (二)、可微性定理19.3(可微性) 若函数()y x f ,与其偏导数x ∂∂()y x f ,都在矩形区域R =[][]d c b a ,,⨯上连续,则()x I =()⎰dcdy y x f ,在[]b a ,上可微,且dxd()⎰dcdyy x f ,=()⎰∂∂dc dy y x f x ,证明:设[]b a x ,∈,对充分小的x ∆,有[]b a x x ,∈∆+(若x 为区间端点则考虑单侧导数),于是()()()()dy x y x f y x x f x x I x x I dc ⎰∆-∆+=∆-∆+,,.由于拉格朗日中值定理及x ∂∂()y x f ,在矩形区域R =[][]d c b a ,,⨯上连续(从而一致连续),即对任给的正数ε,总存在某个正数δ,只要δ<∆x ,就有()()()y x f x y x f y x x f x ,,,-∆-∆+=()()εθ<-∆+y x f y x x f x x ,,()10<<θ因此()≤-∆∆⎰d cx dy y x f x I,()()()dyy x f x y x f y x x f dcx ⎰-∆-∆+,,,()c d -<ε这就证得对一切[]b a x ,∈,()=x I dx d()⎰∂∂dc dy y x f x ,.定理19.4(可微性) 若函数()y x f ,与其偏导数x ∂∂()y x f ,都在区域R =[][]q p b a ,,⨯上连续,()x c ,()x d 为定义在[]b a ,上其值含于[]q p ,的可微函数,则()x F =()()()⎰x d x c dy y x f ,, 在[]b a ,上可微,且()x F '=()()()⎰x d xc x dy y x f ,+()()xd x f ,()x d '()()x c x f ,-()x c ' . (7)证明 把()x F 看作复合函数:()x F =()d c x H ,,=()⎰dcdy y x f ,,其中()()x d d x c c ==,,由复合函数求导法则及变上限积分的求导法则,有()x F dx d =dx dd d H dx dc c H x H ∂∂+∂∂+∂∂=()()()⎰x d x c x dy y x f ,+()()x d x f ,()x d '()()x c x f ,-()x c '(三)、可积性定理19.5(可积性) 若二元函数()y x f ,在矩形区域R =[][]d c b a ,,⨯上连续,则函数()x I =()⎰d cdy y x f ,和()y J =()⎰badx y x f ,分别在[]b a ,和[]d c ,上可积.证明 由()x I ,()y J 的连续性即知.定理19.6(可积性) 若二元函数()y x f ,在矩形R =[][]d c b a ,,⨯上连续,则⎰b adx ()⎰d cdy y x f ,=⎰d cdy ()⎰badxy x f ,.证 记()=u I 1⎰u a dx ()⎰dcdy y x f ,,()=u I 2⎰dcdy ()⎰uadx y x f ,,其中[]b a u ,∈,现分别求()u I 1与()u I 2的导数.()dudu I ='1()()u I dx x I ua=⎰,对于()u I 2,令()y u H ,=()⎰u adx y x f ,,则有()=u I 2()⎰dcdy y u H ,,因为()y u H ,与()y u H u ,=()y u f ,都在R 上连续,由定理19.3()u I 2'=()()()()u I dy y u f dy y u H dy y u H du ddc d c u d c ⎰⎰⎰===,,,,故得()u I 1'=()u I 2',[]b a u ,∈,又()a I 1=()02=a I , 即()u I 1=()u I 2,[]b a u ,∈,取b u =即得所欲证. 三、 应用的例例1 求⎰+→++αααα12201limx dx.解 记()=αI ⎰+++ααα1221x dx ,由于α,α+1,2211α++x 连续,所以⎰+→++αααα12201limx dx=4112π=+⎰x dx . 例2 计算积分I =()⎰++10211ln dx x x .解 考虑()=αI ()⎰++10211ln dx x x α,由定理19.3()()()⎰++='10211dx x x x I αα=dx x x x x ⎰⎪⎭⎫ ⎝⎛+-++++1022211111αααα =()()011ln 1ln 21arctan 1122⎥⎦⎤⎢⎣⎡+-+++x x x ααα=()⎥⎦⎤⎢⎣⎡+-++x απαα1ln 2ln 214112,所以()⎰'1ααd I =()ααπααd x ⎰⎥⎦⎤⎢⎣⎡+-++1021ln 2ln 21411=()()101arctan 2ln 21011ln 82I -++απ=()12ln 4I -π,另一方面()⎰'1ααd I =()()()101I I I =-,所以I =()=1I 2ln 8π,例3 设()x f 在0=x 的某个邻域内连续,验证当x 充分小时,函数()x ϕ=()()()⎰---xn dt t f t x n 01!11的各阶导数存在,且()()x n ϕ=()x f解 ()t x F ,=()()t f t x n 1--及其偏导数()t x F x ,在原点的某方邻域内连续,()x ϕ'=()()()()+---⎰-xn dt t f t x n n 021!11()()()t f x x n n 1!11--- =()()()⎰---xn dt t f t x n 02!21,所以()()x k ϕ=()()()⎰------xk n dt t f t x k n 01!11, ()()x n 1-ϕ=()⎰xdt t f 0,故()()x nϕ=()x f . 例4 求I =⎰-10ln dx x x x ab .解 ⎰b aydyx =x x x ab ln -,所以I =⎰-10ln dx x x x a b =⎰10dx ⎰ba y dy x =⎰⎰ba ydx x dy 10=⎰+ba dy y 11=ab ++11ln ,注:从例子中可体会到含参量的正常积分的分析性质对一些困难的积分的求出提供了方便.思考题:1.根据本节的各定理,在一般的区间I上含参量的正常积分的分析性质有些什么样的结论?2.能否找出更弱的条件使本节的某些定理仍成立,可否给予证明?作业教材178:1—6.§2 含参量反常积分教学目的 掌握含参量反常积分的一致收敛性概念,含参量反常积分的性质,含参量反常积分的魏尔斯特拉斯判别法,了解狄里克雷判别法和阿贝尔判别法. 教学要求(1)掌握含参量反常积分的一致收敛性及其判别法,含参量反常积分的性质,以及含参量反常积分的魏尔斯特拉斯判别法.(2) 掌握和应用狄里克雷判别法和阿贝尔判别法. 教学建议(1) 本节的重点是含参量反常积分的一致收敛性及魏尔斯特拉斯判别法.要求学生会用魏尔斯特拉斯判别法判别含参量反常积分的一致收敛性.(2) 本节的难点是狄里克雷判别法和阿贝尔判别法以及含参量反常积分的连续性,可微性与可积性定理的证明.对较好学生在这方面提出高要求,布置有关习题;另外,由于这方面内容与函数项级数部分有类似之处,还可要求他们作比较与总结. 教学程序定义 设函数()y x f ,定义在无界区域R =(){}+∞<≤≤≤y c b x a y x ,,上,若对[]b a ,内每一个固定的x ,反常积分()⎰+∞cdyy x f ,都收敛,则它的值定义了[]b a ,上一个x 的函数,记()x I =()⎰+∞cdy y x f ,,x ∈[]b a , . (1) 称(1)式为定义在[]b a ,上的含参量x 的无穷限反常积分. 一、 一致收敛概念及其判别法 (一)、一致收敛的定义定义1 若含参量的反常积分(1)与函数()x I 对任给的正数ε,总存在某个实数c N >,使得当N M >时,对一切x ∈[]b a ,,都有()()ε<-⎰Mcx I dy y x f ,,即()ε<⎰+∞Mdy y x f ,,则称含参量的反常积分(1)在[]b a ,上一致收敛于()x I (二)、一致收敛的柯西准则定理19.7含参量的反常积分(1)在[]b a ,上一致收敛的充要条件是:对任给的正数ε,总存在某个实数c M >,使得当M A A >21,时,对一切x ∈[]b a ,,都有()()ε<-⎰21,A A x I dy y x f .例1 证明参量的反常积分⎰+∞0sin dy y xy在[)+∞,δ上一致收敛(其中0>δ),但在()+∞,0上不一致收敛.证 令xy u =,⎰+∞A dy y xysin =⎰+∞Ax du u u sin ,其中0>A ,由于⎰+∞0sin du u u 收敛,故对任给的0>ε,总存在正数M ,使当M A >'时就有ε<⎰+∞'A du u usin .取M A >δ,则当δMA >时,对一切0>≥δx ,有ε<⎰+∞Ady y xysin ,所以⎰+∞0sin dy y xy在0>≥δx 上一致收敛.再证⎰+∞0sin dy y xy在()+∞,0上不一致收敛.按定义只要证明:存在某一正数0ε,使对任何实数()c M >,总相应地存在某个M A >及某个[)+∞∈,0x ,使得sin ε≥⎰+∞Ady y xy,因⎰+∞0sin du u u收敛,故对任何正数0ε与()c M >,总相应地存在某个0>x ,使得sin sin ε<-⎰⎰+∞+∞du u udu u u Mx ,即有<-⎰+∞00sin εdu uu<⎰+∞Mxdu u usin 00sin ε+⎰+∞du u u,令210=ε⎰+∞0sin du u u>0,则可得>⎰+∞Mdy y xysin ⎰+∞Mxdu u usin 000002sin εεεε=-=->⎰+∞du u u,所以⎰+∞0sin dy y xy在()+∞,0上不一致收敛. (三)、一致收敛的充要条件定理19.8含参量的反常积分(1)在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数()∑⎰∞=+11,n A A n ndyy x f =()∑∞=1n n x u在[]b a ,上一致收敛.证 [必要性]由(1)在[]b a ,上一致收敛,故对任给的正数ε,必存在c M >,使当M A A >'>''时,对一切∈x []b a ,总有()ε<⎰'''A A dy y x f ,, (8)又由+∞→n A ()∞→n ,所以对正数M ,存在正整数N ,只要N n m >>时,就有M A A n m >>.由(8)对一切∈x []b a ,,就有()()()()ε<++=++⎰⎰++11,,m mn nA A A A m n dy y x f dy y x f x u x u ,这就证明了级数(7)在上一致收敛.[充分性]略(四)、一致收敛的M 判别法设有函数()y g ,使得()()x g y x f ≤,,b x a ≤≤,+∞<≤y c ,若()⎰+∞cdyy g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛.(五)、一致收敛的狄里克莱判别法(ⅰ)对一切实数c N >,含参量的反常积分()⎰Ncdyy x f ,对参量x 在[]b a ,上一致有界,即存在正数M ,对一切,c N >及一切x ∈[]b a ,,都有()Mdy y x f Nc≤⎰,;(ⅱ)对每一个x ∈[]b a ,,函数()y x g ,关于y 是单调递减且当y +∞→时,对参量x ,()y x g ,一致地收敛于0,则含参量的反常积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.(六)、一致收敛的阿贝尔判别法(ⅰ)设()⎰+∞cdy y x f ,在[]b a ,上一致收敛;(ⅱ)对每一个x ∈[]b a ,,函数()y x g ,关于y 是单调函数,且对参量x ,()y x g ,在[]b a ,上一致有界,则含参量的反常积分,()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.例2 证明含参量的反常积分⎰+∞+021cos dy x x在()+∞∞-,上一致收敛.证 由22111cos x x x +≤+,因⎰+∞+0211dy x 收敛和一致收敛的M 判别法即可得.例3 证明含参量的反常积分⎰+∞-0sin dy x xe xy在[]d ,0上一致收敛.证` 由⎰+∞0sin dx x x收敛从而一致收敛,1≤=--xy xy e e ,()[)[]d y x ,0,0,⨯+∞∈及对每一[]d y ,0∈单调,据阿贝尔判别法即得.例4 证明:若()y x f ,在[][)+∞⨯,,c b a 上连续,又()⎰+∞cdy y x f ,在[)b a ,上一致收敛,但在b x =处发散,则()⎰+∞cdy y x f ,在[)b a ,上不一致收敛.证 反证法.假若积分()⎰+∞cdy y x f ,在[)b a ,上一致收敛.则对于任给的0>ε,总存在c M >,当M A A >',时对一切∈x [)b a ,恒有,()ε<⎰'A Ady y x f ,,由假设()y x f ,在[][)+∞⨯,,c b a 上连续,所以()⎰+∞cdy y x f ,在[)b a ,上是x 的连续函数.在上面不等式中令b x →,得到当M A A >'>时,()ε≤⎰'A Ady y b f ,,而ε是任给的,因此()⎰+∞cdyy x f ,在b x =处收敛,这与假设矛盾.所以()⎰+∞cdyy x f ,在[)b a ,上不一致收敛. 二、含参量反常积分的性质 (一)、连续性定理19.9设()y x f ,在[][)+∞⨯,,c b a 上连续,若含参量反常积分()x I =()⎰+∞cdy y x f ,在[]b a ,上一致收敛,则()x I 在[]b a ,上连续.证明 由定理19.8,对任一递增且趋于∞+的数列{})(1c A A n =,函数项级数()()()∑∑⎰∞=∞=+==111,n n n A A x u dy y x f x I n n在[]b a ,上连续.又由于()y x f ,在[][)+∞⨯,,c b a 上连续,故每个()x u n 都在[]b a ,上连续.由函数项级数的连续性定理,函数()x I 在[]b a ,上连续.(二)、可微性定理19.10设()y x f ,和()y x f x ,在[][)+∞⨯,,c b a 上连续,若含参量反常积分()x I =()⎰+∞cdy y x f ,在[]b a ,上收敛,()⎰+∞cxdy y x f ,在[]b a ,上一致收敛,则()x I 在[]b a ,上可微,且()x I '=()⎰+∞cx dy y x f ,证明 对任一递增且趋于∞+的数列{})(1c A A n =,令()()⎰+=1,n nA A n dyy x f x u ,由定理19.3()()⎰+='1,n nA A x ndyy x f x u ,由()⎰+∞cx dy y x f ,在[]b a ,上一致收敛,及定理19.8,可得()()∑⎰∑∞=∞=+='111,n A A xn nn ndy y x f x u 在[]b a ,上一致收敛,据函数项级数逐项求导定理即可得()='x I ()()∑⎰∑∞=∞=+='111,n A A xn nn ndy y x f x u =()⎰+∞cxdy y x f ,,即dxd ()⎰+∞cdy y x f ,=()⎰+∞cxdyy x f ,.(三)、可积性定理19.11设()y x f ,在[][)+∞⨯,,c b a 上连续,若()x I =()⎰+∞cdy y x f ,在[]b a ,上一致收敛,则()x I 在[]b a ,上可积,且⎰b adx ()⎰+∞cdy y x f ,=()⎰⎰+∞c badxy x f dy ,.证明 由定理19.9知()x I []b a ,上连续从而可积,又由定理19.9的证明函数项级数()()()∑∑⎰∞=∞=+==111,n n n A A x u dy y x f x I n n在[]b a ,上一致收敛,由逐项求积定理,即有⎰b adx ()⎰+∞cdy y x f ,=()⎰ba dx x I =()∑⎰∞=1n b andx x u =()∑⎰⎰∞=+11,n baA A n ndy y x f dx =()⎰∑⎰∞=+ban A A dxy x f dy n n,11=()⎰⎰+∞cbadxy x f dy ,.定理19.12设()y x f ,在[][)+∞⨯,,c b a 上连续,若(ⅰ)()⎰+∞adxy x f ,关于y 在任何闭区间[]d c ,上一致收敛,()⎰+∞cdyy x f ,于x 在任何闭区间[]b a ,上一致收敛,(ⅱ)积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞c adxy x f dy , (18)中有一个收敛,则(18)中的另一个也收敛,且()⎰⎰+∞+∞acdy y x f dx ,=()⎰⎰+∞+∞c adxy x f dy ,.证明 不妨设(18)中第一个积分收敛,由此得()dyy x f dx ac⎰⎰+∞+∞,也收敛.当c d >时,d I =()()⎰⎰⎰⎰+∞+∞+∞-d caacdyy x f dx dx y x f dy ,,=()()()⎰⎰⎰⎰⎰⎰+∞+∞+∞+∞--d caaaddcdyy x f dx dy y x f dx dx y x f dy ,,,,根据条件(ⅰ)及定理19.11,可推得d I =()⎰⎰+∞+∞addy y x f dx ,≤()()⎰⎰⎰⎰+∞+∞+∞+A dA a d dyy x f dx dy y x f dx ,,,≤()()⎰⎰⎰⎰+∞+∞+∞+AdA addyy x f dx dy y x f dx ,, . (20)由条件(ⅱ),对任给的0>ε,有0>G ,使当G A >时,有()⎰⎰+∞+∞Addy y x f dx ,ε<,选定A 后,由()⎰+∞cdyy x f ,的一致收敛性,存在0>M ,使得当M d >时有()()d A dy y x f d-<⎰+∞2,ε,这两个结果应用到(20)式得到d I εεε=+<22.即0lim =+∞→d d I ,这就证明了(19)式.三、应用的例例5 计算I =⎰+∞--0sin sin dxx axbx e px(a b p >>,0)解 x ax bx sin sin -=⎰ba xydycos ,I =⎰+∞--0sin sin dx x axbx epx=⎰⎰+∞-0)cos (dx xydy e b a px =⎰⎰+∞-b a px dxxy e dy 0cos=⎰+ba dy y p p22=p a p b arctan arctan -. 例6计算⎰+∞0sin dx x ax .解 ()=p F ⎰+∞-0sin dx x axe px=p a arctan ()0>p , 由连续性⎰+∞0sin dx x ax=()=0F +→0lim p ()=p F +→0lim p ⎰+∞-0sin dx x axe px=+→0lim p p a arctan =asgn 2π.例7 计算()r ϕ=⎰+∞-0cos 2rxdx e x .解 由22cos x x erx e--≤和⎰+∞-02dx ex 收敛,⎰+∞-0cos 2rxdx e x一致收敛,类似⎰+∞-∂∂0)cos (2dx rx e r x =⎰+∞--0sin 2rxdx xe x 也一致收敛,()r ϕ'=⎰+∞--0sin 2rxdx xe x =⎰+∞---∞+0cos 210sin 2122rxdx re rx e x x =⎰+∞--0cos 22rxdxe r x=()r r ϕ2-.于是 ()r ϕln =c r ln 42+-, ()r ϕ=42r ce -,由 ()0ϕ=⎰+∞-02dxe x =2π, 得()r ϕ=422r e-π.四、含参量的无界函数反常积分设()y x f ,在区域R =[][]d c b a ,,⨯上有定义,若对某些x 的值,d y =为函数()y x f ,的瑕点,则称()⎰dcdyy x f ,为参量x 的无界函数反常积分.定义2 对任给正数ε,总存在某正数c d -<δ,使得当δη<<0时,对一切x ∈[]b a ,,都有()εη<⎰-dd dy y x f ,,则称含参量反常积分()⎰dcdy y x f ,在[]b a ,上一致收敛.注:从例子中可体会到含参量的反常积分的分析性质对一些困难的反常积分的求出提供了方便。

数学分析课本(华师大三版)-习题及答案第十九章

数学分析课本(华师大三版)-习题及答案第十九章

第十九章 含参量积分一、证明题1.证明下列各题:(1) ()⎰∞++-122222dx y x x y 在R 上一致收敛;(2)⎰+∞-1y x dy e 2在[a,b]上一致收敛; (3) ⎰+∞-0xy dy xe .(ⅰ)在[a,b](a>0)上一致收敛;(ⅱ)在[0,b]上不一致收敛;(4) ()⎰10dy xy ln 在⎥⎦⎤⎢⎣⎡b ,b 1(b>1)上一致收敛; (5) ⎰10dy dx 在[]b ,∞-(b>1)上一致收敛. 2.设f 为[][]+∞⨯,c b ,a 上连续非负函数.I(x)=()⎰+∞c dy y ,x f 在[a,b]上连续,证明I(x)在[a,b]上一致收敛.3.证明:若f 为[][]+∞⨯,c b ,a 上连续函数,含参量非正常积分 I(x)=()⎰+∞c dy y ,x f 在[a,b]上收敛,在x=b 时发散,则I(x)在[)b ,a 上不一致收敛.4.设f 为[)[)+∞⨯+∞,b ,a 上非负连续函数,I(x)=()⎰+∞b dy y ,x f 和 J(y)=()⎰+∞a dx y ,x f 分别为[)+∞,a 和[)+∞,b 上连续函数,证明:若()⎰⎰+∞+∞ab dy y ,x f dx 与()⎰⎰+∞+∞b a dx y ,x f dy 中有一个存在,则 ()⎰⎰+∞+∞a b dy y ,x f dx =()⎰⎰+∞+∞b a dx y ,x f dy 5.设f(x,y)=()y x 11q p 1p e y x +--+-,证明()⎰⎰+∞+∞00,dy y x f dx =()⎰⎰+∞+∞00dx y ,x f dy . 二、计算题1.求下列极限: (1)⎰-→αα+11220dx x lim ; (2)⎰α→α2020xdx cos x lim . 2.设F(x)=⎰-22x x xy dy e ,计算()x F '. 3.应用对参量的微分法,计算:(1)()⎰+202222cos sin ln πdx x b x a . ()0b a 22≠+; (2) ()⎰+-xdx a x a 02cos 21ln .4.设f 为可微函数,试求下列函数F 的二阶导数. (1) F(x)=()()⎰+π0dy y f y x ; (2) F(x)=()⎰-b ady y x y f , ()b a <. 5.从等式⎰-b a xy dy e =xe e bx ax ---出发,计算积分⎰+∞0 dx x e e bx ax ---(b>a>0) 6.计算下列积分(其中0>α,0>β): (1) ⎰∞+---02dx xe e x x a βα; (2) ⎰∞+---0sin 22xdx x e e xx βα. 7.计算下列Γ函数的值:⎪⎭⎫ ⎝⎛Γ25,⎪⎭⎫ ⎝⎛-Γ25,⎪⎭⎫ ⎝⎛+Γn 21,⎪⎭⎫ ⎝⎛-Γn 21 8.运用欧拉积分计算下列积分(其中n 为自然数): (1)⎰-102dx x x ; (2)⎰+∞-022dx e x x n ; (3) ⎰2046cos sin πxdx ; (4) ⎰22sin πxdx x ;(5) ⎰π+21n 2xdx sin9.回答下列问题:(1) 对极限⎰+∞-→+0xy 0x dy xye 2lim 2能否施行极限与积分运算顺序的交换来求解? (2) 对()⎰⎰+∞--100dx xy 32exy 2y 2dy 能否运和积分顺序交换来求解? (3) 对F(x)=⎰+∞-0y x 3dy e x 2能否运用积分与求导运算顺序交换来求解? 10.利用余元公式计算下列积分: (1) ()⎰∞++024dx x 1x ; (2) ⎰-10n n x 1dx(n 为自然数)11.应用积分号下微分法或积分号下积分法,计算下列定积分:(1) ()⎰π0dx tgxatgx arctg ,()1<α; (2) ⎰-⎪⎭⎫ ⎝⎛10a b dx x ln x x x 1ln sin ,()0a b >>; (3) ⎰-⎪⎭⎫ ⎝⎛10a b dx x ln x x x 1ln cos ,()0a b >>三、考研复习题1.设f: R R 3→是连续可微函数,证明函数H(x)=()⎰⎰3322b a b a dy z ,y ,x f dz 是可微函数,且()x H '=()⎰⎰∂∂3322b a b a dy x z ,y ,x f dz 2.设F(x,y)=()()⎰-xy y xdz z f yz x ,其中f 为可微函数,求()y ,x F xy. 3.设f 为可微函数,求下列函数F 的导数:(1) F(t)=()⎰⎰⎰≤++++2222t z y x 222dxdydz z y x f ;(2) F(t)=()⎰⎰⎰vdxdydz xyz f ,其中 v=(){x 0z ,y ,x ≤,}t z ,y ≤. 4.应用积分 ⎰+∞-02dt e at =a 2π(a>0),证明: (1) ⎰+∞-0at 2dt e t 2=32a 4π; (2) ⎰+∞-0at n 2dt e t 2=()⎪⎭⎫ ⎝⎛+-+π-21n 1n a 2!!1n 2.5.应用积分 ⎰+∞+022a x dx =a 2π,求()⎰∞+++01n 22a x dx .6.求函数F(y)=()[]⎰∞+-021sin dx x x y 的不连续点,并作出函数F(y)的图象.7.设f 是[)[)+∞⨯+∞,0,0上的连续函数,证明: 若()⎰+∞0,dy y x f 在0≥x 上一致收敛于F(x),且()y ,x f lim x +∞→=()y ϕ对任何y [][]+∞⊂∈,0,b a 一致地成立,则 ()x F lim x +∞→=()⎰+∞ϕ0dy y 8.证明: (1) ⎰-101ln dx x x =62π-; (2) ()⎰-udt t t 01ln =∑∞=-1n 22n u ,()1u 0≤≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章含参量积分教案目地:1.掌握含参量正常积分地概念、性质及其计算方法;2.掌握两种含参量反常积分地概念、性质及其计算方法;3.掌握欧拉积分地形式及有关计算. 教案重点难点:本章地重点是含参量积分地性质及含参量反常积分地一致收敛性地判定;难点是一致收敛性地判定.b5E2RGbCAP教案时数:12学时§1含参量正常积分和引入含参积分:.以实例一..定义含参积分和含参积分提供了表达函数地又一手段 .我们称由含参积分表达地函数为含参积分.1. 含参积分地连续性:Th19.5 若函数在矩形域上连续, 则函数> P172证上连续 . ( 在Th19.8 若函数在矩形域上连续, 函数和则函数上连续. ( 在在, 上连续证>P173p1EanqFDPw2. 含参积分地可微性及其应用:Th 19.10 若函数及其偏导数都在矩形域上连上可导, , 则函数且在续.( 即积分和求导次序可换> . ( 证> P174 Th 19.11 设函数及其偏导数都在矩形域上连上, 且可微, 和续,函数定义在则含参积分值域在,上可微, 在且DXDiTa9E3d. ( 证>P174计算积分. P176.例1例2设函数在点地某邻域内连续 . 验证当充分小时, 函数地阶导数存在, 且. P177.§2 含参反常积分: 含参无穷积分. 一.1.含参无穷积分:函数定义在上( 可以是为例介绍含参无穷积分表示地函数无穷区间> . 以.RTCrpUDGiT2. 含参无穷积分地一致收敛性:, , 使地定义:逐点收敛( 或称点态收敛>.引出一致收敛问题 .定义(一致收敛性> 设函数定义在上 . 若对成立对, 则称含参无穷积分, 使( 关于在>一致收敛.5PCzVD7HxACauchy积分> 收敛准则Th 19.5 在上一致收(敛,对成立 .证明含参量非正常积分在上一致收敛, 例1 其中.内非一致收敛 . P180但在区间jLBHrnAILg: 含参无穷积分与函数项级数地关系 3. 积分在上一致收敛Th 19.6 , 对任一数列在函数项级数,↗, 上一致收敛. ( 证略>xHAQX74J0X 二. 含参无穷积分一致收敛判别法:Weierstrass M 判别法: 设有函数, 1. 使在上有则积分若积分, 一致收敛在..内一致收敛. P182例2 证明含参无穷积分在DirichletAbel判别法: P182判别法和 2.三. 含参无穷积分地解读性质: 含参无穷积分地解读性质实指由其所表达地函数地解读性质.1. 连续性: 积分号下取极限定理.Th 19.7 设函数在上连续 . 若积分在上连续. ( 化为级上一致收敛在, 则函数数进行证明或直接证明>LDAYtRyKfE推论在Th.7地条件下, 对, 有.积分号下求导定理: 可微性2.Th 19.8 设函数和在上连续. 若积分在在一致收敛上收敛, . 积分则函且.在数上可微, 3. 可积性: 积分换序定理.Th 19.9 设函数在上连续. 若积分在上可积, 且有在上一致收敛, 则函数.例3 计算积分P186四.含参瑕积分简介:Euler积分3 §. 它们统和, 即本节介绍用含参广义积分表达地两个特殊函数Euler积分. 在积分计算等方面, 它们是很有用地两个特殊函数.称为Zzz6ZB2Ltk GammaEuler第二型积分:——一. 函数Gamma函数: 考虑无穷限含参积分 1., 因此我们把该积分分为还是该积分地瑕点 . , 当时点来讨论其敛散性 .:时为正常积分 .时,.利用非负函数积地Cauchy注意到判别法时积分,Cauchy判别法判得积分发散>. 仍用因此,易见时积分收敛 . (时,收敛 .dvzfvkwMI1R因此积分对成立:对,.R收敛.EulerEuler.第二型积分时积分收敛 . 称该积分为综上,Gamma函数, 记为, 称该函数为第二型积分定义了内地一个函数,即rqyn14ZNXI=,.函数是一个很有用地特殊函数 .2.函数地连续性和可导性:在区间内非一致收敛 . 这是因为时积分发散. 这里利用了发散, 则积分在下面地结果: 若含参广义积分在内收敛, 但在点内非一致收敛 .EmxvxOtOco但在区间内闭一致收敛 .即在任何上, 一收致收敛, . 对积分, 有, 因为而积分时敛.M—判法, . 由它们都一对积分, , 而积分收敛上一致收敛致收敛,. 在区间积分可得积分, 内闭一致收敛. 作类似地讨论也在区间于是可得如下结论:地连续性: 在区间内连续 .内可导在区间, 且地可导性:.同理可得: 在区间内任意阶可导, 且.3. 凸性与极值:,在区间内严格下凸.( 参下段>,亦( 内唯一地极限小值点在区间之间 . 2 1 > 为最小值点介于与 4.: 函数表地递推公式地递推公式: .证..于是, 利用递推公式得:,,, …………, ,一般地有.正是正整数阶乘地表达式 . 倘定义, , 在上,易见对可见,该定义是有意义地. 因此, 可视为内实数地阶乘. 这样内地所有实数上, 于是, 一来, 我们很自然地把正整数地阶乘延拓到了自然就有, 是很合理可见在初等数学中规定.地SixE2yXPq5函数来处理很多繁杂地积分计算问题可化为函数表: . 人们仿三角函函数地递推公式可见制订了数表、对数表等函数表, 由. 函数表供查, 有地值, . 通常把内地值函数在了求得, 即可对内函数地某些近似值制成表, 称这样地表为函数表也有在内编制地.>函数表6ewMyirQFL5.函数地延拓:,该式右端在时也有意时义 . 即把延拓到了用其作为时地定义,内., 利用延拓后地时, 依式, 又可把延拓到内 .kavU42VRUs依此, 可把延拓到内除去地所有点.地图象如P192经过如此延拓后地图表19—2.,1 例求. ( ,查表得.>解.>,.6. 函数地其他形式和一个特殊值:函数 . 倘能如此, 可查某些积分可通过换元或分部积分若干次后化为. 函数表求得该积分地值常见变形有:=,, 有ⅰ> 令,,.因此令ⅱ> .地结果, 得地一个特殊值注意到P7.. 取得, 得, ⅲ> 令.计算积分, 其中例2 .I.解BetaEuler第一型积分:——二. 函数Beta函数及其连续性:.1Euler第含参积分为含有两个参数地称( >下证对. 该积分为瑕积分当. 一型积分, 时1 中至少有一个小于和, 该积分收敛. 由于时点和均为瑕点. 故把积分.和分成考虑y6v3ALoS89: 时为正常积分。

时, 点为瑕点. 由被积函数非负,,和Cauchy时积分发散易见收敛( 由 . ( 判法> >.积分: 时为正常积分。

时, 点为瑕点. 由被积函数非负,和,Cauchy时积分发散>.. ( 积分收敛由( 易见判法>D,设时积分收敛. , 综上DBeta函数, 记为, 于是定义了积分. 内地一个二元函数称该函数为, 即=DD内连续, 因此,函数在又被积函数在内闭一致收敛. 不难验证,D内地二元连续函数. 函数是 2.函数地对称性.: = 证.由于函数地两个变元是对称地, 因此, 其中一个变元具有地性质另一个变元自然也具有.: .3. 递推公式证,而,有,式, 代入解得.又有, 由对称性.: 函数地其他形式 4., 有ⅰ> 令,, .因此得ⅱ> 令, 可得, ., , .特别地=,=ⅲ> 有令,即,令, 可得ⅳ>.> , ⅴ.三. 函数和函数地关系: 函数之间有关系式函数和,以下只就和取正整数值地情况给予证明. 和取正实数值时, 证明用到函数地变形和二重无穷积分地换序.证反复应用函数地递推公式, 有,而.特别地,且或时, 由于, 就有.函数与三角函数地关系:对,余元公式——有.Vol 2 第3分册, 利用余енгалъц该公式地证明可参阅: Фихт, 微积分学教程只要编制出时地函数表, , 再利用三角函数表, 即可对元公式, .查表求得地近似值M2ub6vSTnPEuler积分计算积分: 四.利用利用余元公式计算3 .例, 解.求积分.例4解令, 有I.计算积分5 .例解, 该积分收敛 . ( 亦可不进行判敛,把该积函数在其定义域内地值, 即判得其收敛 . >分化为0YujCfmUCwI.例6, 求积分,V : 其中.解.而., 因此.。

相关文档
最新文档