周炳琨激光原理第二章习题解答(完整版)
激光原理第二章习题答案
2.1 证明:如图2.1所示,当光线从折射率1η的介质,向折射率为2η的介质折射时,在曲率半径R 的球面分界面上,折射光线所经受的变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 其中,当球面相对于入射光线凹(凸)面时,R 取正(负)值。
证明:由图可知 11201θ⋅+⋅=x x 又)()(222111θηθη-=-RxR x 21121122x R ηηηθθηη-∴=+ ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡∴11212122201θηηηηηθx Rx ∴变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 2.2 试求半径R=4cm,折射率η=1.5的玻璃球的焦距和主面的位置1h 和2h 。
解:变换矩阵⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=2112121221210110101n n R n n n l n n R n n n M 把11=n ,5.12=n ,cm R R 421=-=,cm l 8=代入,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⨯-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=3531316355.1145.115.10110815.145.1101M )(12f h A -=, f C 1-=, )(11f h D -= 求得 mm f 30-= mm h 201= mm h 202=2.3 焦距1f =5cm 和2f =-10c=m 的两个透镜相距5cm 。
第一个透镜前表面和第二个透镜后表面为参考平面的系统,其等效焦距为多少?焦点和主平面位置在何处?距1f 前表面20cm 处放置高为10cm 的物体,能在2f 后多远地方成像?像高为多少? 解:(1)2110101010********1131101011110552A B L M CD f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦)(12f h A -=, f C 1-=, )(11f h D -=,求得cm f 5-= cm h 5.21= cm h 52-=第一个透镜前表面与前主面的距离为2.5cm ,第二个透镜后表面与后主面的距离为-5cm,前主面离焦点的距离为-5cm ,) (2)21201011===l x θ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡45252110235150235150111122θθθx x D C B A xcm l cm x 2,5.222-==(距2f 后表面-2cm )2.4 一块折射率为η,厚度为d 的介质放在空气中,其两界面分别为曲率半径等于R 的凹球面和平面,光线入射到凹球面上。
激光原理解答 周炳琨
=0.1
得:T ≈ 6.3*103 K
Cr 4.在红宝石 Q 调制激光器中,有可能将几乎全部 3+ 离子激发到激光上能级并产生激光
Cr 2*10 cm 巨脉冲。设红宝石棒直径 1cm,长度 7.5cm, 3+ 浓度为
19
−3 ,巨脉冲宽度为
10ns,求输出激光的最大能量和脉冲功率。
解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光:
−01
r0 θ0
=
r0 θ0
即,两次往返后自行闭合。
第一章:
∆λ
λ 1.为使氦氖激光器的相干长度达到 1km,它的单色性
应是多少?
0
解:相干长度
Lc
=
c ∆υ
c = υ2 −υ1
υ 将 1
=
c λ1
,υ
2
=
c 代入上式,得:
λ2
Lc =
λ1λ2 λ1−λ
2
≈
λ
2
0
∆λ
,因此
∆λ λ0
=
λ0 Lc
,将
λ
0
=632.8nm
, Lc =1km
代入得:
∆λ λ0
M1
→M2
→
M
1
,初始坐标为
r0 θ0
,往返一次后坐标变为
r1 θ1
=T
r0 θ0
,往返
两次后坐标变为
r2 θ2
=T
•
T
r0 θ0
而对称共焦腔,R 1 =R 2 =L
2L
则 A=1- =-1
周炳琨激光原理第二章习题解答(完整版)
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
激光原理 周炳琨版课后习题答案
在连续激发时,对能级 、 和 分别有:
所以可得:
很显然,这时在能级 和 之间实现了粒子数反转。
7.证明当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。
证:受激辐射跃迁几率为
受激辐射跃迁几率与自发辐射跃迁机率之比为
式中, 表示每个模式内的平均能量,因此 即表示每个模式内的平均光子数,因此当每个模式内的平均光子数大于1时,受激辐射跃迁机率大于自发辐射跃迁机率,即辐射光中受激辐射占优势。
激光原理
周炳琨
(长按ctrl键点击鼠标即可到相应章节)
注:考华科者如需激光原理历年真题与答案可联系
E-mail:745147608@
第一章
习题
2.如果激光器和微波激射器分别在 、 和 输出1W连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?
解:若输出功率为P,单位时间内从上能级向下能级跃迁的粒子数为n,则:
14.某高斯光束腰斑大小为 =1.14mm, 。求与束腰相距30cm、10m、1000m远处的光斑半径 及波前曲率半径R。
解:入射高斯光束的共焦参数
根据
z
30cm
10m
1000m
1.45mm
2.97cm
2.96m
0.79m
10.0m
1000m
求得:
15.若已知某高斯光束之 =0.3mm, 。求束腰处的 参数值,与束腰相距30cm处的 参数值,以及在与束腰相距无限远处的 值。
图2.1解:ຫໍສະໝຸດ 稳定条件左边有所以有
对子午线:
对弧失线:
有:
或
所以
同时还要满足子午线与弧失线
5.有一方形孔径的共焦腔氦氖激光器,L=30cm, , ,镜的反射率为 ,其他的损耗以每程0.003估计。此激光器能否作单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择 模,小孔的边长应为多大?试根据图2.5.5作一个大略的估计。氦氖增益由公式计算。
周炳坤激光原理课后习题答案
《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即 c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。
激光原理周炳坤-第2章习题答案
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
激光原理习题与答案
解: 1
1
q( z) R( z) i 2 ( z)
q0
i
2 0
,q
q0
l
q(0) 0.45i,q(0.3) 0.45i 0.3
q() 0
21.已知一二氧化碳激光谐振腔由曲个凹面 镜构成,R1=l m,R2=2m,L=0.5m。如 何选样南斯束腰斑0的大小和位置才能使它 成为该谐振腔中的自再现光束?
第二章
8.今有一球面腔,Rl=1.5m,R 2=—1m,L =80cm。试证明该腔为稳定腔;求出它的等 价共焦腔的参数;在图上画出等价共焦腔的具 体位置。
13.某二氧化碳激光器,采用平—凹腔,凹面 镜的R=2m,胶长L=1m。试给出它所产生 的高斯光束的腰斑半径0的大小和位置、该 高斯束的f及0的大小。
束腰处R1右0.37mR2左边0.13m。半径为1.28mm
第四章习题解答
第五章习题
精品课件!
精品课件!
第七章习题
z解1 : (L
L(R2 L) R1) (L
R2 )
0.37
z2
(L
L(R1 L) R1) (L
R2 )
0.13
f
sqrt(
L(
R1 L)(R2 L)(R1
(L R1) (L R2
R2
)2ຫໍສະໝຸດ L))0.48
0
f 1.28 *103 m
解: g1g2 0.5 z1 0, z2 1, f 1
0
f 1.84 *103m
0 2
3.68 *103 rad f
激光原理 第六版 周炳琨编著2章f
缺点:腔长太短,输出功率低。
腔内插入F-P标准具法
物理基础: F-P只能对某些特定频率的光通过。产生振荡的频率 不仅要符合谐振腔共振条件,还要对标准具有最大的透过率
腔内插入F-P标准具法
平板组合透过率是入射光波频率和平板反射率的函数
T ( ) (1 R )
2 2 2
(1 R ) 4 R sin
双凸非稳定腔的几何放大率
将从腔镜边缘外 侧逸出的球面波 作为激光器的有 用输出,非稳腔 中每一往返的平 均能量损耗率就 是其往返输出耦 合率。
双凸非稳定腔的几何放大率
球面波经M1反射到达M2的几何自 再现波型放大率: a2 l1 L m1 a2 l1
M2的几何自再现波型放大率:
纵模的选择
激光器的振荡频率范围和频谱:由工作物质增益曲线 的频率宽度来决定。P165表2-10-1给出了几种典型 激光器系统的光谱特征。
一般的谐振腔中,不同的纵模具有相同的损耗,因而进 行模式鉴别和选择时应可以利用不同纵模的不同增益。 同时,也可以引入人为的损耗差。
缩短腔的长度(短腔法)
相邻两个纵模的频率差: q q q 1 c 2L c 则当: q 2 L T 时可以实现单纵模谐振。
系统中总存在一对 轴上共轭像点p1和 P2,腔内存在一对发 散球面自再现波型, 由这一对像点发出的 球面波满足在腔内往 返一次成像的自再现 条件。
双凸腔中光线传输路径
根据球面镜成像公式,对凸面反射镜M2:
1 l1 L 1 l2 2 R2
对凸面反射镜M1:
1 l2 L
1 l1
2 R1
l2
l1 L
g 1 g 2 ( g 1 g 2 1) g 1 g 2 g 2 2g1g 2 g1 g 2 g 1 g 2 ( g 1 g 2 1) g 1 g 2 g 1 2g1g 2 g1 g 2
激光原理第二章习题解答
《激光原理》习题解答 第二章习题解答1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。
共焦腔分为实共焦腔和虚共焦腔。
公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。
两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。
) 根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知:L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T 共轴球面腔的稳定判别式子()1211<+<-D A 如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。
本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。
经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。
2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。
解答如下:共轴球面腔的()21221222121R R L R L R L D A +--≡+,如果满足()1211<+<-D A ,则腔是稳定腔,反之为非稳腔,两者之间存在临界腔,临界腔是否是稳定腔,要具体分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的⎪⎭⎫⎝⎛--=n 11L L L C e ?由0<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+2111e e L L <1,得2m L 1m e << 则17m .2L 17m .1c <<4.图2.1所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。
图示环形强为非共轴球面镜腔。
在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的2/)cos (θR f =,对于在与此垂直的平面内传输的弧矢光线,)cos 2/(θR f =,θ为光轴与球面镜法线的夹角。
解:透镜序列图为该三镜环形腔的往返矩阵为:∞=R ∞=R⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=D C B A 10L 11f 1-0110L 11f 1-0110L 11001T2f L f L 31D A ⎪⎭⎫ ⎝⎛+-==由稳定腔的条件:()1D A 211<+<-,得:22f L 1f L 0<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-< 2Lf 3L <<或L f >。
若为子午光线,由ο30cos R 21f =则32L R 33L 4<<或34L R > 若为弧矢光线,由ο2cos30R f =,则2L3R 3L <<或R 3R >5.有一方形孔径共焦腔氦氖激光器,L =30cm ,d=2a=0.12cm,nm 8.632=λ,镜的反射率为11=r ,96.02=r ,其他损耗以每程0.003估计。
此激光器能否作单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择TEM 00,小孔边长应为多大?试根据图2.5.5作一大略的估计、氦氖增益由公式d le lg 10*3140+=-计算。
解: 菲涅耳数9.18.632*30)06.0(22≈==nm cm cm L a N λ增益为075.112.03010*314=+=-e lgTEM0模衍射损耗为910*7.4- TEM 01模衍射损耗为106-,总损耗为0.043,增益大于损耗;TEM 02模衍射损耗为10*56-,总损耗为0.043,增益大于损耗;衍射损耗与腔镜损耗和其它损耗相比均可忽略,三横模损耗均可表示为234.0=δ105.1e *e 0g >=-l δ 因此不能作单模运转为实现TEM0单横模运转所加小孔光阑边长为:m L s 10*0.58.632*3022240≈==-ππλω6.试求出方形镜共焦腔面上TEM 30模的节线位置,这些节线是等距分布的吗?解:012833)(=-=X X H X01=X ,263,2±=X ,由26,02±=x L λπ得节线位置:1=x ,πλ433,2L x ±=因此节线是等间距分布的。
7.求圆形镜共焦腔TEM 20和TEM 02模在镜面上光斑的节线位置。
解:TEM 02模的节线位置由缔合拉盖尔多项式:由02)()42(2102=+-=ζζζL 得222,1±=ζ,又ωζ2022sr =则ωs r 0221±=TEM 20模的节线位置为0r =或sin2φ=0,即:23,,2,0πππφ=8.今有一球面腔,m R 5.11=,m R 12-=,L =80cm 。
试证明该腔为稳定腔;求出它的等价共焦腔的参数。
解:g 1=1-1R L =0.47 g 2=1-2R L=1.8 ,g 1•g 2=0.846即:0< g 1•g 2<1,所以该腔为稳定腔。
由公式(2.8.4) Z 1=()()()212R L R L L R L -+--=-1.31mZ 2=()()()211R L R L L R L -+---=-0.15mf 2=()()()()()[]2212121R L R L L R R L R L R L -+--+--=0.25m 2f=0.5m9.某二氧化碳激光器采用平凹腔,L =50cm ,R =2m ,2a =1cm ,m μλ6.10=。
试计算ω1s 、ω2s 、ω0、θ0、δ100、δ200各为多少。
解:1111=-=R L g,43122=-=R L g,⎥⎦⎤⎢⎣⎡-+--=))(()(211221411L R R L R L L R R L s πλω)]([241L R L -=πλ )(1∞→Rπλ443=m 10*7.13≈-⎥⎦⎤⎢⎣⎡-+--=))(()(212122412L R R L R L L R R L s πλω)(22241LR R L -=πλ,)(1∞→Rπλ434=m10*0.23≈-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+=)1(]2[2212121212410g g g g g g g g L πλθrad 10*0.43≈-∞==2s121ef1a N πω,0100=δ05.2a N 2s222ef2==πω,-1020010*8.1=δ10.试证明,在所有λL a 2相同而R 不同的对称稳定球面腔中,共焦腔的衍射损耗最低。
这里L 表示腔长,R R R ==21为对称球面腔反射镜的曲率半径,a 为镜的横向线度。
证明:在共焦腔中,除了衍射引起的光束发散作用以外,还有腔镜对光束的会聚作用。
这两种因素一起决定腔的损耗的大小。
对共焦腔而言,傍轴光线的几何偏折损耗为零。
只要N 不太小,共焦腔模就将集中在镜面中心附近,在边缘处振幅很小,衍射损耗极低。
11.今有一平面镜和一R=1m 的凹面镜,问:应如何构成一平凹稳定腔以获得最小的基模远场角;画出光束发散角与腔长L 的关系曲线。
解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+=)1(]2[2212121212410g g g g g g g g L πλθ⎥⎦⎤⎢⎣⎡-=g g L 221241πλ,)1(1=g⎪⎪⎭⎫ ⎝⎛-=)(12241L R L L πλ当m R L 5.022==时,θ0最小.12.推导出平凹稳定腔基模在镜面上光斑大小的表达式,作出:(1)当R =100cm 时,ω1s ,ω2s 随L 而变化的曲线;(2)当L =100cm 时,ω1s ,ω2s 随R 而变化的曲线。
解:⎥⎦⎤⎢⎣⎡-+--=))(()(211221411L R R L R L L R R L s πλω)]([241L R L -=πλ, )(1∞→R⎥⎦⎤⎢⎣⎡-+--=))(()(212122412L R R L R L L R R L s πλω)(22241LR R L -=πλ)(1∞→R(1)cm R R 1002==(2)cm L 100=13.某二氧化碳激光器,采用平凹腔,凹面镜的R =2m ,腔长L =1m 。
试给出它所产生的高斯光束的腰斑半径ω0的大小和位置、该高斯光束的f 及θ的大小。
解:)]()[())()((21221212R L R L L R R L R L R L f -+--+--=21m )12(*1)(2=-=-=L R L即:m 1=f10*7.3230-≈=fπλθ mf 10*8.130-≈=πλω14.某高斯光束腰斑大小为mm 14.10=ω,m μλ6.10=。
求与束腰相距cm 30、m 10、m 1000远处的光斑半径ω及波前曲率半径R 。
解:2)(1)(fz z +=ωω,z f z z R 2)(+= 其中,m f 385.02≈=λπωcm z 30=: mm cm 45.1)30(≈ω,m cm R 79.0)30(≈ m z 10= : mm m 6.29)10(≈ω, m m R 0.10)10(≈ m z 1000=:m m 96.2)1000(≈ω,m m R 1000)1000(≈15.若已知某高斯光束之mm 3.00=ω,nm 8.632=λ。
求束腰处的q 参数值,与束腰相距cm 30处的q 参数值,以及在与束腰相距无限远处的q 值。
解:∞→-=)0(,)0(11200R i R q πωλ 束腰处:cm i if i q 66.44200⋅≈==λπω )8.10.2()(0K K z q z q +=cm i cm q cm z )66.4430()30(:30+≈= ∞=∞∞=)(:q z16.某高斯光束mm 2.10=ω,m μλ6.10=。
今用cm F 2=的锗透镜来聚焦,当束腰与透镜的距离为m 10、m 1、cm 10、0时,求焦斑大小和位置,并分析所得的结果。