2mm薄板焊接变形原因

合集下载

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法全文共四篇示例,供读者参考第一篇示例:船舶薄板焊接的变形问题及控制方法引言船舶建造是一个复杂的过程,薄板焊接是船舶建造中不可或缺的环节之一。

薄板焊接是指焊接材料的厚度在3mm以下的焊接工艺,它在船体的制造过程中扮演着关键的角色。

薄板焊接过程中常常会出现焊接变形问题,给船舶建造带来了一定的困扰。

本文将探讨船舶薄板焊接的变形问题及控制方法。

1.1 薄板焊接的变形原因薄板焊接的变形主要是由于焊接热量引起的材料收缩和内部应力的释放所致。

在焊接过程中,焊接区域受到高温热源的影响,材料会发生热胀冷缩的变形。

焊接会改变材料的结构和性能,从而产生内部应力,导致材料受力不均匀,最终产生变形。

1.2 变形对船舶建造的影响薄板焊接的变形会对船舶的结构造成影响。

焊接变形会导致船舶外形的变形,影响船舶的外观和水动力性能。

变形还会影响船舶的结构强度和稳定性,加速船体的疲劳破坏,从而影响船舶的使用寿命和安全性。

控制船舶薄板焊接的变形是船舶建造中的重要问题。

2.1 选用合适的焊接工艺为了减少薄板焊接的变形,可以采用适当的焊接工艺。

可以选择低热输入的焊接方法,如脉冲MIG焊、激光焊等,以减少热影响区的大小和热变形。

采用预热和焊后热处理的方法,通过控制材料的温度和冷却速率来减小焊接变形。

2.2 采用预制配合和辅助支撑装置对于大型船舶薄板的焊接,可以采用预制配合和辅助支撑装置的方法来控制焊接变形。

预制配合是在焊接前就进行材料的加工和拼焊,通过预先控制材料的形状和尺寸,来减小焊接变形。

在焊接过程中,可以使用辅助支撑装置来支撑和固定焊接区域,从而减小焊接变形的影响。

2.3 采用适当的尺寸设计和工艺控制2.4 对变形进行补偿和调整在薄板焊接后,可以对焊接变形进行补偿和调整。

这主要包括局部加热、局部拉伸和修正焊接接头等方法,来恢复材料原本的形状和尺寸,减小焊接变形的影响。

结论船舶薄板焊接的变形问题是船舶建造中的重要问题,对船舶的外观、水动力性能、结构强度和稳定性等都会产生影响。

铝合金薄板焊接变形预防措施

铝合金薄板焊接变形预防措施
铝合金薄板焊接变形预防措施
2015-04-16
一、铝合金薄板焊接研究现状
• 铝合金薄壁焊接结构因重量轻、耐腐蚀、
加工性能优异、易于连接而在高速列车车
体大量应用。但由于铝合金的热膨胀系数
大、弹性模量小,焊接变形问题相当突出,
严重影响结构的制造精度和使用性能。
一、铝合金薄板焊接研究现状
• 铝合金车体用薄板自身拘束度小,再加上
4.铝合金薄板搅拌摩擦焊接
• 搅拌摩擦焊是一种新型固相焊接技术。铝 合金搅拌摩擦焊接接头可以避免产生气孔 和凝固裂纹等熔化焊中的常见缺陷,焊接 变形小,接头强度高。由于搅拌摩擦焊在 轻金属连接中的优势,近年来成为工程研 究的焦点。
4.铝合金薄板搅拌摩擦焊接
• 有人对1.4mm的LF21铝合金薄板进行搅拌摩 擦焊焊接实验,焊接强度达到母材的78-83 %。有人对于lmm厚度6061-T6铝合金的搅 拌摩擦焊工艺展开相关研究,在优化焊 接工艺参数下,接头的抗拉强度可以达到 母材的103%。
三、铝合金薄板焊接变形预防措施
• 控制焊接变形,可在设计部件结构时就考 虑,如在保证结构有足够强度的前提下, 适当采用部分冲压结构来代替焊接结构, 以减少焊缝的数量和尺寸;尽量使焊缝对 称布置,以使焊接时产生均匀的变形,防 止弯曲变形。在生产实践中,控制变形的 措施主要有以下几种:
1.焊接顺序
• 对称焊接是用来克服或减小由于先焊的焊 缝在焊件刚性较小时造成的变形。先焊接 焊缝少的一侧,后焊接焊缝多的一侧,使 后焊缝的变形足以抵消前焊缝的变形,以 使总体变形减小。对于较长的焊缝,如果 采用连续的直线焊接,将会引起较大的变 形,这除了焊接方向因素之外,焊缝受到 长时间加热也是一个主要原因。
2.铝合金薄板的MIG焊

薄板焊接变形分析及控制

薄板焊接变形分析及控制

业 中得到广泛使用 ,在钢罐制作 、安装过程 中,罐底的
板厚 都较薄 ,一般在4 m 之 间, 由于薄板 的刚度较  ̄6 m
小 ,且受钢板 平面尺 寸 的限制 ,很难 在 中小型罐底排 板 中排出顺一方 向的板面,为 了充分利用母材 ,板面往 往排成很多个焊缝交错的小区域板面 ,由于焊后残余应
般 都低于终端温度 , 以始端 的收缩变形小, 所 而终端收
缩变形大( 先焊 的变 形小, 即: 后焊的变形大) 掌握好焊接 , 方向能很好运用这一特性来 实现焊接热输入量的对称分 布,从 而控制焊接变形 。除 了利用焊接方 向来控制温度 的对称输入外 ,还必须控制温度 的连续输入 ,在施焊过 程 中输入 的温度梯度不易过大 ,严格控制焊接电流、电 弧 电压 、焊接速度 的稳定能有效地控制温度均匀输入 , 保证应力 的均匀分布 ,能有效地控制焊接变形的产 生。
归 纳 :A )焊 缝 收 缩 变 形 是 产 生 构 件 焊 接 变 形 的主 要原 因。
入温度 ,所产 生 的应力 也是极 为不 均匀 的 ,从 而导致
极为不规 则 的收缩 变形 。而焊 接热 输入量 ( 接线 能 焊 量 )直接 与焊 接 电流 、电弧 电压 、焊接速度 有 关 。如
变形 。
导致 收 缩 变 形 的 主 因素 是 焊 接 热 输 入 量 ( 度 )。 温
熔化焊接 时必定有热量 ( 温度 )输入 ,这种温度 的输入
给焊 缝 冷 却 收 缩 变 形 带 来 很 大 影 响 ,小 ,前面 已分析到焊 接过程 的温度分布是不均匀 的,如果再加上不均匀的输
集 中”现象 ,控制 了变形量 ,保证了板状平面结构的焊
接质量。
11收缩变 形 .

薄板零件变形原因及解决方法浅析

薄板零件变形原因及解决方法浅析

Internal Combustion Engine&Parts0引言在汽车产品的结构设计中,薄板零件得到广泛应用,本文提到的薄板零件是指厚度在4mm以下,在长方形或圆形的板料中厚度与短边的比值不大于0.2mm的金属薄板[1]。

此类零件薄而宽大,受轧制工艺路线、储运、下料、加工及装配方式等生产过程各因素的影响,成品零件产生的塑性变形变形明显无法满足产品的质量要求。

因此,如何防范、消除零件的变形缺陷,是产品生产厂家亟待解决的问题。

1薄板零件变形的原因在温度变化或力的作用下,薄板零件会产生形状和尺寸大小的改变。

当零件承受的应力在弹性极限以内时,零件产生的变形是弹性变形,外力消除后,零件将恢复原有形状。

如果零件受到应力超过了材料的弹性极限,零件产生弹性变形的同时还产生了塑性变形,此力消除后,弹性变形部分恢复,而塑性变形保留下来,即零件产生了永久变形。

薄板零件主要以收缩变形、角变形、弯曲变形、扭曲变形等大挠度的变形为主[2],也是现实中面临的主要问题。

薄板零件变形的主要原因有以下几方面:①薄板生产过程中,板材受热不均、轧辊弯曲、轧辊间隙不一致等问题,就会使板材在宽度方向的压缩不均匀,有可能失稳而导致变形[3]。

②储存、运输过程不正确的放置方式,使零件受到外力、高温或震动等原因,残余应力会逐渐释放出来或重新分布,造成零件变形。

③材料加工过程产生的变形,材料加工过程中经过火焰切割、剪切、冲裁、切削等某一道或几道工序,每一工序都会引起钢材变形。

④薄板在进行焊接时,容易出现多种类型的变形,距离焊接缝隙较远的位置会产生一定的残余应力,若这些残余应力超过了薄板的变形临界压力时,会导致薄板出现变形。

⑤零件装配过程引起的变形,如零件不当的装配顺序、固定方式、夹具安装位置、零部件间的位置公差过大、紧固和锁紧不当等影响因素。

⑥零件承受超负荷加载或零件受到各种冲击性载荷,使零件产生塑性变形。

位移达0.4mm,远超过标准规定的0.05m,振动数据己降为4.9mm/s,运行恢复正常。

薄板烧焊变形

薄板烧焊变形

薄板烧焊变形是指在薄板烧焊过程中,由于热应力和冷却收缩等因素的影响,导致焊接件发生形状变化的现象。

薄板烧焊变形的原因主要有以下几个方面:
1. 焊接热源引起的温度梯度:焊接热源会使焊接件局部升温,形成温度梯度。

高温区域会发生热膨胀,而低温区域则没有膨胀,导致焊接件发生形状变化。

2. 焊接过程中的热应力:焊接过程中,焊接件会受到热应力的作用,这是由于焊接件不同部位的温度不均匀所引起的。

热应力会使焊接件发生弯曲、扭曲等形变。

3. 焊接过程中的冷却收缩:焊接完毕后,焊接件会经历冷却过程,冷却收缩会使焊接件发生形状变化。

尤其是在焊接薄板时,由于薄板的厚度较小,冷却收缩会更加明显。

为了减少薄板烧焊变形,可以采取以下措施:
1. 控制焊接热源:合理选择焊接参数,控制焊接热源的大小和位置,尽量减小焊接件的温度梯度,降低热应力的产生。

2. 采用适当的焊接顺序:根据焊接件的形状和结构特点,合理安排焊接顺序,避免焊接过程中的热应力集中在某一部位,导致变形。

3. 使用预应力和支撑装置:在焊接过程中,可以利用预应力和支撑装置来平衡焊接件的应力,减小变形的发生。

4. 采用适当的焊接方法:根据实际情况选择合适的焊接方法,如采用
点焊、拍焊等,可以减小热影响区域,降低变形的程度。

综上所述,薄板烧焊变形是在薄板烧焊过程中不可避免的现象,但通过合理控制焊接参数和采取相应的措施,可以有效减小变形的程度。

焊接的缺点是什么?

焊接的缺点是什么?

焊接的缺点是什么?焊接是一种常见的金属连接工艺,被广泛应用于制造业和建筑行业。

然而,尽管焊接具有很多优点,但它也存在一些缺点。

本文将从三个方面探讨焊接的缺点,并分别阐述其原因和风险。

一、焊接会产生变形和应力集中1. 变形:焊接过程中,由于高温热源的作用,焊接接头的材料会发生体积变化,从而产生变形。

特别是对于薄板焊接,由于热传导速度较快,往往会引起弯曲变形。

这不仅会影响焊接件的装配精度,还可能导致产品的失效。

2. 应力集中:焊接引起的变形还会导致应力集中,使焊接接头容易产生应力集中现象。

当焊接接头承受外部载荷时,应力集中区域会承受更大的应力,从而降低焊接接头的强度和耐久性。

这对于一些关键性结构部件来说,可能存在安全隐患。

二、焊接会引起材料的腐蚀和热裂纹1. 腐蚀:焊接过程中,焊盖层和热影响区的金属会发生化学反应,进而导致腐蚀。

特别是在高温和潮湿环境下,焊接接头容易受到氧化、硫化等腐蚀介质的侵蚀,加速金属的腐蚀速度。

这会降低焊接接头的使用寿命,甚至引发结构性安全问题。

2. 热裂纹:焊接时,高温和冷却过程中的应力会导致焊接接头产生裂纹。

这种称为热裂纹的现象,常常发生在焊接接头的脆性区域,对接头的强度和韧性都会带来负面影响。

因此,在焊接过程中需要选择合适的焊接材料和合理的焊接工艺,以减少热裂纹的产生。

三、焊接可能导致局部过热和变质1. 过热:焊接过程中,焊头和周边区域会受到高温热源的直接作用,从而造成局部过热。

在高温作用过程中,材料的组织结构可能发生变化,导致金属的硬度和韧性降低。

这不仅对焊接接头的质量造成影响,也会引起焊接接头附近的部件松动、变形等问题。

2. 变质:焊接过程中的高温和冷却速度会对焊接材料的组织结构产生影响,甚至引起变质现象。

焊接接头的变质会导致材料的力学性能下降,减少焊接接头的强度和耐久性。

因此,在焊接过程中需要控制焊接温度和冷却速度,以防止焊接接头的变质问题。

综上所述,焊接作为一种常见的金属连接工艺,在应用中虽然具有很多优点,却也存在一些缺点。

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法在船舶制造过程中,薄板焊接是一个非常重要的环节,同时也是一个关键的技术难点。

薄板焊接的变形问题一直是制约船舶制造质量的重要因素之一,因为变形会对船舶结构的几何精度、强度和外观质量产生严重影响,甚至会对后续的船舶装配和使用带来隐患。

如何有效地控制船舶薄板焊接的变形问题,已经成为船舶制造行业亟待解决的难题之一。

一、船舶薄板焊接的变形问题1. 变形的原因船舶薄板焊接在焊接过程中会受到来自热量和焊接应力的影响,在焊接完成后,焊接接头和周围区域会产生瞬时温度梯度和变形应力,导致变形的产生。

薄板在焊接后还会受到残余应力的作用,这些应力会导致薄板产生拉伸或压缩的形变,进而影响船舶结构的几何精度。

2. 变形的表现船舶薄板焊接的变形表现为焊接接头产生热裂纹、翘曲、翻边和变形等现象,这些都会严重影响焊接质量和船舶结构的整体性能。

3. 变形对船舶制造的影响船舶薄板焊接的变形会对船舶制造产生如下影响:(1)降低船舶的外观质量,影响船舶的整体美观性;(2)影响船舶结构的几何精度和尺寸精度,导致船舶部件的不相容;(3)影响船舶结构的强度和刚度,降低船舶的使用寿命和安全性。

1. 提前预测和分析变形在船舶薄板焊接前,需要对焊接接头和周围区域的变形进行提前预测和分析,以便及时采取相应的控制措施。

通过有限元分析等方法,可以对焊接过程中可能产生的热变形、残余应力进行定量分析和定位,为后续的控制提供依据。

2. 优化焊接工艺在船舶薄板的焊接过程中,可以通过优化焊接工艺来控制变形的产生。

在焊接过程中控制焊接热源的位置和速度,采用适当的预热和焊接顺序等方法,减少焊接残余应力的产生。

3. 使用辅助固定和支撑设备在船舶薄板焊接过程中,可以使用辅助固定和支撑设备,以减少焊接接头和周围区域的变形。

可以采用焊接变形补偿装置、支撑架和外部夹具等设备,来防止焊接过程中的翘曲和变形现象。

4. 采用预变形和后处理在船舶薄板焊接后,可以通过采用预变形和后处理等方法来控制残余应力和减少变形。

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法船舶薄板焊接是一个重要的船舶制造工艺,其焊接质量直接影响到船舶的使用寿命和安全性能。

然而,由于船舶薄板焊接时所需要的热量较大,往往会导致焊接件产生变形,影响制造质量。

因此,在船舶薄板焊接过程中,必须要注意变形问题,采取一系列的控制方法,以保证焊接质量。

1. 船舶薄板焊接的变形原因船舶薄板焊接时,当焊接件受到热输入时,由于热膨胀系数的不同,会造成焊接件的膨胀变形,从而使得焊缝产生变形。

另外,由于船舶薄板焊接时需要钳紧焊接件以保证能够对齐,这也可能会引起焊接件产生强制变形。

同时,焊接件内部的残余应力也可能导致焊接件形变,特别是在高温条件下进行的焊接会使得残余应力非常强烈,从而使得焊接变形更加显著。

为了控制船舶薄板焊接的变形,可以采取以下措施:(1)采用预热工艺。

预热可以使得焊接件的表面温度达到或接近室温,从而减少焊接时的温度梯度,降低热应力的大小,避免焊接件变形。

(2)合理选择焊接位置。

要尽量选择对称性好的焊接位置,把热输送平衡化,减少残余应力和热变形。

(3)控制焊接加热量。

利用低温高层压力焊接、多道焊等控制加热速度和温度的方法,以减小热膨胀系数的影响。

(4)适当增加焊接缝间距和长度。

增大间距和长度可以分散焊缝变形,减轻焊接变形影响。

(5)使用钳夹、夹具等。

钳夹可防止焊件变形,夹具同样有助于减少变形。

(6)焊接后进行热处理。

热处理可以改善残留应力,减小变形。

通过以上措施,可以有效控制船舶薄板焊接的变形问题,保证焊接质量和船舶的使用寿命和安全性能。

不锈钢薄板焊接变形影响因素与控制方法

不锈钢薄板焊接变形影响因素与控制方法

不锈钢薄板焊接变形影响因素与控制方法摘要:近年来,不锈钢薄板的焊接随着不锈钢薄板的广泛应用变得尤为重要。

不锈钢薄板的焊接变形严重影响焊接质量和使用性能,具有复杂性和多样性,常见的变形主要有横向收缩、纵向收缩、弯曲变形和翘曲变形。

在薄板焊接过程中,要考虑材料、几何形状、尺寸和约束条件的影响。

同时,在影响因素的范围内应考虑焊接工艺和焊接参数。

具体来说,薄板的屈曲变形抗力和临界载荷主要与材料、几何等设计变量有关,而焊接残余应力与焊接方法和焊接参数密切相关。

一般来说,通过合理的设计和制造参数,可以减少或消除不锈钢薄板的焊接变形。

关键词:不锈钢薄板;焊接变形;影响因素;控制方法引言不锈钢薄板的焊接过程中,受各种因素的影响,容易发生结构变形,影响焊接质量和薄板的性能。

本文从改善不锈钢板焊接工艺的角度,分析了影响焊接变形的因素,希望通过有效的管理策略和控制方法来控制板的弯曲变形,以保证焊接质量。

1焊接变形的危害焊接变形是指焊接过程中不均匀的温度场影响工件形状和尺寸的变化。

这种变化可分为两种,一种是随温度变化的瞬时焊接变形变化,另一种是工件完全冷却后的焊接残余变形变化。

焊接变形对结构的安装精度有很大影响。

如果变形程度过大,结构的承载力将显著降低,影响结构的性能和使用寿命。

例如天津四号线TC车底架前端吸能装置上铺设有2mm不锈钢板材结构与前端框架结构焊接方式连接。

在第一辆前端制造过程中,由于焊接方式采用30(80)段焊形式,且焊接密度较大产生焊接应力,导致司机是前端不锈钢地板在焊接完成后出现局部凹坑和凸起,边缘出产生大的波浪变形。

最大值达到11mm,不符合设计工艺规定的每米3mm/2mm的误差要求。

2焊接变形的影响因素2.1输入热源对焊接变形的影响不锈钢板的焊接过程中,当焊接区域受到局部高温热源的影响时,温度继续升高,同时会发生局部熔化。

如果加热该区域的材料,焊接区域可以扩大。

但是,周围温度比较低,可对焊接区形成约束力作用,并造成弹性热应力,随着温度的持续升高,焊件材料屈服应力极限不断降低,当热弹性应力大于屈服极限时,即可产生热压缩。

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法

论船舶薄板焊接的变形问题及控制方法船舶薄板焊接是船舶制造中非常重要的工艺之一,它主要用于船体结构的拼接和加强,因此焊接质量和变形控制是非常关键的问题。

在船舶薄板焊接过程中,会产生各种变形问题,如焊接变形、热变形和残余应力等,这些问题会对船舶结构的是否安全和合格产生重要影响。

控制船舶薄板焊接的变形问题是至关重要的,本文将从变形问题的原因出发,探讨船舶薄板焊接的变形问题及其控制方法。

一、船舶薄板焊接变形问题的原因1. 焊接过程中的热变形船舶薄板焊接过程中,焊缝区域受到高温作用,会引起局部的膨胀膨胀和收缩,从而导致热变形。

热变形是船舶薄板焊接中最主要的变形方式,尤其是对于较大尺寸的焊接组件来说,热变形会对结构产生重要的影响。

2. 焊接残余应力在船舶薄板焊接完成后,焊接区域残留有残余应力,这些残余应力会对船舶结构产生重要的影响。

焊接残余应力的大小和分布会直接影响船舶的结构安全和船舶的使用寿命。

3. 材料变形船舶薄板焊接时,焊接区域的材料会受到各种变形的影响,如拉伸变形、弯曲变形等,这些材料变形也会对船舶的结构产生重要的影响。

二、船舶薄板焊接变形问题的控制方法1. 焊接工艺的优化在船舶薄板焊接过程中,可以通过优化焊接工艺来控制焊接变形。

在焊接参数选择时,可以选择合适的焊接电流、电压和焊接速度,来减小焊接区域的热影响区和热输入,从而减小焊接变形。

2. 预应力控制通过预应力控制来减小船舶薄板焊接的残余应力,预应力控制主要有拉伸预应力和压缩预应力两种方式。

通过预应力控制,可以有效减小船舶薄板焊接的残余应力和变形。

4. 改善材料的变形性能在船舶薄板焊接中,可以通过改善焊接材料的变形性能来减小焊接变形。

可以选择具有较好变形性能的船舶焊接材料,从而减小船舶薄板焊接的变形。

5. 使用变形补偿装置在船舶薄板焊接中,可以使用变形补偿装置来减小焊接变形。

可以采用板材夹具、气垫和拉伸装置等来减小船舶薄板焊接的变形。

船舶薄板焊接变形问题的控制是一个非常复杂的工程问题,需要综合考虑焊接工艺、预应力控制、温度控制、材料变形性能和变形补偿装置等多种因素。

薄板焊接单侧加热变形原因

薄板焊接单侧加热变形原因

薄板焊接单侧加热变形原因
薄板焊接单侧加热变形的原因主要在于焊接过程中,焊缝及其周围区域受到不均匀的热输入,导致局部高温加热和快速冷却,进而产生热应变和压缩塑形应变。

这种不均匀的热输入会导致焊缝及其附近区域产生纵向挠曲变形和角变形等。

此外,焊接方法、点固焊工艺、装配应力、焊接程序、焊接尺寸和板厚等因素也会影响薄板的焊接变形。

要有效控制薄板的焊接变形,可采取以下措施:
1.焊前控制措施:使用刚性固定法,增加焊件的刚性;保证装配的几何尺寸,
减少焊接装配过程中引起的应力;采用较小直径的焊条进行点焊(定位焊),增加焊件刚性。

2.焊接过程中的控制措施:减少加热阶段产生的纵向塑性压应变;增大冷却
阶段的纵向塑性拉应变,在焊接过程中使用相应夹具、强迫冷却焊接区、减少焊接热输入或采用温差拉伸等方法减小变形。

3.焊后控制措施:采用多点加热的方法矫正薄板焊后的凹凸变形,加热点直
径一般不小于15mm。

加热时,点与点的距离应随变形量的大小而定。


据焊后热处理消除残余应力机制,通过对缝隙试样、板条及板块试样强制
变形焊接后再进行热处理,可防止薄板焊接构件的焊后回弹变形,稳定构
件尺寸。

薄板变形控制(焊接工艺)

薄板变形控制(焊接工艺)

钢船体由铆接改为焊接是一个划时代的变革,但同时又带来一个焊接变形问题,特别是厚度为2-4毫米的薄钢板焊接变形尤为严重,如何防止和控制薄板焊接变形是一个世界性问题。

为解决这个问题各船厂都在不断探索,但到目前为止都还没有一套有效、完整的措施。

薄板船体焊接变形主要表现为:一根根肋骨构架印形于表的所谓“瘦马现象”;在纵向呈较大面积高低不平的“波浪变形”;在板格范围内局部高低不平的“凹凸变形”;由火工和敲打造成的“橘子皮效应”。

这些不同形式的焊后变形严重地影响了船体的外观质量。

船舶为了航速的需要尽量减轻船体重量,采用了高强需、■狂■莊向战>■=»度或较高强度的薄钢板,如上层建筑采用S =2.5-4毫米较高强度的903钢板,加工、装配后有较大的内应力,焊接后会比普通钢板产生更大的变形;同时,上层建筑在设计中不参与总强度计算。

这样对上层建筑的建造来说,防止薄板焊接变形便成了主要的质量问题。

导致薄板焊接变形的影响因素很多,目前对薄板焊接防变形技术的研究,主要侧重于工艺技术的研究。

在进行了大量的调查研究和工艺试验后,在生产中摸索出一套行之有效的控制方法,主要措施如下。

优化板缝布置,精确控制余量优化板缝布置在施工设计图纸上,板缝的布置是根据船舶结构设计和板材的规格来决定的。

实际采购的板材规格往往与设计的规格有所不同,需要重新布置板缝;同时设计图纸中的板缝布置往往对工艺性考虑不周,容易引起焊接变形。

所以开工前必须仔细分析板缝布置情况,将实际的数据进行优化排列,以减少焊接引起的弯曲变形。

优化板缝布置的四个原则为:尽量把焊缝布置成与中心轴相对称;在满足规范的前提下,把板缝设置在结构件附近,借助结构件的刚性来减少焊缝变形;在多板组成的壁板和平台尽量使用大板,减少焊缝数量;在焊缝相交中尽量布置成“十”字接头,避免“T”字接头的出现。

讲究余量分布,提高无余量下料装配率为了保证薄板结构装配的尺寸,在传统的施工工艺中,一般结构都留有一定的余量,留待装配时再进行切割。

薄板焊接裂纹产生原因及防治措施

薄板焊接裂纹产生原因及防治措施
3. 焊接接头刚性大,应力集中。
4. 选择合理的焊接次序和方向,减少焊接应力。5. 采用碱性焊条,提高焊缝的韧性。
再热裂纹
1. 钢材含有沉淀强化元素,如Cr、Mo、V等。2. 焊接后热处理过程中析出沉淀硬化相。
1. 控制基体金属的化学成分,减少沉淀强化元素的含量。2. 改善粗晶区的组织,减少马氏体组织。3. 减少焊接接头的应力集中,降低残余应力。
薄板焊接裂纹产生原因及防治措施
裂纹类型
产生原因
防治
1. 选择合适的焊接材料,如低氢焊条。2. 焊前预热,焊后缓冷。3. 焊前仔细清除坡口周围基体金属表面和焊丝上的水、油、锈等污物,减少氢的来源。
2. 焊接接头应力集中。3. 焊接工艺不当,如线能量过大或过小。
层状撕裂
1. 金属材料中含有较多的非金属夹杂物。2. 厚板角焊时产生较大的Z向拉伸应力。
1. 选用具有抗层状撕裂能力的钢材。2. 在接头设计和焊接施工中采取措施降低Z向应力和应力集中。3. 改进焊接工艺,如采用多层多道焊等。
4. 采用低匹配的焊缝或“软层焊接”方法。5. 避免强力组装,防止错边、角变形等引起的附加应力。6. 选择合适的焊接规范,控制焊接速度和焊接电流。
热裂纹
1. 焊缝金属化学成分不当,硫、磷等杂质含量高。2. 焊接线能量大,导致晶粒粗大。
1. 控制焊缝金属的化学成分,减少硫、磷含量。2. 选择合适的焊接线能量,避免晶粒粗大。3. 对于刚性大的焊件,采用焊前预热和焊后缓冷的方法。

薄板结构件焊接变形的控制与矫正

薄板结构件焊接变形的控制与矫正

薄板结构件焊接变形的控制与矫正一、前言薄板结构件一般指由厚度不大于4毫米的钢板(包括不锈钢板、镀锌板、白铁皮)组焊而成的结构件。

如我厂生产的压轮钻机机棚,司机室,电铲司机室均属此类。

控制与矫正薄板结构件的焊接变形需要有高超的技术,是我厂生产的软肋。

下面就我们达成的共识进行探讨,限于水平,仅供参考。

二、焊接变形产生的原因电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。

影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。

在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。

(一)影响焊接热变形的因素焊接工艺方法。

不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。

一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。

CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。

2.焊接参数。

即焊接电流、电弧电压和焊接速度。

线能量越大,焊接变形越大。

焊接变形随焊接电流和电弧电压的增大而增大,随焊接速度增大而减小。

在3个参数中,电弧电压的作用明显,因此低电压高速大电流密度的自动焊变形较小。

3.焊缝数量和断面大小。

焊缝数量越多,断面尺寸越大,焊接变形越大。

4.施工方法。

连续焊、断续焊的温度场不同,产生的热变形也不同。

通常连续焊变形较大,断续焊变形最小。

5.材料的热物理性能。

不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。

(二)影响焊接构件刚性系数的因素1构件的尺寸和形状。

随着构件刚性的增加,焊接变形越小。

2胎夹具的应用。

采用胎夹具,增加了构件的刚性,从而减少焊接变形。

3装配焊接程序。

装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。

一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。

三、薄板结结构焊接变形的种类任何钢结构的焊接变形,可分为整体变形和局部变形。

铝合金薄板焊接变形预防措施

铝合金薄板焊接变形预防措施

实例三:采用散热法防止焊接变形
总结词
散热法是。
详细描述
在焊接过程中,对铝合金薄板进行冷却处理,通过水冷、风冷等方式将热量带走,以减少因温度升高 而产生的变形。同时,可以在焊接前对铝合金薄板进行预冷处理,以降低热膨胀系数,减少焊接变形 。
CHAPTER 05
波浪变形:由于焊接过程中材料 的局部受热和冷却不均匀,导致 材料内部产生不均匀的应力场, 使材料发生波浪现象。
焊接变形的影响因素
焊接变形的因素包括
结构形式和刚度:结构形式和刚度对焊 接变形的程度也有影响。
材料的物理性质:材料的热传导系数、 弹性模量等物理性质会影响焊接变形的 程度。
焊接工艺参数:如焊接电流、电压、焊 接速度等都会影响焊接变形的程度。
详细描述
在焊接前,对铝合金薄板进行反向变形处理,使其在焊接过程中能够抵消因焊接而产生的变形。具体操作方法包 括机械拉伸、加热、矫形等。
实例二:采用刚性固定法防止焊接变形
总结词
刚性固定法是通过将铝合金薄板 固定在刚性平台上,以限制焊接 过程中的移动和变形。
详细描述
在焊接前,将铝合金薄板放置在 刚性平台上,通过夹具或其他固 定装置将其固定,以限制焊接过 程中的移动和变形。
入量,减少变形。
采用多层多道焊,对称焊等方法 ,分散焊接应力,减少变形。
采用反变形法
01
根据预测的焊接变形方向和大小 ,在焊接前对工件进行相反方向 的变形处理,以抵消焊接后的变 形。
02
可以在工件上增加约束,如用夹 具固定,以限制工件的自由度, 控制变形。
采用刚性固定法
将工件固定在刚性平台上,或使用夹 具将工件固定,以限制工件的自由度 ,控制变形。
塑性变形

2mm薄板焊接变形原因

2mm薄板焊接变形原因

2mm薄板焊接变形原因不锈钢薄板在焊接加工中,常常容易被焊变形,引起的原因很多,想要控制焊接中的变形,首先需要了解焊接方法对焊接变形的影响。

多数焊接方法需要考虑到生产效率与焊接质量,因此焊接方法、工艺与焊接程序会明显影响焊接变形的水平。

所以使用的焊接办法一定要具备较高的熔敷效率与尽可能少的焊道。

此外热输入也要小。

一般用于不锈钢薄板焊接的方法包括单面埋弧焊、双面埋弧焊、药芯焊丝电弧焊、惰性气体保护焊、活性气体保护焊等。

焊接热输入对焊接残余应力与变形的影响被行业公认,因此在确保焊缝成形良好的情况下,要尽可能使用小的焊接热输入,以便确保获得尽量小的焊接应力与变形。

怎样控制焊接热输入包括焊接电流、焊接电压、焊接速度的合理选择,对于TIME焊来说,还要考虑三元或四元保护气体的配比。

不锈钢板厚的对焊接变形的影响随着板厚的减少抵抗弯曲变形的性能降低,这也是不锈钢薄板焊接变形控制困难的主要原因。

此外不锈钢薄板焊接变形的质量控制包括从不锈钢板切割开始到装夹、点固焊、施焊工艺、焊后处理等,其中还需要考虑所采用的焊接方法、有效地变形控制措施。

切割方法和切割质量对薄板焊接变形的影响由于激光热源集中,切割速度快,所以比等离子切割的热作用具有更小的影响,在随后的残余应力积累过程中所占的比例也小。

切割的精度对焊接间隙的保证具有显著的影响,等离子切割在板边产生的不平整使点固焊后的板子在中间出现鼓包,而激光切割的板子在点固焊后则相对保持比较平整的表面。

点固焊不但可以确保焊接间隙并且还具备一定的抗变形能力。

不过需要考虑点固焊焊点的数量、尺寸以及焊点之间的距离。

对于不锈钢薄板的变形来讲,点固焊工艺不适于可能在焊接之前就产生相当的残余焊接应力,对随后的焊接残余应力积累带来影响。

点焊尺寸过小可能导致焊接过程中产生开裂使焊接间隙得不到保证,如果过大可能导致焊道背面未熔透而影响接头的完整性。

点固焊的顺序、焊点距离的合理选择也相当重要,其影响结果在许多文献中都有描述。

分析薄板焊接变形的影响因素及控制

分析薄板焊接变形的影响因素及控制

分析薄板焊接变形的影响因素及控制摘要:薄板技术在工程中应用范围逐渐广泛,薄板焊接也深受人们的关注。

加强对薄板焊接变形分析,了解影响因素,综合实际状况制定控制手段与措施,可以提升薄板焊接技术的应用效果与质量。

对此文章主要分析薄板焊接变形的影响因素及控制方式,通过对薄板焊接变形问题的分析,了解了切割质量、焊接方式、环境、温度场以及应力场等因素的影响,在焊接过程中,要综合实际状况加强对焊接变形的控制,提出了焊接前期的控制措施、焊接的变形控制处理、焊接之后的控制措施,希望可以为相关研究提供参考。

关键词:焊接;不锈钢薄板;影响因素;控制;薄板钢材作为一种新型的基础手段,在能源紧缺环境中应用较为广泛。

通过对现阶段科技水平分析可以发现,薄板应用中焊接变形问题是较为主要的问题,加强对焊接影响因素的分析,了解关键因素,可以有效的避免薄板焊接变形大、性能差等问题,进而延长薄板的应用寿命,是现阶段国内外研究的重点。

1.薄板焊接变形影响因素相比厚板来说,薄板在实践中很容易出现焊接变形的问题,导致薄板焊接变形的因素较为复杂,具有多元化的特征,而多数都是因为薄板材质较薄,在焊接中随着焊接位置的加热,薄板无法抵抗在温度变化中导致的应变问题,在焊接之后就会出现变形等问题,而焊接的操作水平、焊接环境温度、焊接工具、程序等都会导致薄板焊接变形等问题。

1.1切割方法以及切割质量切割方法是影响薄板焊接变形的重点问题。

现阶段,随着技术手段的成熟,切割钢板的方式种类相对较多,而应用最好的方式就是激光切割方式,在切割过程中激光的热源相对较为集中,相对于传统的切割方式来说,切割过程较为迅速,热量影响也相对较小,这样在切割之后的残余应力积累相对较少,相对于等离子等传统的薄板切割方式来说,可以避免因为切割时间较长导致的应力积累问题,有效控制板边鼓包等质量问题。

选择科学的切割方式会直接影响薄板切割质量,这也是影响薄板焊接变形的关键因素。

1.2焊接方法焊接方法是影响切割质量的重点因素。

薄板焊缝防变形措施方案

薄板焊缝防变形措施方案

薄板焊缝防变形措施方案引言薄板焊接是一种常见的工艺,但由于焊接过程中的热影响、焊接热收缩等因素,容易导致焊缝变形。

焊缝的变形会影响零件的装配精度、尺寸稳定性以及使用效果,因此需要采取一系列防变形措施来保证焊接质量和零部件的稳定性。

1. 材料选择选择具有较小热膨胀系数的材料,可以减小焊缝产生的变形。

一般来说,低碳钢或不锈钢都是较好的选择。

2. 工艺设计在进行薄板焊接前,需要进行详细的工艺设计,包括焊接位置、焊接顺序、装夹方式等。

2.1 焊接位置尽量将焊缝设计在结构中心或对称位置,以减小焊缝变形。

避免将焊缝放置在重要位置,如连接面或装配孔上。

2.2 焊接顺序合理的焊接顺序可以减小瞬态热应力和热塑性变形。

一般来说,从内部向外部的顺序焊接可以减小变形。

也可采用交叉焊接顺序,即分成多个小区域交错焊接。

2.3 装夹方式适当的装夹方式可以减小焊缝的变形,主要有以下几种方式:- 使用适当的夹具和固定支撑,使焊件受力均衡,减小变形。

- 采用气动夹具,通过内部气压来固定焊件,减小变形。

3. 焊接参数控制合理的焊接参数可以控制焊缝的变形。

3.1 焊接电流和电压合理选择焊接电流和电压可以控制焊缝的热输入量,从而减小热变形。

3.2 焊速控制合适的焊接速度可以减少热影响区的面积,减小变形。

太快的焊接速度会增加焊接热输入,太慢的焊接速度则会增加变形风险。

3.3 焊接顺序将焊缝分成多个局部区域进行焊接,并遵循逆时针或顺时针的焊接顺序,可以减小变形。

4. 临时固定和支撑采用合适的临时固定和支撑方式,可以有效减小焊缝变形。

4.1 用临时支撑支撑构件在进行焊接之前,可以在焊缝附近使用临时支撑件来支撑构件,从而减小变形。

4.2 采用临时固定件夹紧焊缝在焊接过程中,使用临时固定件夹紧焊缝,以减小受热部位的变形。

5. 焊后处理焊后处理可以进一步减小焊缝的变形。

5.1 热处理采用热处理方法,例如退火或回火处理,可以减小焊接残余应力,进一步减小焊缝变形。

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。

关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。

焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。

同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。

因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。

一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。

这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。

在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。

二、焊接变形原因分析1.纵向收缩变形。

焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。

焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。

同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。

因为各层所产生的塑性变形区面积和是相互重叠的。

从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。

2.横向收缩变形。

横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。

2.1堆焊和角焊缝。

首先研究在平板全长上对焊一条焊缝的情况。

当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2mm薄板焊接变形原因
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
不锈钢薄板在焊接加工中,常常容易被焊变形,引起的原因很多,想要控制焊接中的变形,首先需要了解焊接方法对焊接变形的影响。

多数焊接方法需要考虑到生产效率与焊接质量,因此焊接方法、工艺与焊接程序会明显影响焊接变形的水平。

所以使用的焊接办法一定要具备较高的熔敷效率与尽可能少的焊道。

此外热输入也要小。

一般用于不锈钢薄板焊接的方法包括单面埋弧焊、双面埋弧焊、药芯焊丝电弧焊、惰性气体保护焊、活性气体保护焊等。

焊接热输入对焊接残余应力与变形的影响被行业公认,因此在确保焊缝成形良好的情况下,要尽可能使用小的焊接热输入,以便确保获得尽量小的焊接应力与变形。

怎样控制焊接热输入包括焊接电流、焊接电压、焊接速度的合理选择,对于TIME焊来说,还要考虑三元或四元保护气体的配比。

不锈钢板厚的对焊接变形的影响随着板厚的减少抵抗弯曲变形的性能降低,这也是不锈钢薄板焊接变形控制困难的主要原因。

此外不锈钢薄板焊接变形的质量控制包括从不锈钢板切割开始到装夹、点固焊、施焊工艺、焊后处理等,其中还需要考虑所采用的焊接方法、有效地变形控制措施。

切割方法和切割质量对薄板焊接变形的影响由于激光热源集中,切割速度快,所以比等离子切割的热作用
具有更小的影响,在随后的残余应力积累过程中所占的比例也小。

切割的精度对焊接间隙的保证具有显著的影响,等离子切割在板边产生的不平整使点固焊后的板子在中间出现鼓包,而激光切割的板子在点固焊后则相对保持比较平整的表面。

点固焊不但可以确保焊接间隙并且还具备一定的抗变形能力。

不过需要考虑点固焊焊点的数量、尺寸以及焊点之间的距离。

对于不锈钢薄板的变形来讲,点固焊工艺不适于可能在焊接之前就产生相当的残余焊接应力,对随后的焊接残余应力积累带来影响。

点焊尺寸过小可能导致焊接过程中产生开裂使焊接间隙得不到保证,如果过大可能导致焊道背面未熔透而影响接头的完整性。

点固焊的顺序、焊点距离的合理选择也相当重要,其影响结果在许多文献中都有描述。

装配应力及焊接程序应尽量减少焊接装配过程中引起的应力,如果该应力超过产生变形的临界应力就可能产生变形,不同的焊接程序对焊接残余应力的影响不同。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.。

相关文档
最新文档