绿色荧光蛋白(GFP) 的特性及其在分子生物学研究中 的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
3 GFP的稳定性
❖ GFP荧光极其稳定,在荧光显微镜强光照射下,GFP抗光漂白(Photobleaching)能力比荧光素 (fluorescein)强[19]。特别在450~490 nm蓝光波长下更稳定,但在340~390 nm或395~440 nm范围内,仍会发生光漂白现象。GFP在不同物种中稳定性不同,在果蝇和斑纹鱼(Zebra fish)中极稳定;在大肠杆菌中会有光漂白;在线虫中10 mM的NaN3将加速光漂白。GFP需要 在氧化状态下产生荧光,强还原剂如5 mM Na2S2O4或2 mM FeSO4能使GFP转变为非荧 光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂,如2% 巯基乙醇、10 mM DDT、10 mM还原谷胱甘肽、10 mM半胱氨酸等并不影响GFP荧光。 中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等,但GFP对 某些封片指甲油特别敏感,苯氧丙烷对GFP荧光也有影响。强氧化剂如1% H2O2,或硫氢基 试剂如1 mM DTNB会造成GFP不可逆性破坏[20]。大多数中等浓度的有机试剂不减弱GFP 荧光,但其最大吸收峰值会改变[21]。在高蛋白、高盐条件下,GFP通过疏水反应形成二聚体, 使470 nm吸收峰值下降近4倍。GFP很容易从细胞中分离并结晶[22]。在离体状态下,GFP 蛋白对热(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通蛋白酶(链霉蛋白酶Pronase 除外)有较强抗性[23]。GFP荧光在pH值为7~12时稳定,在pH值为5.5~7.0时开始受影响[24]。 在纳克级水平,SDS-聚丙烯酰胺电泳凝胶中仍能观察到GFP荧光。在高温、极端pH、或胍 基氯化物条件下,GFP会变性,荧光消失。一旦复性,荧光会部分恢复[25],但可能需要某些硫 醇类化合物的作用[26]。GFP在各种生物活体条件下表现稳定。例如氯霉素乙酰转移酶 (CAT)在生物体内很稳定,用35S-甲硫氨酸分别标记CAT和GFP,并转染玉米叶肉原生质体,用 放线菌酮处理原生质体,通过CAT检测,发现5~10μg/ml放线菌酮可完全抑制CAT在玉米原生 质体中的蛋白合成,但通过GFP观察,转染24小时后,仍未发现GFP荧光有明显减弱,仅有部分 GFP被放线菌酮降解。说明GFP在植物活体细胞中比CAT还要稳定[27]。此外,尽管GFP的 消光系数较低,但和荧光素一样,额定含量可高达80%。在荧光显微镜下,GFP融合蛋白的荧 光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。 但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋 白。由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP 是迄今为止唯一一种活体报告蛋白,其作用是. 任何其它酶类报告蛋白无法比拟的。
.
2 GFP 的光谱特性
❖ GFP吸收的光谱, 最大峰值为395nm(紫外),并有一个峰值为470nm的副峰(蓝 光);发射光谱最大峰值为509nm(绿光),并带有峰值为540nm的侧峰 (Shouder).GFP的光谱特性与荧光素异硫氰酸盐(FITC)很相似,因此为荧光素 FITC设计的荧光显微镜滤光片组合同样适用于GFP观察。尽管450~490 nm(蓝 光)是GFP的副吸收峰,但由于长波能量低,细胞忍受能力强,因此更适合于活体检 测。Chroma技术公司(Chroma Technology Corp.Brattlebore,VT 05301,USA)已 研制出一系列适合于GFP观察的滤光片组合。利用重组突变[10,11,12]和数字联 想分光显微镜( Digital ImagingSpectroscopy)技术[13,14,15]可以诱发GFP色基 突变,改变GFP光谱特性。Heim R等[16,17]获得了野生型GFP的一系列随机突变, 其激发波长和发射波长都发生了变化(表1)。如获得的蓝色荧光突变,就是原GFP 分子中第66个氨基酸由酪氨酸突变成的组氨酸,但荧光信号减弱了近50%。 Delagrave S获得的红色漂移(Red-shifed)突变,与野生型GFP相比,其激发波长向 红色方向漂移了近100 nm[18]。具有不同光谱特性的GFP突变体的获得,使在同 一细胞中同时分析两种不同蛋白或启动子成为可能,可以用于发育细胞学、药物 筛选、分析诊断等研究。
绿色荧光蛋白(GFP) 的特性及 其在分子生物学研究中 的应用
.
生物发光现象, 在无脊椎动物中很普遍。它是生物能量的一种转换方式 [ 1, 2 ]。在水母(Jellyfish) 中, 当能量从 Ca + + 活化的水母蛋白(A equo rin ) 转移到绿色荧光蛋白(Green F luo rescen t P ro tein, 简称GFP)上以 后,它即发出绿色荧光。活体GFP与纯化的 GFP 具有相同光谱特性, 即吸收蓝光, 放射绿光。可以用紫外灯、荧光显微镜或荧光活化流体分 光光度计进行活体检测 。由于GFP 稳定、灵敏度高、无生物毒性、荧 光反应不需要任何外源反应底物及表达无物种或细胞组织的专一性, 因 此它是一种独特的 报告蛋白(R epo rter p ro tein) , 可广泛用于基因的表 达与调控、蛋白质的定位、转移及相互作用、信号传递、转染与转化, 以及细胞的分离与纯化等研究领域。90年代后, 有关GFP 及其利用的研 究进展较快,已引起分子生物学家极大的兴趣与关注。
.
一 GFP 的结构、特性与功能
❖ 1 GFP Βιβλιοθήκη Baidu结构
❖ P rasher DC 首 先 克 隆 了 水 母 Jellyfish(A equorea v ictoria GFP)的cDNA[ 6 ],GFP编码的238个氨 基酸的多肽单体,推导分子量Mr=26888,与先前用变性电泳测得的天然 GFP 分子量 (30 KD a ) 接近。根据DNA序列推导的氨基酸序列与大部分天然GFP的多肽片段相同。只有完整的GFP 分子才会 产生生物荧光, 但与荧光的产生直接有关的是GFP 分子中一小段被称为色基(Ch rom opho re ) 的部位 (图2。在GFP的初级氨基酸序列上, 第65~67个氨基酸(SerˉTyrˉGly)ˉˉˉˉ
❖ 形成环状六肽三体, 以共价形式与GFP蛋白肽键骨架相连 。色基形成的机理目前尚不清楚,但在有分子 氧存在的条件下, 酪氨酸氧化成脱氢酪氨酸, 并环化形成六肽, 这可能是形成色基的必然过程。Sh im om u ra 最先推导了水母GFP色基结构,后来Ward等进行了进一步验证与修改。GFP的cDNA克隆序列分析 表明,在2.6kb范围内至少分布有3个启动子,组成色基的SerˉTyrˉGly三体就位于第二个内含子3’端
相关文档
最新文档