异步电机与同步电机的控制原理,应用领域和研究热点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电机与同步电机的控制原理,应用领域
和研究热点
一、同步电机
概念:同步电机,和感应电机一样是一种常用的交流电机。同步电机的特点是:稳态运行时,转子的转速和电网频率之间又不变得关系n=ns=60f/p,ns成为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。
工作原理:
主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。
载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。
切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。
交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。
感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即
f=np/60。
交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。
要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。
1、控制原理
(1).转速闭环恒压频比控制
转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制
V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。
(2).转差频率控制
转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩
(3).矢量控制
矢量控制框图如图2 所示。
1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容
易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。
采用矢量控制理论进行控制时,具有和直流电动机类似的特性。矢量控制的优点在于调速范围宽,动态性能较好。不足之处是按转子磁链定向会受电动机参数变化的影响而失真,从而降低了系统的调速性能。解决方法是采用智能化调节器可以提高系统的调速性能和鲁棒性。
文献[20]和文献[21]采用PI 控制,文献[20]中电流环、速度环均采用PI 调节,由仿真结果得出:PI 控制器的参数对系统的性能有极大的影响,永磁同步电机是一个具有强耦合的非线性对象,很难用精确的数学模型描述,而PI 控制器是一种线性控制器,鲁棒性不够强,所以,在调速系统中难以达到令人满意的调速性能,尤其是在对系统性能和控制精度要求较高的场合,这就需要对PI 算法进行改进,以达到更好的控制性能。文献[21]通过多次仿真,在速度调节中只单纯采用PI 调节效果并不理想,为此,提出了采用分段PI 速度调节的方法,即根据误差量的大小分段确定参数Kp,Ki。在初期,可加大比例调节成分,随着误差减小适当加大积分系数,这样系统能较好地实现永磁同步电机的调速及其正反转控制。
文献[1]对PMSM的电压空间矢量的弱磁控制方面所做的研究,提出一种基于空间矢量PWM(SVPWM)的PMSM 定子磁链弱磁控制方法,在电机转速达到基本转速之前采用最大转矩/电流策略控制,超过基本转速之后采用弱磁扩速的电流控制策略,使电机具有更大的调速空间,该策略可实现电压矢量近似连续调节,同传统的有限的离散空间矢量相比,有效减小了PMSM的转矩脉动,提高了系统的性能。
(4).直接转矩控制
直接转矩控制(DTC)框图如图3 所示。
1985 年,Depenbrock 教授提出的高性能交流电机控制策略,摒弃了矢量控制的解耦思想,不需要将交流电动机与直流电动机作等效与转化,省去了复杂的坐标变换;采用定子磁场定向,实现了在定子坐标系内对电动机磁链、转矩的直接观察、控制,定子磁链的估计仅涉及定子电阻,减弱了对电机参数的依赖性,很大程度上克服了矢量控制的缺点。且控制简单,转矩响应快,动态性能
好。开始时是使用于异步电机控制中,后来逐步引用于同步电机中。1997 年,L.zhong,M.F.Rahman 和Y.W.Hu 等人把直接转矩控制与永磁同步电机结合起来,提出了基于永磁同步电机的直接转矩控制理论,实现了永磁同步电机直接转矩控制方案,并且成功地拓展到了弱磁恒功率范围,取得了一系列成果。直接转矩控制技术是继矢量控制后发展起来的,最早应用在感应电机中,随后应用到永磁同步电动机控制系统中。永磁同步电动机不能像异步电机那样用零电压矢量降低转矩,而采用反向电压减小转矩,这样会产生较大的转矩波动。文献[2]分析了零电压矢量在异步电机和同步电机中的不同作用,构造了一种应用零电压矢量来减小转矩的新型电压矢量开关表,如表1 所列,可以改善转矩脉动和系统性能。文献[11]也构造了一种新型的含零电压矢量的控制开关表,改变了传统的控制系统。并通过仿真结果表明,正确地使用零电压矢量能够有效减少转矩脉动,改善系统性能。直接转矩控制的系统能以较大的转矩启动,并且含零电压矢量的系统的转矩平稳性较好,转矩波动比较小,并且在扰动后能在较短的时间内恢复稳定。
传统DTC 采用的是按一定规则从预制的开关表中选取近似合适的电压空间矢
量对电机转矩和磁链进行控制,由于所选的空间电压矢量有限,不同程度地导致DTC 系统出现较大的磁链和转矩脉动。文献[3]介绍分析了SVM(空间矢量调制)是在一个控制周期内,通过相邻基本电压矢量和零矢量合成,得到所需的任意电压矢量,实现电压矢量的线性连续可调。SVM DTC 控制可在不改变系统硬件结构的条件下,获得更多的连续变化的电压空间矢量,进而实现对电机磁链和转矩更精确的控制,从而降低转矩脉动。
在改进PMSM 控制方法和性能上,文献[4]和文献[5]提出了新的方法,文献[4]在矢量控制策略基础上提出了一种高精度混合控制方法,综合利用自控方式与他控方式各自的优点,在动态情况下,采用自控方式对控制系统输出电压进行快速调节,提高系统动态响应能力以及增强系统稳定性,当电机进入稳态运行时切换到他控方式,从而提高电机稳态性能指标,减小转速波动和转矩脉动,兼顾调速系统动态性能和稳态性能,取得了更好的控制效果。文献[4]还对目前永磁同步电动机控制系统转子初始位置检测方法进行了分析与对比研究,给出基于渐变电压矢量法的转子初始位置检测简单有效的检测方法,主要是因为当给定电压矢量接近永磁体转子轴线时,可能会出现方向判断失误的情况。可以采用表决机制,多次测量后确定检测结果,以保证结果的正确性和更高的检测精度。并将模糊控