超再生接收机原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通的再生式电路是利用正反馈增强输入信号,而超再生电路确实用输入信号来影响本地振荡信号,它的系统框图如下:

其中,最核心的部分就是超再生振荡器,它实际上是一个受间歇振荡控制的高频振荡器,这个高频振荡器的本质是电容三点式振荡器,振荡频率与天线接收的信号频率一致。在这里间歇振荡的控制信号由两种方式,自熄式和他熄式,自熄时是指间歇频率由自身提供,与振荡频率牵连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可以用标准方波,效果更好。如图2所示,是超再生振荡的典型电路,C9和三极管的BE 间电容分压形成反馈,电路的本质是共基极放大电路,其直流通路和交流通路分别如

图3和图4所示。在图3的直流通路中,电容E5和电容C10作为电源滤波电容,用于滤除电源纹波,减小对电路的干扰,电路的静态工作点由电阻R11、R12、R13共同决定,C11是自熄式间歇振荡的关键电容,它与R12共同影响间歇式振荡的间歇频率,间歇频率约等于R12和C11乘积的倒数;在图4的交流通路中,其电路的基本组态是共基极放大组态,振荡信号由三极管的C 极输出,经电容C9和三极管的BE 间电容分压反馈至输入端E 端,L3和C12并联构成振荡电路的负载,由此可见,振荡电路的本质是电容三点式振荡。

关于该电路的间歇式振荡原理,我的理解如下:如图2所示,当电路开始振荡时,振荡信号的幅度增加,导致晶体管的CE 电流Ice 增加,所以,流过电阻R12的电流增加,其上超再生振荡器 天线 低噪声放大器 包络检波 解调 输出

熄灭信号(方波) 图1 图2 图3 图4

的压降增加,这将导致晶体管的CE压降减小,晶体管逐渐趋于截止,这时Ice又会减小,又会使R12上的压降减小,Vce增加,如此往复,就导致振荡器的振荡过程一会进行,一会停止。不过,在电流Ice变化导致R12上的压降变化时,由于其上并接的C11的作用,R12两端的电压不会突变,这个电压会随着C11的电容充电作用缓慢地发生变化,所以,振荡器工作在间歇振荡状态,振荡的波形类似有三角波或类似方波(这个与原始静态工作点有关,原始静态工作点高,振荡建立快,C11很快充电饱和,此时电路为平衡状态,振幅不变,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角波形)包络线的调幅信号,间歇频率由C11和R12决定,约等于C11*R12的倒数。

关于电路接收信号的原理如下所述:如图5所示,是超再生接收机的原理图前端天线接收到的信号直接加到超再生振荡电路的基极,图中的超再生振荡电路的LC谐振回路具有选频作用,只有当谐振频率与接收信号的频率一致时,超再生振荡电路才会工作,接收到的信号接在基极可以控制电路的静态工作点,前面说过,电路的静态工作点可以影响间歇振荡的建立时间,所以,输入信号加在基极可以控制间歇振荡的建立时间,也就是控制了每次间歇时间段内振荡所能达到的最大幅度,因此就形成了这样的现象,输入信号幅度大,间歇振荡建立快,间歇振荡能达到的最大振幅就大(或者越早达到最大振幅),反之同理。因此高频间歇振荡在每个间隙之间能达到的最大振荡幅度(或持续最大幅度的时间)是随外部输入信号的幅度而变化的,而间歇振荡的包络线就是RC两端的电压,也就是输入信号的包络线,因此达到解调制的目的,具体见图6。

图5

在图6中,第一张图是熄灭电压的示意图,第二个波形是高频振荡波形,这是有信号输

入的状态,如果没信号,每个间歇内都是一样的,第三个波形是RC两端的波形,里面的平滑波形是经过后面的滤波网络后的波形。可以看到,外部信号的幅度变化时,每个间歇内振荡波形的包络面积会相应改变,此图上的包络线为类似三角波,根据不同的工作点,有些情况下会形成方波。

图6

至于后面的LM358,它接成一个比较器的形式,它的作用是将RC(这里的RC指的是图5中的R9和C11)两端的三角波信号(即输入信号的包络)变成方波,完成对信号的包络检波。

相关文档
最新文档