时间序列作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMO
linw
#STL 分解,显示该序列趋势性明显,具有明显的季节周期,无规则扰动存在一 定的自相关性
x=ts(ai rmiles[,1],start=c(1996,1),freq=12) bstl=stl(x,"per")
plot(bstl,ma in="STL decompositi on")
#HoltWin ters 滤波分析,水平成分和数据本身相差的比较大,趋势项有明显的 波动
fit2=HoltWi nters(airmiles,seas on al="multiplicative") plot(fit2$fit,mai n="Holt-Wi nters decompositi on")
library(TSA) library(portes)
library(forecast) data("airmiles") plot(airmiles) l i t
—
—
J
A
ZQDZ
#残差分析,存在特殊点,是不可去除的扰动 e=fit2$x-fit2$fitted[,1] plot(e,mai n="Residuals")
RBVltllJZlK
#残差检验,广义方差大致通过,残差存在一定自相关性。 op=par(mfrow=c(2,2)) plot(gvtest(e,1:60)[,4],ma in="Ge neralized tests",ylim=c(0,1.2)) abli ne(h=0.05,lty=2)
plot(Lj un gBox(e,1:60)[,4],mai n="Lju ng-Box tests") abli ne(h=0.05,lty=2)
Acf(e,main="Acf of res",lag.max=60) plot(e)
title("Residual series") abli ne(h=0,lty=2) par(op)
HolhV/inters aeznmpcsiriMi
varia nee
£
L (4)
厂
CD
言
aw ul
三
p=predict(fit2,72)
plot(x,xlim=(c(min (time(x)),max(time(p))))) lin es(p,lty=2)
^993 2U0C 2CQZ 2HH
币rw
#arima模型。首先对序列进行差分去除季节和趋势成分
#一阶差分去除线性趋势
plot(diff(airmiles))
acf(diff(airmiles),lag.max = 36)
•9
■Ml
■a*
t
z
l
・
JDM 期[
Tnw
BM
8
.
J
a
l
-
-
-
wnMmH SI.
ki'E
匸
JXH
4I
L
#明显的相关性具有一定间隔,存在显著季节自相关性,再作季节差分
plot(diff(diff(airmiles),lag=12))
acf(diff(diff(airmiles),lag=12),lag.max = 36)
#残差检验结果,广义方差均检验通过,残差存在不可去除的扰动部分。
fit1=arima(airmiles,order=c(0,1,1),seas on al=list(order=c(0,1,1),perio
d=12))
BlC(fitl)
op=par(mfrow=c(2,2))
plot(gvtest(fit1$res,1:60)[,4],mai n="Ge neralized varia nee tests",ylim=c(0,1.2))
abli ne(h=0.05,lty=2)
plot(Lj un gBox(fit1$res,1:60)[,4],ma in="Lju ng-Box tests")
abli ne(h=0.05,lty=2)
Acf(fit1$res,main="Acf of res",lag.max=60)
plot(fit1$res)
title("Residual series")
abli ne(h=0,lty=2)
par(op)
庚gf nW
」」丄1川-1…
SWE
.......................... h
#带95%置信区间拟合,结果显示在置信水平内拟合的结果比较合理。
Y=predict(fit2 ,n. ahead=12,predict ion .i nterval=T) plot(fit2,Y)
No.rt-WInlflTi nrtftrlnni
#arima预测,在置信水平内的波动并不是很大,结果较为合理。
199ft 2DQQ ZWZ 胡H 2^
zA=forecast(fit1,h=24)
plot(zA,ylim=c(mi n( x),max(x)),ylab="”)
#单位根检验,对arima(0,1,1)(0,1,1)[12] 进行单位根检验,结果P值均小于0.01,因此可拒绝原假设,认为没有单位根,即差分之后为平稳序列。
adf.test(diff(diff(airmiles),lag =12),alt="statio nary")
pp.test(diff(diff(airmiles),lag=12),alt="stati on ary")