智能结构的自感知主动振动控制以及半主动振动控制的研究
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 3.5 传感器、驱动器结构集成(a)和功能集成(b) ........................................... 22 图 3.6 自感知执行器原理图 ................................................................................ 24 图 3.7 压电材料的特性图 图 3.9 压电元件模型 .................................................................................. 24 图 3.8 压电换能器的电路模拟图 ........................................................................ 25 ........................................................................................ 26 ................................................................ 26 ................................................................ 28 ............................................................ 29 ........................................................................... 27 图 3.10 自感知执行器的等效电路图 图 3.11 压电 SSA 的电桥电路 图 3.12 自感知桥路平衡实验结构图 图 3.13 自感知桥路调平衡的程序框图 图 3.14 验证桥路平衡电路图 图 3.15 桥路未平衡前的频谱图 图 3.16 桥路平衡时的频谱图 图 3.17 实验装置图
南京航空航天大学 硕士学位论文 智能结构的自感知主动振动控制以及半主动振动控制的研究 姓名:季宏丽 申请学位级别:硕士 专业:机械设计及理论 指导教师:戴振东;裘进浩 20070301
南京航空航天大学硕士学位论文
摘
要
压电材料有其良好的机电耦合特性,是一种新型的功能材料,尤其在振动控 制等方面有突出显著的优势,因此用压电材料实现振动控制已成为一个研究热 点。其中振动控制方法的选择对控制效果起着决定性的作用。本课题主要对悬 臂铝板和悬臂复合梁分别用主动和半主动两种不同的控制方法进行振动控制, 从而比较两种控制方法的优异性。 在本文第三章中,采用一种不需要外加传感器的自感知振动主动控制方法 对铝板进行振动控制。 在该控制系统中,用同一片压电片同时作为传感器和执行 器,基于 RC 电桥将应变信号从执行器控制电压中分离出来,制成了压电式自感 知执行器,实现了真正意义上的功能集成,减小了压电元件的数目。 提出了多种验 证桥路平衡的方法, 有效地提取了自感信号。此外,本文中采用了基于 Filter-X LMS 算法的自适应滤波控制器,对悬臂铝板的振动进行了主动控制。在实验中, 用电涡流位移传感器来验证此控制方法的效果,但是它的输出不用于反馈控制 中。实验结果表明,采用自感知振动主动控制方法成功的控制了铝板的振动。 在本文第四章中,采用了一种基于非线性同步开关阻尼技术(SSD)的振动半 主动控制方法对复合梁进行振动控制。在该控制系统中,仅用简单电子元器件, 通过合适的开关控制技术,构成 LC 振荡回路,有效地对悬臂复合梁进行振动半 主动控制。此方法不但克服了主动控制方法中需要复杂的信号处理系统和庞大 的能量供给系统的缺点,而且避免了被动控制方法中电感和电阻参数对环境变 化适应能力差等不足。 此外,基于同步开关阻尼技术原理,本文采用了三种不同振 动半主动控制方法,分别为 SSDI/classical SSDV/enhanced SSDV 技术,并详细推 导了具体的阻尼公式,搭建了悬臂复合梁振动半主动实验平台,对理论分析结果 进行了验证。
II
南京航空航天大学硕士学位论文
vibration control, but also bypasses these drawbacks that the values of shunts and resistances are particularly sensitive to parameters variation. In additional, based on synchronized switch damping technique, the thesis uses three different semi-active methods including SSDI/ classical SSDV and enhanced SSDV techniques, and induces the vibration damping equations in detail. The experimental platform of semi-active vibration control for cantilever composite beam is set up, and the theoretical analysis has been verified by experiments.
图清单
图 1.1 主动振动控制流程图 .................................................................................... 3 图 1.2 应用于悬臂铝板的自感知振动主动控制系统的设计 ................................ 7 图 1.3 应用于悬臂复合梁的半主动振动控制系统的设计 .................................... 7 图 2.1 各向异性电介质中 P 、 D 、 E 之间的关系 ............................................ 9 图 3.1 有限元建模 .............................................................................................. 17 .................................................................. 19 .......................................................... 20 图 3.2 铝板前四阶相对位移云图 ........................................................................ 18 图 3.3 铝板前四阶的相对应变云图 图 3.4 悬臂铝板粘贴压电片后的实物图
Key words: piezoelectric elements, self-sensing actuator, adaptive filter, active control, synchronized switch damping, semi-active control
III
南京航空航天大学硕士学位论文
关键词:压电元件,自感知执行器,自适应滤波,主动控制,同步开关阻尼, 半主动控制
I
智能结构的自感知主动振动控制以及半主动振动控制的研究
Abstract
The piezoelectric materials as a new type of smart materials have many outstanding advantages, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics. It is becoming a focus in the research of vibration control. Control methods play important role in control performance. In this thesis, active control approach and semi-active control approach are carried out to do the vibration control of cantilever aluminum plate and composite beam. And compare the control performance of these two methods. Chapter three of this thesis describes the active vibration control of a aluminum plate using a self-sensing actuator, which is not using additional sensor. In this system, the same piezoelectric element is simultaneously used for both a sensor and an actuator. The sensing signal is separated from the control signals by using a electrical RC bridge circuit. Such a self-sensing actuator is truly functional integration and the total number of piezoelectric elements required which are applied in intelligent structures can be reduced. Many methods to balance the bridge circuit of the self-sensing actuator was proposed and the sensing signal was successfully achieved. Besides, an adaptive feedback controller was constructed using the Filtered-X LMS algorithm for vibration control of cantilever aluminum. In the experiment, a reference displacement sensor was used to measure the control performance, but its output wห้องสมุดไป่ตู้s not used in the feedback control. The experimental results show that the vibration of the plate was successfully controlled using a self-sensing actuator and an adaptive control method. Chapter four of this thesis uses the semi-active vibration control of a composite beam, which is based on a technique of nonlinear synchronized switch damping (SSD). In this system, only a few small electronic components composed a LC surge circuit were used to control the vibration of the cantilever composite beam using appropriate control method for switch. This method not only overcomes the disadvantages of complicated signal processing and bulky power amplifier in active