地图投影基本原理共54页
地图投影基本理论
第一节地图投影的概念与若干定义一、地图投影的产生我们了解地球上的各种信息并加以分析研究,最理想的方法是将庞大的地球缩小,制成地球仪,直接进行观察研究。
这样,其上各点的几何关系——距离、方位、各种特性曲线以及面积等可以保持不变。
一个直径30厘米的地球仪,相当于地球的五千万分之一;即使直径1米的地球仪,也只有相当于地球的一千三百万分之一。
在这一小的球面上是无法表示庞大地球上的复杂事物。
并且,地球仪难于制作,成本高,也不便于量测使用和携带保管。
通过测量的方法获得地形图,这一过程,可以理解为将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特征点(测量控制点、地形点、地物点)用垂直投影的方法投影到图纸(图4-1)。
因为测量的可观测范围是个很小的区域,此范围内的地表面可视为平面,所以投影没有变形;但对于较大区域范围,甚至是半球、全球,这种投影就不适合了。
由于地球(或地球仪)面是不可展的曲面,而地图是连续的平面。
因此,用地图表示地球的一部分或全部,这就产生了一种不可克服的矛盾——球面与平面的矛盾,如强行将地球表面展成平面,那就如同将桔子皮剥下铺成平面一样,不可避免地要产生不规则的裂口和褶皱,而且其分布又是毫无规律可循。
为了解决将不可展球面上的图形变换到一个连续的地图平面上,就诞生了“地图投影”这一学科。
二、地图投影的定义鉴于球面上任意一点的位置是用地理坐标()表示,而平面上点的位置是用直角坐标(X,Y)或极坐标()表示,因此要想将地球表面上的点转移到平面上去,则必须采用一定的数学方法来确定其地理坐标与平面直角坐标或极坐标之间的关系。
这种在球面与平面之间建立点与点之间对应函数关系的数学方法,称为地图投影。
三、地图投影的实质球面上任一点的位置均是由它的经纬度所确定的,因此实施投影时,是先将球面上一些经纬线的交点展绘在平面上,并将相同经度、纬度的点分别连成经线和纬线,构成经纬网;然后再将球面上的点,按其经纬度转绘在平面上相应位置处。
第03章 地图投影
⑵ 不同变形性质投影的变形分布
⑶应用范围 • 根据圆柱投影的变形规律和经纬网的特点,在赤道附近沿 东西方向延伸地区的地图,最适宜采用各种变形性质的圆 柱投影; • 全球区域的地图可采用等角或等距圆柱投影,航海和航空 图上常常采用墨卡托投影; • 由于圆柱投影的经线为平行直线,便于显示时区的划分, 因此它也是世界时区图的主要投影。
⑵条件投影 • 根据某些条件,用数学解析法确定球面与平面之间点与点的 函数关系。 • 伪方位投影:在方位投影的基础上,根据某些条件改变经线 形状而成,除中央经线为直线外,其余均投影为对称中央经 线的曲线。 • 伪圆柱投影:在圆柱投影基础上,根据某些条件改变经线形 状而成,无等角投影。除中央经线为直线外,其余均投影为 对称中央经线的曲线。 • 伪圆锥投影:在圆锥投影基础上,根据某些条件改变经线形 状而成,无等角投影。除中央经线为直线外,其余均投影为 对称中央经线的曲线。 • 多圆锥投影:设想有更多的圆锥面与球面相切,投影后沿一 母线剪开展平。纬线投影为同轴圆弧,其圆心都在中央经线 的延长线上。中央经线为直线,其余经线投影为对称于中央 经线的曲线。
§3 地图投影
生命科学学院
§1. 常用的地图坐标系
• 1.1 平面直角坐标系
x,y
• 1.2 平面极坐标系
ρ,δ
• 1.3 平面直角坐标与极坐标的关系
x q cos y sin
§2. 地图投影的基本概念
• 2.1 地图投影的定义
为什么要进行地图投影?
2
ab ab
当投影后经纬线正交,即θ=90°时:
,b n ; P ab mn ;
a m
sin
2
地图投影基础知识课件
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状
03第三章地图投影的基本原理-精品文档
Polar Axis
b a
Equatorial Axis
Equator
a-b 6378137 - 6356752.3 f = —— = ———————— a 63= 298.257 f
1
对 a,b,f 的具体测定就是近代 大地测量的一项重要工作。
1.2 地球的物理表面
当海洋静止时,自由水面与该面上各点的重力方向(铅垂 线)成正交,这个面叫水准面。 在众多的水准面中,有一个与静止的平均海水面相重合, 并假想其穿过大陆、岛屿形成一个闭合曲面,这就是大地水准 面。它实际是一个起伏不平的重力等位面——地球物理表面。 它所包围的形体称为大地体。
重力位势(geopotential)相等的面。 大地水准面的位势=0。
新编地图学教程 第2章 地图的数学基础
浩瀚宇宙之中 : 地球是一个表面光滑、蓝色美丽的正球体。
新编地图学教程 第2章 地图的数学基础
机舱窗口俯视大地 : 地表是一个有些微起伏、极其复杂的表面。
—— 珠穆朗玛峰与太平洋的马里亚纳海沟之间高差近20km。
新编地图学教程 第2章 地图的数学基础
事实是:
海拔H越高,位势越大。 H=位势/g
新编地图学教程 第2章 地图的数学基础
新编地图学教程 第2章 地图的数学基础
1.2 地球的数学表面
在测量和制图中就用旋转椭球体来代替大地球体,这个旋 转椭球体通常称为 地球椭球体,简称 椭球体。 它是一个规则的 数学表面,所以人 们视其为 地球体 的数学表面,也是 对地球形体的二级 逼近,用于测量计 算的基准面。
新 编 地 图 学 教 程
电 子 教 案
第 2 章 地图的数学基础
第 2 章 地图的数学基础
地图投影的基本原理(1)
地图投影的实质: 建立地球面上点的坐标与地图平面上点的坐标之
间一一对应的函数关系。
地图投影基本概念
2、地图投影基本方法
1)几何透视法 将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特
征点用垂直投影的方法投影到图纸上。 小区域范围可视地表为平面,采用垂直投影方式,可认为投影没有
sin( ') a b sin( ')
ab
显然当(a +a ′)= 90°时,右端取最大值,则最大方向变形:
sin( ') a b
ab
以ω表示角度最大变形: 令
2( ')
sin a b
2 ab
地图投影基本理论
五、地图投影条件
地图投影一般存在长度变形、面积变形和角度变形,一种投影可以同时 存在以上三种变形,但在某种条件下,可以使某一种变形不发生,如投影后 角度不变形,或投影后面积不变形,或使某一特定方向投影后不产生长度变 形。
E、F、G、H称为一阶基本量, 或称高斯系数。
地图投影基本理论
对角线A′C′与x轴之夹角Ψ的 表达式:
sin dy ds
cos dx
tg
dsddmαyxds dsdxysndd
y x
d dLeabharlann x D'x'
dy
C'
(x+dx,y+dy)
dx
ds'
dsm'
Ψ
B'
dsn'
A' (x,y)
O
y
地图投影基本理论
tan tan ' tan b tan (1 b) tan
地图投影的基本理论
第一节 地图投影的基本概念
1 地图投影的概念
在地球椭球面和平面之间建立点与点之间函数关系 的数学方法,称为地图投影
x = f1(j , l )
y = f2(j , l )
地图投影的实质: 是将地球椭球面上的经纬线网按照一定的数学法则 转移到平面上。
第一节 地图投影的基本概念
1 地图投影的概念
第一节 地图投影的基本概念
三、地图比例尺 地图比例尺:图上距离与相应实地距离之比。
第一节 地图投影的基本概念
三、地图比例尺 地图比例尺:图上距离与相应实地距离之比。
第一节 地图投影的基本概念
三、地图比例尺
第一节 地图投影的基本概念
三、地图比例尺
主比例尺 : 在投影面上没有变形的点或线上的比例尺。 局部比例尺: 在投影面上有变形处的比例尺。
x
y
代入: x2 + y2 = r2,得
x2 y2 r 2 m2 n2
微小圆→变形椭圆
该方程证明: 地球面上的微小 圆,投影后通常会变为椭圆,即变 形椭圆。
第二节 变形椭圆
主方向(底索定律):无论采用何种转换方法,球
面上每一点至少有一对正交方向线,在投影平面上 仍然保持其正交关系”。在投影后仍保持正交的一 对线的方向称为主方向。取主方向作为微分椭圆的 坐标轴。
面积比和面积变形: 投影平面上微小面积(变形椭圆面积)
dF′与球面上相应的微小面积(微小圆面积)dF 之比。
P 表示面积比 Vp 表示面积变形
P dF dF
= 0 不变
VP
P 1
> <
0 0
变大 变小
第一节 地图投影的基本概念
地图投影的基本理论PPT教案
第5页/共33页
第一节 地图投影的基本概念
1 地图投影的概念
第6页/共33页
第一节 地图投影的基本概念
二、投影变形
第7页/共33页
第一节 地图投影的基本概念
二、投影变形
第8页/共33页
第一节 地图投影的基本概念
二、投影变形
长度比和长度变形:
ds’
投影面上一微小线段和
球面上相应微小线段之比。
m表示长度比, Vm表示长度变形
第二节 变形椭圆
变形椭圆
取地面上一个微分圆(小到可忽略地球曲 面的影响,把它当作平面看待),它投影到平面 上通常会变为椭圆,通过对这个椭圆的研究,分 析地图投影的变形状况。这种图解方法就叫变形 椭圆。
第16页/共33页
第二节 变形椭圆
x m y n
x
y
代入: x2 + y2 = r2,得
x2 m2
变大 变小
第10页/共33页
第一节 地图投影的基本概念
角度变形: 某一角度投影后角值与它在地面上固有角值之差
的绝对值。
第11页/共33页
第一节 地图投影的基本概念
三、地图比例尺 地图比例尺:图上距离与相应实地距离之比。
第12页/共33页
第一节 地图投影的基本概念
三、地图比例尺 地图比例尺:图上距离与相应实地距离之比。
第18页/共33页
第二节 变形椭圆
特殊方向
长轴方向(极大值)a 主方向
短轴方向(极小值)b 经线方向 m ;纬线方向 n
第19页/共33页
第二节 变形椭圆
通过变形椭圆形状显示变形特征
r
r′
r′
ba
a b
ba
地图学 地图投影(课堂PPT)
.
11
地图投影变形的图解示例
(摩尔维特投影-等积伪圆柱投影)
长度变形 角度变形
.
12
地图投影变形的图解示例
(UTM-横轴等角割圆柱投影)
面积变形和长度变形
.
13
投影变形示意图
.
14
1.4、地图投影——地图投影的变形
地图投影的.变形示意
15
1.5、地图投影——地图投影的分类
u按变形性质分类: q 等角投影:角度变形为零。 q 等积投影:面积变形为零。 q 任意投影:长度、角度和面积 都存在变形。
圆锥
u从投影面与地球位置关系划分为:正轴、横轴、斜 轴,切、割
.
18
.
19
1.5、地图投影——地图投影的分类
关于地图投影的几点结论:
Ø实现等角、等面积、等距离同时做到的投影不 存在 Ø投影方式有多种多样,一个国家或地区依据自 己所处在的经纬度、幅员大小以及图件用途选择 投影方式 Ø在大于1:10万的大比例尺图件中,各种投影 带来的误差可以忽略。
关于数据精度只注意数字化和编辑过程中的偶然误差和外 围设备的系统误差,而忽视了地图投影的所产生的变形误 差。
其后果是:显示或输出的图形文件发生变形或扭曲,有些 变形在视觉上不易直接观察。这一方面严重影响到地图的 精度,属性数据空间顺序和空间联系分析结果的准确性; 另一方面严重的影响到GPS的应用效果。
它是任意投影。我国的世界地图 多采用该投影。
我国位于地图中接近中央的位置, 形状比较正确。
.
50
第二节 世界常用地图投影
.
51
.
52
.
53
.
54
.
55
03第三章地图投影
天文经纬度只能在天球上定义,天文经(纬)度与大地 经(纬)度相同时,其轨迹在大地经(纬)线附近呈非 平面曲线摆动。但由于θ角(铅垂线与法线的夹角)很 小,这种摆动的幅度也很小。
地心 地心纬度
大地纬度 天文纬度
大地经度——指参考椭球面上某一点的大地子 午面与本初子午面间的两面角;东+西-
大地纬度——指参考椭球面上某一点的垂直线 (法线)与赤道面的夹角。北+南-
3)地心经纬度
主要应用于地理学、地图学中(地心——指地球椭球体 的质量中心)
地心经度——等同于大地经度;
地心纬度——指参考椭球面上任一点和椭球中心连线与 赤道面之间的夹角。
可致以大设地想水这准个面静也止不规的则平。均海水面穿过大陆和岛屿形成一个 此闭时合,的地曲球面表,面这上点就的是铅大垂地线水不准一面定。指大向地地水心准。面所包围的 须形在体不,考叫虑大地地球球内部体质。量分布不均的因素时—才是规则的。
由3)于地地球球物体理内表部面质:量分布的不均匀,引起重力方向的变化 是,一导个致起处伏处不和平重的重力力方等向位成面正。交的大地水准面成为一个不 4规)大则地的体、:仍然是不能用数学表达的曲面。
2.地球体的物理表面(准规则曲面-假想面)
1)假想水准面(基准面):静止海平面
当无海波洋浪静、止潮时汐,、它水流的、自大由气水压面变必化定,与流该体面处上于各平点衡状的态重。力方 2向)大(地铅水垂准线面方:向)成正交,我们把这个面叫做水准面。
但基水准准面面+其有向无陆数地多的个延,伸其部中分有=一一个个封与闭静曲止面的。平均海水面相 实 即重使际合海上。平:面静止,地球内部质量不均匀—重力场不规则。导
地图学课件-第二编 地图投影
殊位置,直角投影后仍保持直交,此二直交直线方向,称 殊位置 , 直角投影后仍保持直交 , 此二直交直线方向 , 之为主方向。 之为主方向。 a’
a
d o
b
d’ o’
b’
c
c’
第二节
变形椭圆
在地球球面上取一微小圆,它在平面上的投影除 在接触点位置外,一般情况下为椭圆, 下面我们用 数学方法验证一下。
(x,y)为圆上一点,将其代如圆的方程,得
x2/a2+y2/b2=1
这是一个椭圆方程,这表明该微小圆投影后为长半径 为a短半径为b的椭圆,这种椭圆可以用来表示投影后的 变形,故叫做变形椭圆。
在研究投影时,可借助变形椭圆与微小圆比较,来 说明变形的性质和数量。椭圆半径与小圆半径之比,可以 说明长度变形。很明显的看出长度变形是随方向的变化而 变化,在长短半径方向上有极大和极小长度比a和b,而长 短半径方向之间,长度比μ,为b<μ<a;椭圆面积与小圆 面积之比,可以说明面积变形;椭圆上任意两条方向线的 夹角与小圆上相应的两方向线夹角之差为角度变形。
⑶圆锥投影 以圆锥面作为投影面,使圆锥面与球面相切或 相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展 为平面而成。
2.非几何投影 不借助于任何几何面,根据一定的条件用数学解析法确 定球面与平面之间点与点的函数关系。在这类投影中,一般 按经纬网形状又可分为伪方位投影、伪圆住投影、伪圆锥投 影和多圆锥投影等。
地球的形状近似于一个球体,但并不是一个正球体,而是一个极 半径略短、赤道半径略长,北极略突出、南极略扁平,近似于梨形 的椭球体。这个不规则的地球体满足不了测绘工作的需要,于是人 们选择了一个最接近地球形状的旋转椭圆体表示地球,称为地球椭球 体。 我国1953年以前采用海福特椭球体,从1953年起采用克拉索夫斯基 椭球体,它的长半径a=6378245m,短半径b=6356863m ,偏率d=ab/a=1:298.3 由于地球椭球体长短半径差值很小,约21km,在制作小比例尺地图 时,因为缩小的程度很大,如制作1:1000万地图,地球椭球体缩小 1000万倍,这时长短半径之差只是2.1mm,所以在制作小比例尺地图 时,可忽略地球扁率,将地球视为圆球体,地球半径为6371km。制 作大比例尺地图时必须将地球视为椭球体。
地图投影的原理及应用 (2)
地图投影的原理及应用1. 引言地图是人类认知地球表面的重要工具,而地图投影则是将地球上各种地理现象用平面形式展示的方法。
地图投影的原理潜藏着丰富的数学和地理学知识,同时也有广泛的应用领域。
本文将以简明扼要的方式介绍地图投影的原理和一些常见的应用。
2. 地图投影的原理地球是一个近似于椭球形的体,而平面是一个二维的几何形状。
将一个三维的地球表面映射到一个平面上是不可避免的会产生形变。
地图投影的原理就是通过一定的数学方法,将地球表面上的经纬度坐标投射到平面上的坐标。
常见的地图投影方法有圆柱投影、圆锥投影和平面投影。
其中,圆柱投影是将地球表面投影到一个圆柱体上,然后再展开到平面上。
圆锥投影则是将地球表面投影到一个圆锥体上,再展开到平面上。
而平面投影是将地球表面直接投影到一个平面上。
3. 常见的地图投影3.1 圆柱投影•墨卡托投影:是一种最常见的圆柱投影方法,也是世界地图上广泛使用的一种投影。
它将地球表面投影到一个垂直于地球轴线的圆柱体上,并且保持纬线和等距离。
3.2 圆锥投影•兰勃托投影:是一种常见的圆锥投影方法,它将地球表面投影到一个切割了地球的圆锥体上。
兰勃托投影在大圆上的等距离得到保持,但在其他方向上会产生形变。
•阿尔伯斯投影:是另一种常见的圆锥投影方法,它通过将地球投影到一个割开的圆锥体上,从而保持等距离。
3.3 平面投影•头等圆锥等距投影:地图展示了一个圆锥体,圆锥体切割过了地球表面。
在这个投影中,地球上的所有地点都是以距离圆锥顶点的直线距离测量的。
•正轴等面积投影:它是一种面积保持的平面投影,能够保持地球表面上区域的真实面积。
•方位投影:也被称为“真北方位投影”,它以一个特定的点或特定的方向为中心将地球表面投影到平面上。
4. 地图投影的应用4.1 航海导航地图投影在航海导航中扮演着至关重要的角色。
通过将海洋地区的地理信息投影到平面上,航海员能够更好地了解船舶的位置、航线和目标地点。
不同的航海地图投影方法可以提供不同的信息,以及在不同的航海环境下的导航能力。
地图投影的基本原理
地图投影基本理论
二、地图投影变形
(一)投影变形旳概念
把地图上和地球仪上旳经纬线网进行比较,能够发觉变 形体现在长度、面积和角度三个方面。
地图投影基本理论
地图投影基本理论
(二)长度比和长度变形
长度比(μ):投影面上某一方向上无穷小线段 和原ds面 上相
应无穷小线段 之比d。s
主方向:在投影后仍保持正交旳一对线旳方向称为主方向。
地图投影基本理论
尤其方向:变形椭圆上相互垂直旳两个方向及经向和纬向
长轴方向(极大值)a 短轴方向(极小值)b 经线方向 m ;纬线方向 n
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m·n·sinq = a·b
地图投影基本理论
3、变形椭圆对地图投影变形旳描述 1)单个变形椭圆能够用来表达某一点上旳多种变形
地图投影旳实质: 建立地球面上点旳坐标与地图平面上点旳坐标之间 一一相应旳函数关系。
地图投影基本概念
2、地图投影基本措施
1)几何透视法 将测图地域按一定百分比缩小成一种地形模型,然
后将其上旳某些特征点用垂直投影旳措施投影到图纸 上。
小区域范围可视地表为平面,采用垂直投影方式, 可以为投影没有变形。但是大区域垂直投影存在变形, 需要考虑其他旳投影方式,采用透视投影措施。
地图投影基本概念
地图 百分比尺可大可小,制作、拼接、图上作业以及携带
保管都很以便
地图投影基本概念
地球:不可展曲面 地图:连续旳平面
用地图表达地球表面旳一部分或全部,就产生了一种 不可克服旳矛盾
球面
平面
地图投影基本概念
一、地图投影旳概念和实质
3第三章地图投影
(3)角度变形
(3)角度变形
(3)角度变形
' (180 2 ') (180 2 )
X A
2( ')
即: ( ')
Y
2
将上式代入(2-14)式得:
sin sin( ')= a b
2
ab
若已知经线长度比m,纬线长度比n,以及经
纬线夹角q,则角度最大变形公式可写成:
❖ 因此,通过对地图与地球仪上经纬网的比较, 可以发现,地图投影变形表现在长度、面积和 角度三方面。
地球仪与地图上经纬网比较
a
b
纬线长度a 经线长度b、c 同一纬线上,经差相同的纬线弧长c
c 同一经线上,纬差相同的经线弧长 同纬度带,同经差构成球形梯面b、 c 经纬线正交否b、c
1.变形概念
❖ 地图投影变形是球面转化成平面的必然结果, 没有变形的投影是不存在的。
若投影后,经纬线不正交,则:
P = a·b= m ·n ·sinq (q ≠ 90)
面积比和面积变形因位置不同而异
(3)角度变形
❖ 地面上任意两条方向线的夹角а,与经过投影后的相应 两方向线夹角а′之差值,称为角度变形
❖ 投影面上经纬线夹角变形ε为: ε=θ′-90°
❖ 过地面上一点可以引无数的方向线,由两条方向线组 成的角度有无数个。
❖ 利用变形椭圆的图解和理论,我们就能更为科 学和准确地阐述地图投影的概念、变形的性质 及变形大小
微分圆何以投影后为椭圆
❖ 经线CD和纬线AB为直角坐标系X、Y,圆心 0为直角坐标系原点
x' x
m 为经线长度比;
y' y
n
《地图投影》课件
随着实时数据处理技术的发展,动态地图投影将 成为未来的重要趋势,能够实时反映地理信息的 动态变化。
跨学科融合
地图投影将与计算机科学、物理学、数学等学科 进一步融合,推动地图投影技术的创新发展。
地图投影的挑战与机遇
数据处理和计算能力
01
随着地图投影的数据量不断增加,对数据处理和计算能力提出
02
地图投影在导航系统中的应用需 要考虑到地球的椭球形状和地球 的自转效应,以保证导航的准确 性和可靠性。
地图投影在城市规划中的应用
城市规划中需要使用地图投影来将地理坐标转换为城市平面坐标,以便进行城市 布局和规划设计。
城市规划中使用的地图投影需要考虑到城市规模、地形地貌和规划要求等因素, 以确保城市规划的科学性和合理性。
亚尔勃斯投影
总结词
等面积正圆锥投影
详细描述
亚尔勃斯投影是一种等面积正圆锥投影,它将地球视为一个正圆锥体,并沿经线 方向展开,保持面积不变。这种投影在制作世界地图时特别有用,因为它可以较 好地表现各大陆的面积比例。
兰勃特等面积投影
总结词
等面积方位投影
详细描述
兰勃特等面积投影是一种等面积方位投影,它将地球投影到一个椭球体上,并保持各方向上的面积相 等。这种投影在制作各种比例尺地图时非常有用,因为它可以较好地表现各区域的面积比例和相对位 置。
01
坐标系
介绍地理坐标系、投影坐标系等 概念,以及它们在地图投影中的 作用。
几何基础
02
03
坐标变换
阐述投影几何的基本原理,如平 行线、相似形等,以及它们在地 图投影中的应用。
介绍如何将地理坐标转换为投影 坐标,以及投影坐标与平面直角 坐标之间的关系。