长方形与正方形表面积和体积习题
北师大五年级数学下册-长方体和正方体的总棱长、表面积和体积公式及应用题专练---教师
长方体和正方体的总棱长、表面积和体积公式专练长方体和正方体都有:12条棱、6个面、8个顶点长方体的总棱长= (长+宽+高)× 4 (单位:长度单位)正方体的总棱长= 棱长× 12 (单位:长度单位)长方体的表面积=(长×宽 + 长×高 + 宽×高)×2(单位:平方单位)长方体的体积= 长×宽×高字母表示:V = abh(单位:立方单位)正方体的表面积=(棱长×棱长)×6(单位:平方单位)正方体的体积= 棱长×棱长×棱长字母表示:V= a3(单位:立方单位)长方体(或正方体)的体积= 底面积×高字母表示:V=sh(单位:平方单位)无盖的盒子的表面积=长×宽 +(长×高 + 宽×高)×2(只算一个底面)面积单位的换算:1平方厘米=100平方毫米; 1平方分米=100平方厘米;1平方米=100平方分米; 1公倾=10000平方米;1平方公里=100公顷体积单位:1立方米=1000立方分米; 1立方分米=1000立方厘米容积单位:1升=1000毫升; 1升=1立方米; 1毫升=1立方厘米1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升;应用题类型:(1)教室粉刷墙面,求总面积,应用以上公式计算。
(要除去一个底面)(2)测量不规则物体的体积用排水法:水面上升的高度×容器底面积 = 物体的体积(3)表面积的变化要会分析:长方体或正方体被锯开后,一次会增加两个面;反之,两个相同,体或长方体拼在一起,一次会减少两个面。
1、把一个长方体的小木块截成两段,就成了两个完全相等的正方体,于是这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的面积是多少平方厘米?解:截成各正方体的棱长为:40÷8=5(厘米)原长方体的长为:5×2=10(厘米)原长方体的表面积为:10×5×4+5×5×2=250(平方厘米)2、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体表面积之和最大,这时表面积之和是多少平方厘米?解:(7×6+7×5+6×5)×2+7×6×2=(42+35+30)×2+7×6×2=107×2+84=298(平方厘米)3、在棱长为10厘米的正方体玻璃缸内装满水,然后将这些水倒入长20厘米、宽10厘米的长方体玻璃缸内,这个玻璃缸内水深多少厘米?(玻璃厚度忽略不计)解:10×10×10=1000(立方厘米)1000÷20÷10=5(厘米)4、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体只有5块。
长方体和正方体的表面积测试题
长方体和正方体的表面积测试题篇一:长方体正方体的表面积和体积练习题精选长方体正方体的表面积和体积练习卷1. 长方体表面积的求法:长方体的表面积=a、b、h分别表示长方体的长、宽、高。
S表示它的表面积,则S= 。
长方体的体积=。
字母表示:。
2. 正方体表面积的求法:正方体的表面积=如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S==母表示:。
1、一个长方体有()个面,他们一般都是()形,也有可能是()个面是正方形.2、把长方体放在桌面上,最多可以看到()个面。
3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是()。
4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(),棱长之和是()。
5、一个正方体的棱长之和是84厘米,它的棱长是(),一个面的面积是(),表面积是()。
6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(),比原来3个正方体表面积之和减少了()。
7、把三个棱长是2分米的正方体拼成一个长方体,表面积是(),体积是()。
8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要()个这样的小木块才能拼成一个正方体。
9、一个正方体的棱长如果扩大2倍,那么表面积扩大()倍,体积扩大()倍。
10、一个无盖正方体铁桶内外进行涂漆,涂漆的是()个面.11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高()厘米的长方体。
12、一个长方体的长宽高分别是a ,b, h,如果高增高3米,那么表面积比原来增加()平方米,体积增加()立方米。
14、用27个体积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是()15、一个长15厘米,宽6厘米,高4厘米的正方体的木块,可以截成()块棱长2厘米的正方体木块。
16、有一个长方体的木料长3厘米、宽3厘米,高2厘米。
把它切成1立方厘米的小方块,可以切成()。
长方体和正方体的表面积容积体积棱长和练习题
长方体和正方体的表面积单项测试棱长和填空题:1、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
2、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
3、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体。
解决问题:1.一个表面积是54平方米的正方体,它所有的棱长的和是多少米?2.一个长方体的食品盒,长、宽、高分别是40厘米、20厘米和15厘米。
售货员用红色的塑料绳,如下图那样进行了捆扎,捆扎用的塑料绳全长多少厘米?(打结部分用30厘米)3.像右面这样捆一个盒子需要多长的彩带?5、一个礼盒(如下图),像这样用丝带捆扎起来,至少需要多长的丝带?(打结处需30厘米)(单位:厘米)6展开图选择题:1.下面的平面图形中,( )不能折成正方体。
2.右面图形中,能拼成正方体的是()。
3、下面不是正方体展开图的是()。
A. B. C.4、下图中,能围成正方体的是()。
A、B、C、D、5、下面的图形中,有一个不是正方体的展开图,它的编号是________.6.请说出1号2号3号相对的面各是几号面()A.4、6、5B. 4、5,6C. 6、5、47. 将右图折成一个正方体后,与2相对的面是( )A 、4B 、5 C 、6 D 、38、请说出1号2号3号相对的面各是几号面( )A 、4,6,5B 、 4,5,6C 、 6,5,4D 、 5,6,4填空题:四块立方体积木,每块积木的6个面分别写着字母A ,B ,C ,D ,E ,F ;每块积木上字母的排列顺序相同,请仔细观察,然后根据这四块积木字母排列的情况推断:(1)C 对面的字母是( )。
(2)A 对面的字母是( )。
(3)E 对面的字母是( )。
解决问题1.下面涂色部分是一个盒子的展开图(小方格是边长1厘米的正方形),这个盒子的长、宽、高各是多少厘米?表面积是多少?2.下面是一个长方体铁盒的展开图,做这个铁盒需要多少铁皮?(单位:厘米)表面积一、填空。
正方体和长方体的体积练习题目
正方体和长方体的体积练习题目正方体和长方体的体积练习题目篇一:长方体和正方体的体积练习题填空:(1)表面积和体积的意义不同,表面积是物体的()大小,体积是物体所占的()大小。
(2)、表面积和体积所用的计量单位不同,计量表面积常用的单位有()()()相邻的两个面积单位间的进率是()。
计量物体体积常用的单位有()()();相邻的体积单位间的进率是()。
(3)、表面积和体积的计算方法不同。
计算正方体的体积公式是()或()。
计算长方体的表面公式是();计算长方体的体积公式是()或()。
(4)、一个正方体,棱长是8分米,这个正方体的棱长之和是;表面积是();体积()。
(5)、一个长方体,长2米,宽5分米,高0.4分米。
这个长方体的表面积是();体积是()。
(6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。
这根木材的长是,放在地上占地面积最大是()。
1.填空。
(2)用字母表示长方体的体积公式是( )。
(3)棱长2分米的正方体,一个面的面积是( ),表面积是( ),体积是( )。
(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是( ),体积是( )。
(5)5立方米=( )立方分米2.8立方分米=( )立方厘米720立方分米=( )立方米32立方厘米=( )立方分米2.7立方米=( )升 1200毫升=( )立方厘米4.25立方米=( )立方分米=( )升 1.2立方米=( )升=( )毫升1、长方体有()个面,()条棱,()个顶点。
2、物体所占()的大小,叫做物体的体积。
3、一个正方体的表面积是54平方米,它的每个面的面积是()平方米,它的棱长是()米。
5、把棱长3cm的正方体切成棱长1cm的小正方体,可以切成( )块。
6、填上合适的单位名称。
一个文具盒的体积大小约有140();货车的油箱的容积是50()数学书的封面的面积大约是300();一个热水瓶的容积约是2()7、3.08 m2=()dm2 870cm3=( )dm36.47L=( )ml=( ) dm3 489ml=( )cm3=( ) dm38、一个正方体的棱长扩大到它的4倍,面积扩大到它的()倍,体积扩大到它的()倍。
五年级下长方体正方体表面积体积精讲例题
正方体长方体重点题型精讲(一)知识1:长方体和正方体的认识注意:长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形 练习:(1)判断和填空:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。
( ) 一个长方体中,可能有4个面是正方形。
( ) 正方体是特殊的长方体。
( )有两个面是正方形的长方体一定是正方体。
( )一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)一个长方体(非正方体)最多有( )个面是正方形,最多有( )条棱长度相等。
(3)一个长方体(非正方体)的底面是一个正方形,则它的4个侧面是( )形。
(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
(5)把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
知识2:棱长和公式变形长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4 长方体棱长和=右面周长×2+长×4长方体棱长和=下面周长×2+高×4 长方体棱长和=前面周长×2+宽×4 正方体棱长和=棱长×12 棱长=棱长和÷12 例题:1、一只鱼缸,棱长和为280cm ,其中,底面周长为50cm ,右面周长为40cm ,前面周长为50cm ,鱼缸的长、宽、高各是多少?2、有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?练习1、一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。
2、有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要()米的铝合金3、把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米。
长方体、正方体必考题型练习题
A.正方体大 B.球大 C.长方体大 D.一样大
一个正方体的铁块的棱长是4分米,把它熔铸成 一个最大的圆柱,圆柱的体积( )立方分米。
用一只棱长6厘米的正方体容器盛满水后,倒入
一只长12厘米,宽6厘米,高5厘米的长方体水箱
里,水面高
厘米
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大
C、长方体的长宽各扩大3倍,高缩小3倍
D、长方体的长不变,宽和高各扩大3倍。
长方体的长缩小3倍,宽扩大3倍,要使体积扩大3
倍,那么高应该
。
长方体的体积=长×宽×高
如果长方体的长、宽、高分别扩大到原来的2 倍,3倍,4倍,则体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截 面积是4平方分米,木料长是( )
6.一个长方体的礼品盒,长20厘米、宽15厘米、 高10厘米,现在要用红绸带进行十字形捆扎 (最大的面朝上),打结处20厘米,一共需要
绸带
厘米。
正方体的棱长总和=棱长×12
1.一个正方体的棱长是6厘米,它的棱长总和
是 厘米,表面积是
。
2.正方体的棱长之和是36分米,它的棱长是 分米,体积是 立方分米 。
边长是6dm的正方体,它的表面积和体积比较
(
)
容积与容积单位
3.06m3=
dm3 3.8L=
m3
250ml=
L
4.05dm3=
L
ml
7.5L=
ml
56cm2=
dm2
785ml=
cm3=
dm3
(★★★★★):一个长方体的水槽,横截 面是一个长5分米,宽3分米的长方形,如果
(完整版)长方体和正方体表面积练习题含答案
长方体和正方体表面积练习题含答案班级:姓名:学号:成绩: 一、填空: 1、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是,占地面积是,表面积是,体积是。
3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是立方厘米。
4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水升。
5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重千克。
6、正方体的棱长扩大3倍,棱长和扩大倍,表面积扩大倍,体积扩大倍。
927 7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
8、一个长方体的长、宽、高分别 是a米、b米、h米。
如果高增加2米,体积比原来增加立方米。
2ab 二、判断: 1、正方体是由6个完全相同的正方形组成的图形。
2、棱长6厘米的正方体,它的表面积和体积相等。
3、a表示 a×。
4、一个长方体,最多有两个面面积相等。
× 3 5、体积相等的两个正方体,它们的表面积一定相等。
× 三、操作题: 右图是长方体展开图,测量所需数据,并求长方体体积。
四、解决问题: 1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?10×5×4=200 200×7.8=1560 答:这个铁块重1560kg。
2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮? ×2=88× 答:需要88cm2 3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。
制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升? 表面积:8×7+8×6×2+6×7×2=236× 容积:8×7×6=336 答:共需玻璃236dm2,能装水336升。
《长方体和正方体的表面积、体积》完整版
4
3
2
24
B
体积(cm3)
12
24
(个)
D
长(cm)
宽(cm)
高(cm)
小正方体个数(个)
长方体A
4
3
1
12
长方体B
4
3
2
24
长方体C
4
3
3
V = abh
a
b
h
V = abh
h
a
b
D
C
A
B
计算下面长方体的体积
2 分米
3 分米
0.8 分米
0. 4 米
2. 2 米
6 米
V = abh = 2×0.8×3 = 4.8(立方分米)
V = abh = 6×2.2×0.4 = 5.28(立方米)
正方体的体积 = 棱长×棱长×棱长
1cm3
一个手指尖的体积大约是1cm3。
棱长
1厘米(cm)
1分米(dm)
1米(m)
体积
1立方厘米(cm3)
1立方分米(dm3)
1立方米(m3)
长(cm)
宽(cm)
高(cm)
小正方体个数 体积 (个)
长方体A
长方体B
长方体C
2×2×10=40(立方分米)
2分米
5、一个长方体的底面边长是2分米, 高是10分米,它的体积是多少立方分米?
2分米
某体育场有一个长6.5米、宽4米、深0.5米的长方体沙坑,已知每立方米黄沙重1.7吨,填满这个沙坑需要用黄沙多少吨?
= 22.1(吨)
1.7 ×(6.5 ×4 ×0.5) = 1.7 ×13 答:填满这个沙坑需要用黄沙22.1吨。
精选练习六年级下册 长方体、正方体表面积与体积计算的应用题专项训练 含答案解析
精选练习六年级下册长方体、正方体表面积与体积计算的应用题专项训练含答案解析长方体、正方体表面积与体积计算的应用1.棱长是1米的正方体,它的底面积是()。
A。
1平方米 B。
1平方米 C。
1立方米 D。
1立方分米2.做一个长方体纸盒,需要多少硬纸板,是求长方体的()。
A。
体积 B。
容积 C。
表面积3.一张方桌表面的面积大约是144()。
A。
cm B。
m2 C。
dm2 D。
cm24.由3个棱长为1分米的正方体拼成一个长方体的表面积是()。
A。
18平方分米 B。
16平方分米 C。
14平方分米5.要砌一道长40米、宽0.4米、高3.5米的砖墙,每立方米要用砖525块,共要用砖()。
A。
块 B。
块 C。
2940块 D。
2840块6.棱长8分米的正方体的表面积是64平方分米,体积是512立方分米。
7.某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条在三个方向加固。
所用尼龙编织条分别是365厘米,405厘米,485厘米。
若每个尼龙编织条加固时接头重叠都是5厘米。
这个长方体包装箱的体积是0.046立方米。
8.3个形状相同的长方体铅块,长是8cm,宽是6cm,高是5cm。
把它们熔铸成一个大的长方体铅块(假设没有损耗),大长方体铅块的长是18cm,高是4cm,它的宽是10厘米。
9.用铁皮做一个长3m、宽0.6m、高0.4m的长方体水槽(无盖)。
1)大约要用5平方米的铁皮。
2)这个水槽最多能蓄水0.72立方米。
10.把375立方米的煤渣,铺在一条长500米、宽12米的公路上,可以铺6米。
11.一个长方体水槽,槽内长1.2米,宽60厘米,深50厘米。
水槽的容积是毫升,合36升。
12.一个长5分米、宽4分米、高3分米的长方体,它占地面积最大是20平方分米,表面积是62平方分米。
13.一个游泳池长50米,宽25米,平均深2.5米。
要在游泳池各个面上抹一层水泥。
如果平均每平方米用水泥12千克,一共需要水泥千克。
14.下图是由若干块小立方体积木搭成的立体模型,在它的基础上要再把它堆成一个大立方体,还需要125块小立方体积木。
小学数学长方体正方体表面积体积典型例题
一、表面积1.无盖的长方体或者正方体的表面积(1)一个无盖的正方体的玻璃鱼缸,棱长为7分米,制作这个鱼缸至少需要多大面积的玻璃?正方体的表面积公式=6a²,而这里是无盖的,也就是我们只需要求5个面的面积就可以了,所以S=5×7×7=245(平方分米)(2)教室长为9米,宽为6米,高为3米,用涂料粉刷四壁和天花板,扣除门窗面积20平方米,要粉刷的面积是多少平方米?长方体表面积公式=2(ab+bh+ah),六个面的面积和,但是这里粉刷墙壁,地面不刷,所以求5个面的面积,也就是少求一个长×宽。
可以用总得表面积-长×宽,也可以直接求S=ab+2(ah+bh),这个题的特殊性是粉刷墙壁,最后要减掉门窗的面积。
S=9×6+2×(9×3+6×3)=144平方米144-20=124平方米2.求四个面的面积国家游泳中心水立方体育馆外形为长方体,长是177米,宽是177米,高为30米,他四周的总面积是多少?这是一个有两个面是正方形的长方体,除了上下两个面,其余四个面完全相同,求四周的表面积,S=2ah+2bh=177×30×4(这里长宽相等,因此直接求出一个面的乘以4就可以了)3.铺瓷砖的问题求出表面积除以一块瓷砖的小面积,也就是课上经常说的大面积÷小面积二、体积1.利用公式直接求体积这类题较为简单,但是要注意看题目里的单位是否统一,如果不统一要先化成统一单位如长方体长6米,宽70分米,高4米,体积是多少立方米?2.知道体积,长、宽、高其中的两个,求另外一个量h=v÷a÷b,a=v÷h÷b,b=v÷a÷h3.砌砖问题问用了多少块砖的问题?(1)如:某住宅小区,长为30米,厚为24厘米,高为2米,每立方米用砖525块,一共用多少块砖?先统一单位,再求体积,再用体积乘以525就等于一共用了多少块砖(2)长为3米,宽为2米,高为6米的墙,如果用20立方分米的砖去砌墙,用砖多少块大体积÷小体积表面积1、一个长方体的长是8厘米,宽是4厘米,高是2厘米,这个长方体的表面积是多少?2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?3、用一根48厘米的铁丝扎成一个正方体,这个正方体的表面积是多少平方厘米?4、把一个棱长为5厘米的正方体,锯成3个长方体,它的表面积增加了多少平方厘米?5、把3个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积比原来的3个正方体的表面积之和减少了多少?6、一个无盖的长方体铁皮水桶,长是8分米,宽是6分米,高是0.5分米,做这样一个水桶至少需要多少平方米的铁皮?7、某商店制作的广告箱是长方体,长1.5米,宽1.2米,高2.5米,如果在它的四周贴一圈广告纸,贴广告纸的面积是多少平方米?8、学校要粉刷教室,已知教室的长是8米,宽是6米,高是3米,扣除门窗黑板的面积是11.5平方米,如果每平方米需要花3.5元涂料费,粉刷这个教室需要花费多少元?9、一个长为10米,宽为3米,高为6米的教室的占地面积是多少?它的右侧面的周长是多少?10、某型号洗衣机,底面长10分米,宽5分米,高12分米,要给这个洗衣机做个布罩,至少需要多大面积的布?11、一个正方体,它的一个面的周长是60厘米,这个正方体的表面积是多少?12、把四个棱长为5厘米的正方体木块排成一排后拼成一个长方体,这个长方体的表面积是多少?一、高的变化引起表面积的变化。
五年级表面积体积专项练习
表面积1、一个长方体的长是8厘米,宽是4厘米,高是2厘米,这个长方体的表面积是多少?2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?3、用一根48厘米的铁丝扎成一个正方体,这个正方体的表面积是多少平方厘米?4、把一个棱长为5厘米的正方体,锯成3个长方体,它的表面积增加了多少平方厘米?5、把3个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积比原来的3个正方体的表面积之和减少了多少?6、一个无盖的长方体铁皮水桶,长是8分米,宽是6分米,高是0.5分米,做这样一个水桶至少需要多少平方米的铁皮?7、某商店制作的广告箱是长方体,长1.5米,宽1.2米,高2.5米,如果在它的四周贴一圈广告纸,贴广告纸的面积是多少平方米?8、学校要粉刷教室,已知教室的长是8米,宽是6米,高是3米,扣除门窗黑板的面积是11.5平方米,如果每平方米需要花3.5元涂料费,粉刷这个教室需要花费多少元?9、一个长为10米,宽为3米,高为6米的教室的占地面积是多少?它的右侧面的周长是多少?10、某型号洗衣机,底面长10分米,宽5分米,高12分米,要给这个洗衣机做个布罩,至少需要多大面积的布?11、一个正方体,它的一个面的周长是60厘米,这个正方体的表面积是多少?12、把四个棱长为5厘米的正方体木块排成一排后拼成一个长方体,这个长方体的表面积是多少?一、高的变化引起表面积的变化。
1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的体积是多少立方厘米?3、一个长方体,如果长减少2厘米就成了一个正方体,而且表面积要减少56平方厘米。
原来这个长方体的体积是多少立方厘米?4、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米?二、段的变化1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米?三、切1、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少?2、一个正方体的表面积是96平方厘米,将它平均分成两个小长方体,每个小长方体的体积是多少立方厘米?3、一个正方体的体积是125立方厘米,它的表面积是多少平方厘米?四、拼。
新人教版五年级下册长方体正方体练习题
五年级下册表面积、体积、棱长之和练习题练习一1、一瓶止咳药的外包装是一个长7厘米、宽6厘米、高8厘米的长方体纸盒(厚度忽略不计)这次网购的外包转也是一个大长方体纸盒,这个大长方体纸盒的体积至少是多少立方厘米?1. 一个长方体高26厘米,把它切割成两个小长方体,表面积增加了80平方厘米,求原来长方体的体积。
3.在棱长为4厘米的正方体的每一个面的中心打一个与正方体棱长平行的洞,洞口是边长为1厘米的正方形,洞深1厘米,求挖洞后木块的表面积。
4.修一个厂房,为了打好墙基,需要挖一圈宽1米,深0.5米的沟,一共要挖多少立方米的图? 5 清淤队在护城河清淤活动中清理了一段长50米的河沟,如图(单位:米),请你算出挖出的淤泥是多少立方米?练习二:1、做 10 个棱长 8 厘米的正方体铁框架,至少需多长的铁丝?2、用铁皮做一个铁盒,使它的长、宽、高分别是 1.8 分米, 1.5 分米和 1.2 分米,做一个这样的铁盒至少要用铁皮多少平方米?3、做一个没盖的正方体玻璃鱼缸,棱长是 3 分米,至少需要玻璃多少平方米?4、我们学校要粉刷教室,教室长 8 米,宽 7 米,高 3.5 米,扣除门窗、黑板的面积 13.8 平方米,已知每平方米需要 5 元涂料费。
粉刷一个教室需要多少钱?5、一个商品盒是棱长为 6 厘米的正方体, 在这个盒的四周贴上商标, 贴商标的面积最大是多少平方厘米?6、木版做长、宽、高分别是 2.8 分米, 1.5 分米和 2.2 分米抽屉,做 5 个这样的抽屉至少要用木版多少平方米?7.有一个养鱼池长 18 米,宽 12 米,深 3.5 米,要在养鱼池各个面上抹一层水泥,防止渗水,如果每平方米用水泥 5 千克,一共需要水泥多少千克?2题图3题图4题图 5题图8、加工厂要加工一批电视机机套,(没有底面)每台电视机的长60 厘米,宽50 厘米、高55 厘米,做1000 个机套至少用布多少平方米?9.做24 节长方体的铁皮烟囱,每节长2 米,宽4 分米,高3 分米,至少用多少平方米的铁皮?10、一个长方体的金鱼缸,长是8 分米,宽是5 分米,高是6 分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是多少?体积练习题:1、一个长方体的长是4 分米,宽是2.5 分米,高是3 分米,求它的体积是多少立方分米?2、一个长方体沙坑,长4 米,宽2 米,深0.5 米,如果每立方米黄沙重1.4 吨,这黄沙重多少吨?22.有一种长方体钢材,长2 米,横截面是边长为5 厘米的正方形,每立方分米钢重7.8 千克,这根方钢材重多少千克?3、一个长方体,底面积是30 平方分米,高3 米,它的体积是多少立方分米?4、一张写字台,长1.3m 宽0.6m、高0.8m 有20 张这样的写字台要占多大空间?5、一个棱长是5 分米的正方体鱼缸,里面装满水,把水倒入一个底面积48 平方分米,高6分米的的长方体鱼缸里,鱼缸里水有多深?6、一个棱长8 分米的正方体水槽里装了490 升水,把这些水倒入一个长10 分米,宽7 分米,高8 分米的长方体水槽里,水槽里的水深是多少?7、把一块棱长8 厘米的正方体钢坯,锻造成长16 厘米,宽5 厘米的长方体钢板,这钢板有多厚?(损耗不计)77. 一个长方体油桶,底面积是18 平方分米,它可装43.2 千克油,如果每升油重0.8 千克,油桶内油高是多少?8、一个长方形铁皮长30cm, 宽25cm ,从四个角各切掉一个长为5cm 的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?9、把一块长26dm 的长方形木板,在四个角上分别剪去边长为3dm 的正方形,将它制成容积为840 立方分米的长方体无盖容器,这块木板原来的宽是多少?10、一个长方体游泳池长60 米,宽30 米,深2 米,游泳池占地多少平方米?沿游泳池的内壁 1.5 米处用红漆划一条水位线,这条线的长度是多少?现在游泳池内的水正好到达水位线,求池内水的体积?11、一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,水深12 厘米,把一块石头浸入水中后,水面上升到16 厘米,求石块的体积?12、有两个完全相同长方体恰好拼成了一个正方体,正方体的表面积是30 平方厘米,如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少?13、大正方体棱长是小正方体棱长的两倍,大正方体体积比小正方体的体积多21 立方分米,小正方体的体积是多少?14、一个长方体的底面是一个正方形,把这个长方体的侧面展开后,形成一个周长为80cm 的正方形.那么长方体的体积是多少?15、80 根方木,垛成一个长2 米,宽2 米,高1.5 米的长方体,平均每根方木的体积是多少立方米?合多少立方分米?16、3 个棱长都8 厘米的正方体,拼成一个长方体,它的体积和表面积各是多少?17、家具厂订购500 根方木,每根方木横截面面积是25 平方分米,长是3.8 米,这些木料的体积是多少立方米?18、把两块棱长为1.5 分米的正方体木块拼成一个长方体,这个长方体的体积和表面积各是多少?19、一个长方体表面积是156 平方分米,底面积是30 平方分米,底面周长是32 分米,长方体的体积是多少?20、把长8 厘米,宽12 厘米,高5 厘米长方体木块锯成棱长2 厘米的正方体木块,可锯多少块?21、一个底面是正方形的长方体木料,长是5 米,把它截成4 段,表面积增加36 平方米,求长方体的体积?22、一个长方体的长是4 分米,宽是2.5 分米,高是3 分米,求它的体积是多少立方分米?23、一个长方体沙坑,长4 米,宽2 米,深0.5 米,如果每立方米黄沙重1.4 吨,这黄沙重多少吨?24、.有一种长方体钢材,长2 米,横截面是边长为5 厘米的正方形,每立方分米钢重7.8 千克,这根方钢材重多少千克?25、一个长方体,底面积是30 平方分米,高3 米,它的体积是多少立方分米?26、一张写字台,长1.3m 宽0.6m、高0.8m 有20 张这样的写字台要占多大空间?27、一个棱长是5 分米的正方体鱼缸,里面装满水,把水倒入一个底面积48 平方分米,高6 分米的的长方体鱼缸里,鱼缸里水有多深?28、一个棱长8 分米的正方体水槽里装了490 升水,把这些水倒入一个长10 分米,宽7 分米,高8 分米的长方体水槽里,水槽里的水深是多少?29、把一块棱长8 厘米的正方体钢坯,锻造成长16 厘米,宽5 厘米的长方体钢板,这钢板有多厚?(损耗不计)30、一个长方体油桶,底面积是18平方分米,它可装43.2 千克油,如果每升油重0.8 千克,油桶内油高是多少?31、一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?32、把一块长26dm 的长方形木板,在四个角上分别剪去边长为3dm 的正方形,将它制成容积为840立方分米的长方体无盖容器,这块木板原来的宽是多少?33、一个长方体游泳池长60 米,宽30 米,深2 米,游泳池占地多少平方米?沿游泳池的内壁 1.5 米处用红漆划一条水位线,这条线的长度是多少?现在游泳池内的水正好到达水位线,求池内水的体积?34、一个长方体玻璃缸,从里面量长40厘米,宽25 厘米,水深12 厘米,把一块石头浸入水中后,水面上升到16 厘米,求石块的体积?练习三1.一个长方体的长是8.5厘米,宽是4.5厘米,高是7厘米,它的所有棱长的和是多少厘米?2.一个正方体的棱长的总和是60厘米,它的表面积是多少平方厘米?3.一个长方体木箱的体积是672立方分米,木箱的长是12分米,宽是7分米,这个木箱的高是多少分米?4.一个长方体铁皮水桶,底面是边长为3分米的正方形,水桶高7.2分米,做这样一对无盖的水桶,至少需要多少平方分米的铁皮?5.一块长方体钢板,长24分米,宽15分米,厚0.15分米,每立方分米钢重7.8千克,这块钢板重多少千克?如果在钢板的表面涂上油漆,涂油漆的面积是多少平方分米?6.一个正方体的棱长是1.5分米,它的棱长的总和是多少分米?它的底面积是多少平方分米? 7.一个长方体茶叶筒,底面是正方形,正方形的边长是7厘米,高11厘米,做这种茶叶筒至少要用铁皮多少平方厘米?8.一根长方体木料,它的体积是240立方分米,这根木料长2米,宽6分米,厚多少分米?9.一个长方体的饼干筒,长和宽都是20厘米,高30厘米.如果围着它贴一圈商标纸(上下面不贴),这个商标纸的面积至少有多少平方厘米?10.胜利路小学要挖一个长方体沙坑,长4.5米,宽2.4米,深0.5米.(1)这个沙坑占地多少平方米?(2)这个沙坑能装沙土多少立方米?11. 一个长方体鱼缸,从里面量长60厘米,宽30厘米,高40厘米,缸内水面距缸口5厘米.鱼缸内共装水多少毫升?12. 一个长方体游泳池,长60米,宽25米,深2.5米.(1)用水泥抹游泳池的四壁和底面,抹水泥的面积是多少平方米?(2)如果灌的水深2米,1立方米的水重1吨,游泳池的水重多少吨?练习四一、填空。
完整版长方体正方体认识表面积练习题
长方体与正方体的认识练习题一、填空:1、长方体有()个面,相对的面();有()条棱,相对的棱长度();有()个顶点。
2、正方体有()个面,每个面都是()形,共有()条棱,这些棱长度(),正方体有()个顶点。
3、一个长方体最多有()个面是正方形.最多可以有()条棱长度相等。
4、把长方体放在桌面上,最多可以看到()个面。
5、长方体中,两个面相交的线叫做(),()叫做顶点。
6、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个顶点。
7、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。
8 —个正方体的棱长为a,棱长之和是(),当a=6厘米时,这个正方体的棱长总和是()厘米。
9、相交于一个顶点的()条棱,分别叫做长方体的()、()、()。
10、一根长96 厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。
11、一个长方体的棱长总和是80 厘米,长10厘米,宽是7厘米。
高是()厘米。
12、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3 厘米的长方体框架。
13、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。
14、一个长方体的长是 6 厘米,宽是 5 厘米,高是 4 厘米,它的上面 的面积是( )平方厘米;前面的面积是( )平方厘米;右面的的 面积是( )平方厘米。
这个长方体的表面积是( )平方厘米。
15、用铁丝焊接成一个长 12 厘米,宽 10厘米,高 5 厘米的长方体的 16、一个长方体的长是 5 分米,宽和高都是 4 分米,在这个长方体 中, 长度为 4 分米的棱有( )条,面积是 20 平方分米的面有( ) 个。
17、一个长方体的鱼缸, 长是 8 分米,宽是 5 分米,高是 6分米,不 小心前面的玻璃被打坏了, 修理时配上的玻璃的面积是 (正方体的棱长总和是 72 厘米,它的一个面是边长(22 一个正方体的底面周长是 16 厘米,它的表面积是 米。
长方体、正方体表面积与体积计算的应用-答案
- -长方体、正方体表面积与体积计算的应用答案典题探究例1.一块长方体铁皮(厚度不计),四个角剪去边长为10厘米的正方形,焊成一个无盖的长方体铁皮盒可以盛油3升.已知这块长方形铁皮的长为40厘米,求长方形铁皮的面积.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据题意知:焊成的长方体铁皮盒的高是10厘米,则焊成长方体的底边长的他是40﹣2×10=20厘米,根据长方体的体积(容积)公式可求出出这个长方体的底面积,再除以底面积的他,可求出底面积的宽,再加上去掉的2条长10厘米的边,可求出铁皮的宽,再根据长方形的面积公式可求出铁皮的面积,据此解答.解答:解:3升=3000毫升=3000立方厘米3000÷5=600(平方厘米)600÷(40﹣10×2)=600÷(40﹣20)=600÷20=30(厘米)40×(30+10×2)=40×(30+20)=40×50=2000(平方厘米)答:铁皮的面积是2000平方厘米.点评:解答此题的关键是,先求出铁盒的宽,进而求出铁皮的宽,从而求得铁皮的面积.例2.有一房间,长8米,宽4米,高3.2米,要粉刷房子的顶面和四壁周围,除去门窗的面积28平方米,要粉刷的面积占整个房间顶面与四壁的百分之多少?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先根据长方体的表面积公式,求出顶面和四壁的面积,用顶面和四壁的面积减去门窗的面积就是粉刷的面积,再根据求一个数是另一个数的百分之几,用除法解答.解答:解:8×4+8×3.2×2+4×3.2×2=32+51.2+25.6=108.8(平方米),(108.8﹣28)÷108.8=80.8÷108.8≈0.743=74.3%,答:要粉刷的面积占整个房间顶面与四壁的74.3%.点评:此题主要考查长方体的表面积公式,以及百分数意义的实际应用.- zj.例3.一个长方体木料的长和宽都是2分米,高是40厘米,这根木料的体积是16立方米;如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是48平方分米.考点:长方体、正方体表面积与体积计算的应用.分析:(1)求长方体的体积,根据体积公式代入数据求解即可;(2)40厘米=2分米×2,所以把这根木料锯成两个正方体,就要把这个长方体从高的中点截开,每个正方体的棱长就是2分米,由此求出它们的表面积和.解答:解:(1)40厘米=4分米;2×2×4,=4×4,=16(立方分米);(2)4÷2=2(分米);两个正方体的棱长都是2分米;2×2×6×2,=4×6×2,=24×2,=48(平方分米);答:这根木料的体积是16立方米;这两个正方体的表面积的和是48平方分米.故答案为:16立方米;48平方分米.点评:第二问关键是找出如何才能截出两个正方体,并由此求出正方体的棱长,进而求解.例4.挖一个长4米,宽3米,深3米的长方体水池,这个水池占地12平方米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:由题意可知:求水池的占地面积,实际上是求上口的面积,水池的长和宽已知,利用长方形的面积公式即可求解.解答:解:4×3=12(平方米)答:这个水池占地12平方米.故答案为:12.点评:解答此题的关键是明白:求水池的占地面积,实际上是求上口的面积.例5.用小棒和橡皮泥做一个长方体或正方体的框架,小棒不能折断或者接拼,下面是提供的材料:小棒长度1号袋2号袋3号袋4号袋9cm 8根10根3根2根7cm 4根3根8根12根4cm 4根3根5根2根(1)要使做成的长方体(或正方体)体积最大,应选用1号袋的材料.(2)如果要将所做成的最大的长方体或正方体框架糊上纸,至少需要纸X多少平方厘米?考点:长方体、正方体表面积与体积计算的应用;长方体的特征.专题:压轴题;立体图形的认识与计算.分析:根据长方体的特征,它有12条棱,8个顶点,6个面.它的12条棱分为3组,每组4条棱的长度相等,在特殊情况下(有两个相对的面是正方形),它有8条棱的长度相等,另外4条棱的长度相等,又因长宽高的值越大,其体积就越大,由此确定出长、宽、高的值,再据长方体的表面积即可得解.解答:解:(1)根据长方体的特征,一般情况长方体的12条棱,分为3组,每组4条棱的长度相等,在特殊情况下,有8条棱的长度相等.因此,用8根9厘米和4根7厘米长的小棒(不能折断)和橡皮泥,搭成一个正方体,体积最大.(2)表面积为:7×7×2+7×9×4,=98+252,=350(平方厘米);答:(1)要使做成的长方体(或正方体)体积最大,应选用1号袋的材料.(2)如果要将所做成的最大的长方体或正方体框架糊上纸,至少需要纸X350平方厘米.故答案为:1.点评:此题主要考查长方体的棱的特征,由此解决问题.演练方阵A档(巩固专练)一.选择题(共5小题)1.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5 B.ab(h+5)C.5ab D.以上都不是考点:长方体、正方体表面积与体积计算的应用.分析:此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解答:解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.点评:此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.2.一根长方体钢材,横截面积是120平方厘米,长40厘米,它的体积是()立方厘米.A.48 B.480 C.4800 D.48000考点:长方体、正方体表面积与体积计算的应用.分析:根据长方体的体积=底面积×高,将数据代入公式计算即可.解答:解:120×40=4800(立方厘米),故选:C.点评:此题主要考查长方体的体积公式及其计算.3.一个装有水的长方体水槽,底面积为360平方米,水深12厘米,现将一个底面积为72平方厘米的长方体铁块竖放在水槽中,仍有部分露在外面,则现在水深()厘米.A.15 B.30 C.5D.35考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:将长方体铁块竖放在水槽中,上升水的体积就等于水中长方体铁块的体积,水槽的底面积减去铁块的底面积就是水的底面积,求出上升水的高度,再求出现在水深.解答:解:水面升高:72×12÷(360﹣72),=864÷288,=3(厘米);现在水深:12+3=15(厘米).答:现在水深15厘米.故选:A.点评:解答此题的关键是理解求上升水的高度要用水中长方体铁块的体积除以水的底面积.4.一个水箱,从里面量底面边长为6分米的正方形,水深0.35米,求箱里的水有()升.A.126 B.1260 C.12.6考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先根据长方体的容积公式:v=sh,先求出底面积,再求出水箱的容积是多少立方分米,换算成用升作单位即可.解答:解:0.35米=3.5分米6×6×3.5=126(立方分米)=126(升)答:水箱里的水有126升.故选:A.点评:此题主要考查长方体的容积(体积)的计算,直接根据长方体的容积公式解答.注意单位名称的换算.5.用两个棱长为1分米的小正方体拼成一个长方体,发生了什么变化?()A.体积变大,表面积变小B.体积变小,表面积变大C.体积不变,表面积变大D.体积不变,表面积变小考点:长方体、正方体表面积与体积计算的应用.分析:先求出这两个小正方体的表面积和体积之和;再求出拼成1个长方体之后,这个长方体的表面积和体积,然后与原来的表面积和体积比较即可.解答:解:原来2个小正方体的表面积是:6×1×1×2=12(平方分米);体积是:1×1×1×2=2(立方分米);新长方体的长是2分米,宽是1分米,高是1分米;表面积是:1×2×2+1×2×2+1×1×2=4+4+2,=10(平方分米);体积是:2×1×1=2(立方分米);12平方分米>10平方分米,表面积变小了;2立方分米=2立方分米,体积不变.故选:D.点评:两个小正方体拼成一个长方体之后由于有两个面拼在了一起,它们的表面积就减少了;但所占的空间并没有变化,所以体积不变.二.填空题(共15小题)6.往一个长60厘米,宽30厘米,高50厘米的鱼缸注30厘米高的水,注入的水体积是54000立方厘米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:运用长方体的体积公式求30厘米深水的体积,根据长方体的体积公式即可解答.解答:解:60×30×30=1800×30=54000(立方厘米)答:水的体积是54000立方厘米.故答案为:54000立方厘米.点评:本题考查了长方体的体积的实际应用,掌握长方体的体积公式是解题的关键.7.只列式,不计算一个长方体玻璃箱,底边长是6分米,宽4分米.把一块石头放入这个玻璃箱完全沉没在水中后,水面升高了1.5分米.这块石头的体积是多少立方分米?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据题意可知:水在玻璃箱中上升的体积就是石头的体积,根据长方体的体积公式:v=abh,把数据代入公式解答即可.解答:解:6×4×1.5=24×1.5=36(立方分米)答:这块石头的体积是36立方分米.点评:把石头完全放入水中,水上升的部分的体积就是石头的体积.8.一辆卡车车厢的底面积为4.8平方米.运送一种长方体形的包装箱,包装箱的棱长分别为0.6米,0.4米,0.5米,如果码放2层,这辆卡车最多能装48个包装箱.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据题中长方体的包装箱长、宽和高的数据,可知长方体的面积最小的一个面是0.4×0.5=0.2平方米,就让这一面朝下,先算出一层能装的包装箱的个数,再求得两层可装的包装箱的个数.据此列式计算即可解决.解答:解:一层能装的包装箱的个数:4.8÷(0.5×0.4),=4.8÷0.2,=24(个),两层能装的包装箱的个数:24×2=48(个).答:最多可以装48个包装箱.故答案为:48.点评:解决此题关键是弄清楚要使装的包装箱个数最多,首先考虑把哪一面朝下,找出面积最少的一面,先求出一层装的个数,进而求出两层装的个数即可.9.一个长方体水箱的容积是200升,这个水箱的底面是一个边长为50厘米的正方形,水箱的高是80厘米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据长方体的容积(体积)的计算方法,v=abh,再根据容积单位与体积单位之间的关系,1升=1立方分米=1000立方厘米;已知长方体的容积(体积)和底面积(50×50)求高,用体积÷底面积=高;据此解答即可.解答:解:200升=200000立方厘米200000÷(50×50)=200000÷2500=80(厘米)答:水箱的高是80厘米.故答案为:80.点评:此题主要根据长方体的体积(容积)的计算方法,已知体积和底面积求高,体积÷底面积=高.10.一个长5分米,宽3分米,高4分米的石膏长方体,最好选用面积为20平方分米的面为底面放置时最安全.它所占空间的大小是60立方分米.考点:长方体、正方体表面积与体积计算的应用.分析:要使长方体石膏放置时最安全,必须使底面积最大.已知长5分米,宽3分米,高4分米的石膏长方体,所以最大面的面积是5×4=20平方分米.求它所占空间的大小,就是求它的体积,根据长方体的体积=长×宽×高,代入公式即可算出答案.解答:解:最大面的面积:5×4=20(平方分米);体积:5×4×3=60(立方分米);故答案为:20,60.点评:此题主要考查长方体的底面积和体积的公式及应用,主要理解要使物体放置时最安全,就要以最大面为底面.11.要做一个长是6米,宽是4米,高是2米的无盖的玻璃鱼缸,至少需要玻璃64平方米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先搞清是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少上面,最后计算这五个面的面积,解决问题.解答:解:(6×2+4×2)×2+6×4=(12+8)×2+24=40+24=64(平方米)答:做这个鱼缸至少需要玻璃64平方米.故答案为:64平方米.点评:这是一道关于长方体表面积的实际应用,在计算表面积时,要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积.此题应注意单位换算.12.一个礼品盒的形状是长方体,长、宽、高分别是12cm,1dm和5cm.用纸将它包装起来,所需包装纸的面积最少是460cm2.(粘接部分不计)考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据长方体的表面积公式:s=(ab+ah+bh)×2,把数据代入公式解答即可.解答:解:1分米=10厘米(12×10+12×5+10×5)×2=(120+60+50)×2=230×2=460(平方厘米)答:所需包装纸的面积最少是460cm2.故答案为:460.点评:此题主要考查长方体的表面积公式的灵活运用.13.做一根长5米的烟囱,它的横截面是边长2分米的正方形,至少要用4平方米铁皮.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:烟囱是没有底面的,已知烟囱横截面是边长2分米的正方形,长5米,根据长方体的表面积的计算方法,求出它的4个侧面的面积即可.解答:解:2分米=0.2米,0.2×5×4=4(平方米)答:做这个烟囱至少需要铁皮4平方米.故答案为:4.点评:此题属于长方体的表面积的实际应用,解答关键是弄清所求物体形状,它是由几个面围成的,然后根据长方体的表面积的计算方法解答.14.一块正方体石料,棱长4分米,如果每立方分米2.7千克,这块石料重172.8千克.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:先利用正方体的体积=棱长3,求出这个石料的体积,再乘2.7千克即可解答问题.解答:解:4×4×4×2.7=64×2.7=172.8(千克)答:这块石料重172.8千克.故答案为:172.8.点评:此题主要考查正方体的体积公式的实际应用.15.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是96分米.考点:长方体、正方体表面积与体积计算的应用.分析:要求棱长总和,先要求出棱长,根据正方体的表面积÷6=底面积,可以求出正方体的底面积,又根据正方体的体积÷底面积=高这个关系求出高,在正方体中,12条棱都相等,高即棱长,然后利用棱长×12计算出棱长总和.解答:解:正方体的底面积为384÷6=64(平方分米),故它的棱长为:512÷64=8(分米),棱长的总和为8×12=96(分米).故答案为:96分米.点评:该种类型的题目,做题时应根据给出的条件,运用正方体的表面积=底面积×6以及正方体的体积=底面积×高这两个关系,代入数据即可求出结论.16.(•岚山区模拟)用铁皮做一个长、宽、高分别是1.2米、5分米、40厘米的长方体箱子,这个箱子放在室内最少占地0.2平方米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:求占地面积就是求这个箱子的底面积,要使占地面积最小,那么就把最小的面作为底面,放在地上,根据长方形的面积公式求解;解答:解:5分米=0.5米,40厘米=0.4米0.4<0.5<1.20.4×0.5=0.2(平方米)答:最少占地0.2平方米.故答案为:0.2点评:解答有关长方体的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.17.一间教室长15米,宽12米,高4米,门窗的面积占42平方米,如果要粉刷这间教室,粉刷的面积是得数平方米?(顶面不粉刷)考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:由题意可知:顶棚不粉刷,地面是不需要粉刷的,所以粉刷的是四面墙壁,再减去门窗的面积,根据长方形的面积公式:s=ab,把数据代入公式解答.解答:解:(15×4+12×4)×2﹣42=(60+48)×2﹣42=108×2﹣42=216﹣42=174(平方米),答:粉刷的面积是174平方米.点评:解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.18.60m3沙均匀铺在长10米,宽3米的长方体沙坑内,可以铺20分米厚.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据长方体的体积公式:V=abh可知h=V÷ab,已知体积是60立方米,长10米,宽3米,注意结果的单位要换算,据此解答.解答:解:60÷(10×3)=60÷30=2(米)=20(分米)答:可以铺20分米.故答案为:20.点评:本题主要考查了学生对长方体体积公式的灵活运用情况,注意单位换算.19.将一个棱长为0.4分米的正方体框架改做成一个长6厘米、宽4厘米、高2厘米的长方体框架,在长方体框架的表面糊一层硬纸,需硬纸88平方厘米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:根据“正方体的棱长总和=12×棱长,”求出正方体的棱长和,因为长方体框架的棱长总和和正方体框架的棱长总和相等,进而根据“长方体的棱长总和=(长+宽+高)×4”,解答即可;在长方体框架的表面糊一层硬纸,需硬纸多少,即求长方体的表面积,根据“长方体的表面积=(长×宽+长×高+宽×高)×2”进行解答即可.解答:解:12×0.4=4.8(分米)=48(厘米)48÷4﹣6﹣4=12﹣6﹣4=2(厘米)(6×4+6×2+4×2)×2=(24+12+8)×2=44×2=88(平方厘米)答:可做高是2厘米需要硬纸88平方厘米.故答案为:2、88平方厘米.点评:答此题应根据长方体的棱长总和的计算方法和长方体表面积的计算方法进行解答.20.楼房外壁用于流水的水管是长方体.如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米.做一节水管,至少要用铁皮48平方分米.考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:求做一节水管,至少要用铁皮多少平方分米,实际是求长方体的侧面积,根据“长方体的侧面积=(长×高+宽×高)×2”,代入数值计算即可.解答:解:(1×15+0.6×15)×2=(15+9)×2=24×2=48(平方分米)答:至少要用铁皮48平方分米.故答案为:48.点评:本题运用“底面周长×长度=侧面积”进行计算即可.考查了学生灵活解决问题的能力.三.解答题(共8小题)21.学校要修建一条长80米,宽6米的长方形人行道,需要铺上12厘米厚的水泥砂石,如果一辆运输车每次载重8立方米,需要运几次才能把人行道修建好?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:要求需要运几次才能把人行道修建好,先求出修这条人行道需要多少立方米的沙子,根据长方体的体积=长×宽×高,求出体积,再用体积÷一辆运输车每次载重8立方米,就是所需的次数.解答:解:12厘米=0.12米80×6×0.12=480×0.12=57.6(立方米)57.6÷8≈8(次)答:需要运8次才能把人行道修建好.点评:掌握长方体的体积公式是解题的关键.22.皓月集团的冷藏车厢是长方体形,外面长3.6米,宽2.4米,高2米,如果车厢的壁厚0.2米,则这个冷藏车厢的容积为多少立方米?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:要求这个冷藏车厢的容积为多少立方米长,先求出长方体容器的实际长、宽、高,因车厢的壁厚0.2米,所以这个冷藏车厢的实际长为3.6﹣0.2×2=3.2米,宽为2.4﹣0.2×2=2米,高为2米,根据容积公式=长×宽×高,又据此代入数据即可解答.解答:解:(3.6﹣0.2×2)×(2.4﹣0.2×2)×3=3.2×2×2=12.8(立方米)答:容积是12.8立方米.点评:此题主要考查长方体容器的容积的计算方法,求出冷库的实际长、宽、高是解题的关键.23.有两个同样的长方体盒子,长是4厘米,宽是3厘米,高是2厘米.现在要把这两个盒子包装成一包,你能想出几种包装方法?分别算出各种方法所需包装的大小.(接口处不计)考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:(1)第一种:两个长方体上下重叠在一起,得到一个大长方体,长4厘米,宽3厘米,高2×2=4厘米;第二种:两个长方体左右平放在一起得到:长4×2=8厘米,宽3厘米,高2厘米;第三种:两个长方体这样前后平放在一起得到:长4厘米,宽3×2=6厘米,高2厘米.(2)根据长方体的表面积公式算出每一种的包装面积,进行比较得出结论.解答:解:(1)第一种:两个长方体上下重叠在一起,得到一个大长方体,长4厘米,宽3厘米,高2×2=4厘米;第二种:两个长方体左右平放在一起得到:长4×2=8厘米,宽3厘米,高2厘米;第三种:两个长方体这样前后平放在一起得到:长4厘米,宽3×2=6厘米,高2厘米.(1)第一种:(4×3+4×4+3×4)×2=40×2=80(平方厘米)(2)第二种:(8×3+8×2+3×2)×2=46×2=92(平方厘米)第三种:(4×6+4×2+6×2)×2=44×2=88(平方厘米)答:第一种包装方案所用的包装纸的大小是80平方厘米,第二种包装方案所用的包装纸的大小是92平方厘米,第三种包装方案所用的包装纸的大小是88平方厘米.点评:这是一道长方体表面积的实际应用,考查了学生对长方体表面积计算公式的掌握情况,以及实际操作能力.24.一个房间长5米,宽3米,高2.8米,现需粉刷四壁和天花板,扣除门窗的面积4.5平方米,求要粉刷的总面积有多大?这房间的体积有多大?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:首先搞清这道题是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少下面,最后计算这五个面的面积减去门窗的面积,由此解决问题.求这个房间的体积,根据长方体的体积公式:v=abh,把数据代入体积公式进行解答.解答:解:5×3+5×2.8×2+3×2.8×2﹣4.5,=15+28+16.8﹣4.5,=59.8﹣4.5,=55.3(平方米),5×3×2.8=42(立方米),答:要粉刷的总面积有55.3平方米,这房间的体积有42立方米.点评:这是一道长方体表面积、体积的实际应用,在计算时要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积,从而列式解答即可.25.要制作一个长4米,宽2.5米,高1.2米的无盖水箱,至少要用多少平方米铁皮?考点:长方体、正方体表面积与体积计算的应用.专题:立体图形的认识与计算.分析:我们运用侧面积加上一个底面的面积,就是制作一个长4米,宽2.5米,高1.2米的无盖水箱的铁皮的面积.解答:解:(4+2.5)×2×1.2+4×2.5,=13×1.2+10,=25.6(平方米);答:至少要用25.6平方米铁皮.点评:本题考查了长方体表面积公式的掌握与运用情况.26.(•麟游县)一个建筑队挖地基,长40.5米,宽24米,深2米,挖出的土平均每4立方米重7吨,如果用载重4.5吨的一辆汽车把这些土的运走,需运多少次?考点:长方体、正方体表面积与体积计算的应用;分数乘法应用题.分析:要求需要运多少次,需要求出要运多少吨土;所以要先求出挖出土的体积,再求出这些土的吨数,再求出需要运土的吨数,然后就可求出运的次数.解答:解:挖出土的体积:40.5×24×2=1944(立方米);挖出土的重量:1944÷4×7═3402(吨);要运的土的吨数:3402×=2268(吨);2268÷4.5=504(次);答:需运504次.点评:此题考查了长方体体积的应用,主要是利用倍数关系求出挖出土的重量.27.(•海安县模拟)芳芳打算制作一个火柴盒,在下面的方格纸上分别设计了火柴盒的内盒与外盒两部分的展开图.(硬纸板的厚度忽略不计)(1)在上图中分别将火柴盒内盒和外盒的几个面用虚线分开.(2)芳芳设计的火柴盒的体积是多少立方厘米?(3)制作这样一个火柴盒,至少要用多少硬纸板?考点:长方体、正方体表面积与体积计算的应用;长方体的展开图.专题:立体图形的认识与计算.分析:火柴盒是我们生活中常见的一个长方体物体,它是由内盒和外盒两部分组成的,内盒有5个面,外盒有4个面.首先,我们可以根据长方体面将内盒和外盒的各个面表示出来,然后,再根据火柴盒的长、宽、高计算出它的体积和制作这样一个火柴盒至少要用多少硬纸板.解答:解:(1)内盒各个面表示如下左图,外盒各个面表示如下右图.(2)火柴盒的体积是:4×3×1=12(立方厘米)答:芳芳设计的火柴盒的体积是12立方厘米.(3)内盒:3×4+(1×3+1×4)×2=12+14=26(平方厘米)外盒:(3×4+1×4)×2=(12+4)×2=32(平方厘米)26+32=58(平方厘米)答:制作这样一个火柴盒,至少要用58平方厘米的硬纸板.点评:掌握长方体的体积和表面积公式是解题的关键.28.客厅的顶部长为6m,宽为4m,装了1盏直径是1m的圆形大灯,12盏面积分别是0.015m2的小彩灯,装灯之外部分需要再次粉刷,要粉刷的面积有多少平方米?。
五年级下册数学单元测试-3长方形和正方形(人教版,含答案)
五年级数学下册第三单元检测卷(测试时间:90分钟 满分:100分)题号 一 二 三 四 五 总分 得分一、填空题(每空1分,共27分)1.一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是( )厘米,宽是( )厘米,一个这样的面的面积是( )平方厘米;最小的面长是( )厘米,宽是( )厘米,一个这样的面的面积是( )平方厘米。
2.一个长方体的长是14分米,宽是5分米,高是5分米,这个长方体有( )个面是正方形,每个面的面积是( )平方分米;其余四个面每个面的面积是( )平方分米;这个长方体的表面积是( )平方分米,体积是( )立方分米。
3.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )平方分米。
这个金鱼缸最多容水( )升。
4.一个正方体的棱长总和是72厘米,它的一个面是边长( )厘米的正方形,它的表面积是( )平方厘米,体积是( )立方厘米。
5.至少要( )个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是( )平方厘米,体积是( )立方厘米。
6.把三个棱长都是4厘米的正方体拼成一个长方体,表面积减少了( )平方厘米,它的体积是( )立方厘米。
7.一个正方体的底面积是25平方分米,它的表面积是( )平方分米,它的体积是( )立方分米。
8.把一个长124cm ,宽10cm ,高10cm 的长方体锯成最大的正方体,最多可以锯成( )个。
9.一个长方体长减少3厘米就成了一个正方体,表面积减少84平方厘米,原来长方体的表面积是( ),体积是( )。
10.一个长方体游泳池长25米、宽14米、高2米,它的占地面积是( )平方米。
二.判断题(对的打“√”,错的打“×”.每题1分,共5分)。
1.长方体是特殊的正方体。
………………………………………………… ( ) 2.把两个一样的正方体拼成一个长方体后,体积和表面积都不变。
2022-2023学年人教版数学五年级下册长方体和正方体表面积练习题(含答案)
2022-2023学年人教版数学五年级下册长方体和正方体表面积练习题学校:___________姓名:___________班级:______________一、填空题1.制作一个长8厘米,宽12厘米,高5厘米的长方体框架,需要________cm的铁丝。
2.一个长方体的棱长总和是80cm,其中长是10cm,宽是7cm,高是( )cm。
3.一个大正方体表面涂上颜色,然后把它切割成完全一样的125个小正方体,此时三面涂色的小正方体有( )个。
4.一根铁丝如果做成一个正方体框架模型,棱长8厘米,如果改做成一个长10厘米,宽9厘米的长方体框架模型,高是( )厘米。
5.用一根长3.6米的铁丝刚好围成一个正方体的框架,它的表面积是( )平方分米,体积是( )立方分米。
6.一个长方体的长是1米4分米,宽是5分米,高是5分米。
这个长方体有______个面是正方形,正面、下面和侧面的面积分别是______平方分米、______平方分米、______平方分米。
7.长方体有( )条棱,每相对的( )条棱长度相等;若把相交于一点的长、宽、高看作一组,这些棱可以分为这样的( )组,所以长方体的棱长总和=( );若按长、宽、高来分,这些棱可以分为( )组,所以长方体的棱长总和还可以=( )。
8.用一根长60dm的铁条,焊成一个长6dm,宽5dm的长方体框架,长方体框架的高是( )dm。
给这个框架焊上铁皮做成一个长方体铁皮箱,需铁皮( )dm2。
9.把三个棱长2dm的正方体拼成一个长方体,表面积会减少( )cm2,这个长方体的棱长总和是( )cm。
10.一个棱长总和是96cm的正方体,它的表面积是( )cm2。
11.将长20厘米,宽15厘米、高5厘米这样两个完全一样的长方体礼品盒包装成一包,至少需要( )包装纸。
(接口处忽略不计)12.两个正方体的棱长比是5∶3,棱长总和比是( ),表面积比是( ),体积比是( )。
二、解答题13.求图的体积.14.一个长方体铁皮油箱,长3分米,宽2.5分米,高40厘米。
人教版6年级长方体和正方体练习题
人教版6年级长方体和正方体练习题一、填空1.一个长方体的长、宽、高分别为米、米、米。
如果高增加2米,新的长方体体积比原来增加()立方米,表面积增加()平方米。
考查目的:计算长方体的表面积和体积。
答案:,。
解析:因为长方体的底面大小不变(长、宽不变),高增加2米,新的长方体体积比原来增加的体积,即为同样底面积且高为2米的长方体的体积,根据“长方体的体积=长×宽×高”可求得新长方体体积比原来增加的体积。
表面积增加的部分是高为2米的新长方体4个侧面的面积,即。
2.用12个棱长1厘米的小正方体拼成一个长3厘米、宽与高都是2厘米的大长方体,再将它去掉一个小正方体(如图所示),现在它的表面积是()平方厘米。
如果去掉的是角上的一个小正方体,它的表面积是()平方厘米。
考查目的:计算长方体的表面积。
答案:34,32。
解析:由图形可知,在棱的中间去掉一个小正方体后,表面积比原来增加了2个小正方体面的面积,即在原长方体表面积的基础上加2个小正方体面的面积。
如果去掉的是角上的一个小正方体,与原长方体相比表面积不会发生改变。
3.棱长1厘米的小正方体至少需要()个可拼成一个较大的正方体。
需要()个这样的小正方体可拼成一个棱长为1分米的大正方体,如果把这些小正方体依次排成一排,可以排成()米。
考查目的:长方体和正方体的特征,体积单位和长度单位之间的进率。
答案:8,1000,10。
解析:每个小正方体的棱长都是1厘米,则其体积是1立方厘米,可以用它组成棱长是2厘米的正方体,这样就需要2×2×2=8(个)小正方体。
棱长1分米的大正方体体积是1立方分米,需要1000个棱长1厘米的小正方体拼成,将这些小正方体依次排成一排,长度就是1000个棱长1厘米的小正方体的边长之和。
4.一块长方形铁皮如图所示,剪掉四个角上所有阴影部分的正方形(每个正方形都相同)后,沿虚线折起来,做成没有盖子的长方体铁盒,该铁盒的长是()cm,宽是()cm,高是()cm,表面积是()cm2,容积是()cm3。