九年级数学一元二次方程与应用PPT教学课件
合集下载
北师大版九年级上册2.6应用一元二次方程(1)课件(共22张PPT)
x +(21−x) =15 , 解:设乔治得到x元,则少的一笔钱为(20−x)元.
2 S△ABC= ×AC⋅BC= ×26×8=24,2
面积的一半,由题意得: 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
解得x =9,x =12. 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
2
2
EF AB BF AB BE 300 2x
三、典例分析
(3)求相遇时补给船航行了多少海里?
解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21−x)cm,依题意有
解: AB BC, AB / / DF , 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
北 如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.
四、随堂练习
3.如图,在Rt△ABC中,∠C=90∘,AC=8cm,BC=6cm.点P,Q同时从A,B 两点出发,分别沿AC,BC向终点C移动,它们的速度都是1cm/s,且当其 中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
即: 1×(8−x)×(6−x)= 1 ×24,
2
2
x2−14x+24=0,
(x−2)(x−12)=0,
x1=12(舍去),x2=2. 答:点P,Q出发2秒后可使△PCQ的面积为Rt△ABC面积的一半.
二、探究新知
2 S△ABC= ×AC⋅BC= ×26×8=24,2
面积的一半,由题意得: 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
解得x =9,x =12. 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
2
2
EF AB BF AB BE 300 2x
三、典例分析
(3)求相遇时补给船航行了多少海里?
解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21−x)cm,依题意有
解: AB BC, AB / / DF , 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
北 如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.
四、随堂练习
3.如图,在Rt△ABC中,∠C=90∘,AC=8cm,BC=6cm.点P,Q同时从A,B 两点出发,分别沿AC,BC向终点C移动,它们的速度都是1cm/s,且当其 中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
即: 1×(8−x)×(6−x)= 1 ×24,
2
2
x2−14x+24=0,
(x−2)(x−12)=0,
x1=12(舍去),x2=2. 答:点P,Q出发2秒后可使△PCQ的面积为Rt△ABC面积的一半.
二、探究新知
一元二次方程的应用-几何问题数学九年级上册同步教学课件(人教版)
D.x2+3x+16=0
21.3.3 一元二次方程的应用(几何问题)
3. 如图所示,在△ABC中,∠C=90°, AC=6cm,BC=8cm.点P
沿AC边从点A向终点C以1cm/s的速度移动;同时点Q沿CB边从 点C向B以2cm/s的速度移动,且当其中一点到达终点时,另一点 也随之停止移动.问点P,Q出发几秒后可使△PCQ的面积为9 cm²?
21.3.3 一元二次方程的应用(几何问题)
变式 如图,要利用一面墙 (墙长为 25 m) 建羊圈,用 80 m 的
围栏围成面积为 600 m2 的矩形羊圈,则羊圈的边 AB 和 BC 的
长各是多少米?
25 m
解:设 AB 的长是 x m. 列方程,得
A
D
(80 − 2x)x = 600.
整理得 x2 − 40x + 300 = 0,
方法点拨
我们利用“图形经过移动,它的面积大小不会改变”的 性质,把纵、横两条路移动一下,使列方程容易些(目的是 求出小路的宽,至于实际施工,仍可按原图的位置修路).
21.3.3 一元二次方程的应用(几何问题)
例2 如图,要利用一面墙(墙足够长)建羊圈,用 58 m的围栏围
成面积为 200 m2 的矩形羊圈,则羊圈的边 AB 和 BC 的长各是
B
C
解得 x1 = 10,x2 = 30. 当 x = 10 时,80 − 2x = 60 > 25(舍去);
当 x = 30 时,80 − 2x = 20 < 25.
答:羊圈的边 AB 和 BC 的长各是 30 m,20 m.
21.3.3 一元二次方程的应用(几何问题)
变式 如图,一农户要建一个矩形鸡场,鸡场的一边利用长为 12
华东师大版九年级数学上册第22章第3节《第1课时 利用一元二次方程解决图形、数字问题》课件
3、探究:重力势能的大小与哪些因素有关
a、概念:被举高的物体具有的能叫做重力势能 [活动]:重力势能与哪些因素有关 被举高的高度 “猜想”: 重力势能可能与 物体的质量 “实验”: 模拟打桩 有关
要想将桩打得深,可以采用哪些方法?
(1)将物体举得高些 (2)增大物体的质量
b、物体的重力势能大小与被举高的高度和物体的 质量有关。物体被举得越高,质量越大,物体具 有的重力势能就越大
A B
动 画
A B
动 画
二、动能
• • • • 1、定义:物体由于运动而具有的能量 2、与动能有关的因素: ①物体的质量 ②物体的速度 结论:运动物体的质量越大,速度越大,它的动能 就越大
• 为什么在高速公路上要限制汽车的最大行驶速度?
想一想
为什么在高速公路上要限制汽车的最大 行驶速度? 为什么不同的汽车限制的最大行驶速度 不同? 生活中还有哪些例子能说明上述结论?
动能势能机械能
§12.1 动能 势能 机械能
例1:运动着的锤 子能将钉子钉入木 板中 分析:运动着的锤 子能对钉子做功, 因此,运动着的锤 子具有能量。
例2:拉长的弹弓能将子弹射出
例2:举高的重锤能将木桩打入沙坑
一、功和能
• 1、如果一个物体能够对另一做功, 这个物 体具有能量。 • 2、功是能的量度。 • 3、能量的单位:焦耳(J)
重力势能转化为动能 b a:
动能转化为重力势能
卫星在近地点势能最小,
卫星在远地点势能最大。
远地点 近地点 近地点 重力势能转化为动能 远地点 动能转化为重力势能
卫星在运行过程中,也发生动能和势能的相互转化
结论:物体的 动能和重力势能可以相互转化。
• 运动员脚踩滑板从高处滑下,为什么会越来越快?
湘教版九年级数学上册精品教学课件 第二章 一元二次方程 一元二次方程应用:复率问题课件
思考:(1)若设年平均增长 上网计算
率为x,你能用x的代数式 表示2002年的台数吗? 3200
机总台数
(万台)
(2)已知2002年的台数 2400
是多少? (3)据此,你能列出方
1600
. 800 350
.892
.
1254
. .3089
2083 年份
程吗?
0 2000年 2000年 2001年 2002年 2003年
892(1+x)2=2083
(1+x)2= 2083
892
x1
x 2083 1
892
2083 892
1≈52.8%
x2
2083 892
1 (不合题意,舍去)
答:从2000年12月31日至2002年12月31日我国计算机上网总台数的年平均增长
率是52.8%.
2023年2月20日3时21分
依次类推n次降低后的值为 a •( 1 x )n
2023年2月20日3时21分
3
问题:截止到2000年12月31日,我国的上网计算机总数为 892万台;截止到2002年12月31日,我国的上网计算机总 数以达2083万台. (1)求2000年12月31日至2002年12月31日我国的上网计 算机台数的年平均增长率(精确到0.1%).
某单位为节省经费,在两个月内将开支从 每月1600元降到900元,求这个单位平均每 月降低的百分率是多少?
2023年2月20日3时21分
9
练一练:
某校坚持对学生进行近视眼的防治,近视学生 人数逐年减少.据统计,今年的近视学生人数是 前年人数的75℅,那么这两年平均每年近视学 生人数降低的百分率是多少(精确到1℅)?
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
人教版九年级数学上册《一元二次方程》PPT优秀课件
③
①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤
审
审题,弄 清已知量 与未知量 之间的关 系
设 设未知数
找
找出等量 关系
列
根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的
《一元二次方程》教学PPT课件-人教版九年级上册数学
=0
②设x1=
-
b 2
+m,x2=
-
b 2
-m
(m≥0)
a
a
c
③根据韦达定理可得:x1·x2 = a
将第二步中的设定代入,求得m
④再求得x1, x2。
人教版九年级上册数学《一元二次方程》
【例题】
封面 目录
方程解法 之 特殊方法 • 赋值法
1、解方程 2x²-140x+1650=0 解:第一步将方程两边同时除以a=2
方程化为:x²-70x+825=0,此时可知:- =35
设x1=35+m,x2=35-m (m≥0) 根据韦达b定理可知:x1·x2 = 825
则有:2 (35+m)(35-m)=825 a 解得:m=20
∴ 方程的解为:x1=55, x2=15。
人教版九年级上册数学《一元二次方程》
D 拓展训练 ● 推导求根公式 ● 几何意义 ● 韦达定理
封面 目录
人教版九年级上册数学《一元二次方程》
基本概念 之 四种形式
【一般形式】
ax²+bx+c=0(a≠0)
【配方式】
( ) b x+ 2a
2=
b2-4ac 4a2
【变形式】
ax²+bx=0(a≠0) ax²+c=0(a≠0) ax²=0(a≠0)
【两根式】
a(x-x1)(x-x2)=0
封面 目录
5、法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与 系数的关系。
人教版九年级上册数学《一元二次方程》
基本概念 之 判定条件
【判定条件】
一元二次方程成立必须同时满足三个条件: ①是整式方程,即等号两边都是整式。 方程中如果有分母,且未知数在分母上,那么这个方程就是分 式方程,不是一元二次方程; 方程中如果有根号,且未知数在根号内,那么这个方程也不是 一元二次方程(是无理方程)。 ②只含有一个未知数; ③未知数项的最高次数是2。
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
人教版九年级数学上册一元二次方程《一元二次方程》示范课教学课件
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离 为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
A
数学化
D
B
CE
如果设梯子底端滑动x m,那么滑动后梯子底端距墙 (x +6) m, 根据题意,可得方程:72+(x+6)2 =102,整理得 x2 +12x-15 =0.
问题3
第二十一章 一元二次方程
21.1 一元二次方程
学习目标
1 理解一元二次方程的概念. 2 了解一元二次方程的一般形式,会将一元二次方程化成一般
形式,并能确定项和系数。 3 了解一元二次方程根的概念 4 理解并灵活运用一元二次方程概念解决有关问题.
复习旧知
★1.什么是方程? 含有未知数的等式叫做方程
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
解:去括号,得 3x2-3x=5x+10. 移项、合并同类项,得 3x2-8x-10=0.
我们把具有这种形式的方程叫做一元二次方程。
新知讲解
一元二次方程的概念
像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数 的最高次数是2(二次)的方程叫做一元二次方程.
满足的条件: (1) 只含一个未知数; (2) 未知数的最高次数是2; (3) 整式方程.
一元二次方程的一般形式
二次项
解:(1)整理得 5x2-4x-1=0 其中二次项系数是5,一次项系数是-4x,常数项是-1
(2)整理得 3x2-7x+1=0 其中二次项系数是3,一次项系数是-7x,常数项是1
A
数学化
D
B
CE
如果设梯子底端滑动x m,那么滑动后梯子底端距墙 (x +6) m, 根据题意,可得方程:72+(x+6)2 =102,整理得 x2 +12x-15 =0.
问题3
第二十一章 一元二次方程
21.1 一元二次方程
学习目标
1 理解一元二次方程的概念. 2 了解一元二次方程的一般形式,会将一元二次方程化成一般
形式,并能确定项和系数。 3 了解一元二次方程根的概念 4 理解并灵活运用一元二次方程概念解决有关问题.
复习旧知
★1.什么是方程? 含有未知数的等式叫做方程
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
解:去括号,得 3x2-3x=5x+10. 移项、合并同类项,得 3x2-8x-10=0.
我们把具有这种形式的方程叫做一元二次方程。
新知讲解
一元二次方程的概念
像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数 的最高次数是2(二次)的方程叫做一元二次方程.
满足的条件: (1) 只含一个未知数; (2) 未知数的最高次数是2; (3) 整式方程.
一元二次方程的一般形式
二次项
解:(1)整理得 5x2-4x-1=0 其中二次项系数是5,一次项系数是-4x,常数项是-1
(2)整理得 3x2-7x+1=0 其中二次项系数是3,一次项系数是-7x,常数项是1
冀教版九年级数学上册《一元二次方程的应用》PPT教学课件(第1课时)
24.4 一元二次方程的应用
第1课时
学习目标
1 经历用一元二次方程解决实际问题的过程,进一步认识
方程模型的重要性.(难点).
2 掌握面积法建立一元二次方程的数学模型,能运用一元二
次方程解决与面积有关的实际问题.(重、难点)
新课导入
复习交流
(1)列方程解应用题有哪些步骤?
①审题; ②设出未知数;
③列方程;④解方程;
与整个封面长宽比例相同的矩形.如果要使四周的彩色边衬所占面
积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如
何设计四周边衬的宽度?(精确到0.1cm)
分析:这本书的长宽之比 9 : 7 正中央的矩形长宽之
比 9 : 7 ,上下边衬与左右边衬之比 9 : 7 .
设中央长方形的长和宽分别为9a和7a.由此得到上下边衬
得(40-2x)(26-x)= 144×6 ,
整理,得x2-46x+88 = 0,解得x1 = 44, x2 = 2.
因为甬路的宽必须小于
40
2
m,即小于20 m,
我们利用“图形经过移动,它的面积
所以x = 44 不符合题意,舍去,所以x = 2.
大小不会改变”的性质,把纵、横两
答:甬路的宽为2 m.
解:设正方形的边长为 cm,
根据题意,得
(26+2x)(18.5×2+1+2x)=1260.
整理,得x2+32x-68=0.
解这个方程,得1 = 2, 2 = −34(不合题意,舍去).
答:正方形的边长是2 cm.
例3 如图,某小区在一个长为40 m,宽为26 m 的长方形场地ABCD 上
修建三条同样宽的甬路,其中两条与AB 平行,另一条与AD 平行,其余
第1课时
学习目标
1 经历用一元二次方程解决实际问题的过程,进一步认识
方程模型的重要性.(难点).
2 掌握面积法建立一元二次方程的数学模型,能运用一元二
次方程解决与面积有关的实际问题.(重、难点)
新课导入
复习交流
(1)列方程解应用题有哪些步骤?
①审题; ②设出未知数;
③列方程;④解方程;
与整个封面长宽比例相同的矩形.如果要使四周的彩色边衬所占面
积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如
何设计四周边衬的宽度?(精确到0.1cm)
分析:这本书的长宽之比 9 : 7 正中央的矩形长宽之
比 9 : 7 ,上下边衬与左右边衬之比 9 : 7 .
设中央长方形的长和宽分别为9a和7a.由此得到上下边衬
得(40-2x)(26-x)= 144×6 ,
整理,得x2-46x+88 = 0,解得x1 = 44, x2 = 2.
因为甬路的宽必须小于
40
2
m,即小于20 m,
我们利用“图形经过移动,它的面积
所以x = 44 不符合题意,舍去,所以x = 2.
大小不会改变”的性质,把纵、横两
答:甬路的宽为2 m.
解:设正方形的边长为 cm,
根据题意,得
(26+2x)(18.5×2+1+2x)=1260.
整理,得x2+32x-68=0.
解这个方程,得1 = 2, 2 = −34(不合题意,舍去).
答:正方形的边长是2 cm.
例3 如图,某小区在一个长为40 m,宽为26 m 的长方形场地ABCD 上
修建三条同样宽的甬路,其中两条与AB 平行,另一条与AD 平行,其余
一元二次方程的应用-ppt课件
难
例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
北师大版九年级上册2.6:应用一元二次方程(2)课件 %28共18张PPT%29
答:要达到最低目标,自然保护区面积的年平均增长率应为28.4%.
四、随堂练习
5.某公司今年10月的营业额为2500万元,按计划第四季的总营业额要达到 9100万元,问该公司11月,12月两个月营业额的月均增长率是多少?
增长后的量=增长前的量×(1+增长率)
解:设该公司11月,12月两个月营业额的月均增长率是x. 则: 2500+2500(1+x)+2500(1+x)2=9100, 解得: x1=0.2,x2=−3.2(不合题意,舍去). 答:该公司11月,12月两个月营业额的月均增长率是20%.
03
能根据具体问题的实际意义检验结果的合理性, 增强数学应用意识和能力.
一、复习回顾
一元二次方程解决实际问题的一般步骤: 审:审清题意; 找:找出等量关系; 设:设出未知数; 列:用代数式表示等量关系,列出方程; 解:解分式方程; 检:必须检验根的正确性与合理性; 答:写出答案.
二、典例分析
例.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场 调研表明,当销售价定为2900元时,平均每天能售出8台;而当销售价每降 低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均 每天达到5000元,每台冰箱的定价应为多少元?
五、课堂小结 实际问题
实际问题 的答案
找等量 关系
建模
检验
数学问题 (方程)
方程的解
五、课堂小结
方程
一元一次方程:kx +b = 0( k ? 0)
二元一次方程:
ax +by +c = 0( a 构 0且b 0)
二元一次方程组: 分式方程:
一元二次方程:ax2 +bx +c = 0( a ? 0)
四、随堂练习
5.某公司今年10月的营业额为2500万元,按计划第四季的总营业额要达到 9100万元,问该公司11月,12月两个月营业额的月均增长率是多少?
增长后的量=增长前的量×(1+增长率)
解:设该公司11月,12月两个月营业额的月均增长率是x. 则: 2500+2500(1+x)+2500(1+x)2=9100, 解得: x1=0.2,x2=−3.2(不合题意,舍去). 答:该公司11月,12月两个月营业额的月均增长率是20%.
03
能根据具体问题的实际意义检验结果的合理性, 增强数学应用意识和能力.
一、复习回顾
一元二次方程解决实际问题的一般步骤: 审:审清题意; 找:找出等量关系; 设:设出未知数; 列:用代数式表示等量关系,列出方程; 解:解分式方程; 检:必须检验根的正确性与合理性; 答:写出答案.
二、典例分析
例.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场 调研表明,当销售价定为2900元时,平均每天能售出8台;而当销售价每降 低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均 每天达到5000元,每台冰箱的定价应为多少元?
五、课堂小结 实际问题
实际问题 的答案
找等量 关系
建模
检验
数学问题 (方程)
方程的解
五、课堂小结
方程
一元一次方程:kx +b = 0( k ? 0)
二元一次方程:
ax +by +c = 0( a 构 0且b 0)
二元一次方程组: 分式方程:
一元二次方程:ax2 +bx +c = 0( a ? 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
(三)假设存在问题
例 4 有一根长为 120 cm 的绳子. (1)能否围成一个面积是 500 cm2 的矩形? (2)能否围成一个面积是 1000 cm2 的 矩形?
2020/10/16
5
(1)审:是指读懂题目,弄清题意,明确哪 些是已知量,哪些是未知量以及它们之间的 等量关系;
(2)设:是指设元,也就是设未知数;
(3)列:就是列方程,这是非常重要的关
键步骤,一般先找出能够表达应用题全部含
义的一个相等关系,然后列代数式表示相等
关系中的各个量,就得到含有未知数的等式,
用一元二次方程解决常见实际问题 总结
泉州九中 初三数学备课组
2020/10/16
1
【常见类型】
列一元二次方程解决实际问题的常见类型 有以下几种
(1)增长率、下降率问题
(2)几何中面积、长度问题
(3)假设存在问题 (4)排列组合问题
(5)销售问题
2020/10/16
2
(一)增长率问题
例1 某市为了解决市民看病难的问题, 决定下调药品的价格.某种药品经过 连续两次降价后,由每盒200元下调 至128元,求这种药品平均每次降价 的百分率是多少?
练习
植树造林,某中学师生从2006年到2009年四年内共植树 1999棵,已知该校2006年植树344棵,2007年植树500棵, 如果从2007年到2009年的指数棵树的年平均增长率相同, 那么该校2009年植树棵树多少颗?
344+500+500(1+X)+500(1+X)2
2020/10/16解得x=0.1 x=-3(不合题意舍去)
即方程; 2020/10/16
6
(4)解:就是解方程,求出未知数的值; (5)检验:列方程解应用题时,要对所求 出的未知数进行检验,检验的目的有两个: 其一,检验求出来的未知数的值是否满足方 程;其二,检验求出的未知数的值是不是满 足实际问题的要求,对于适合方程而不适合 实际问题的未知数的值应舍去;
9
总结
❖ 平均增长率问题中的基本数量关系为 ❖ A(1+X)n=B(A为始量,B为终止量,n为
增长的次数,x为平均增长率) ❖ 类似的还有平均降低率问题中的基本数量关
系为A(1-X)n=B(A为始量,B为终止量,n 为降低的次数,x为平均降低率)
2020/10/16
10
(二)几何中面积、长度问题
例2 如图所示,一架长为10 m
的梯子斜靠在墙上,梯子的顶 A
端A处到地面的距离为8 m,如
A’
果梯子的顶端沿墙面下滑2 m,
那么梯子的底端在地面上滑动
的距离是多少?
C
2020/10/16
B B’
11
分析:首先设出未知数,其次再根据勾股定理列出方程.
解:设梯子的底端在地面上滑动的距离 BB′为 x m.
20米
2020/10/16
32米
15
解法二:见下图,设路宽为 x m,则此时耕 地矩形的长(横向)为(32-x)m,耕地矩 形的宽(纵向)为(20-x)m.
20米
2020/10/16
32米
16
解法二 设路宽为 x m,则耕地矩形的长(横向)为(32-x)m,耕 地矩形的宽(纵向)为(20-x)m.
(6)答:就是写出答案,其中在书写时还要
202注0/10/意16 不要漏写单位名称.
7
2.对于“增长率”问题,如人口的 减少、利率的降低、汽车的折旧等等, 都是在原来基数上减少,不能与一般 性的增加和减少相混淆.
2020/10/16
8
例如
❖ 课本探究2
❖ 上次试题第二章填空题
❖ 某企业为节约用水
根据题意得:(32-x)(20-x)=540.
解得,x1=2,x2=50(不合题意,舍去).
(以下步骤同解法一)
20米
2020/10/16
32米
17
小结 1.解法二和解法一相比更简单,它利用 “图形经过移动,它的面积大小不会改变” 的道理,把纵、横两条路移动一下,可以使 列方程容易些(目的是求出路面的宽,至于 实际施工,仍可按原图的位置修路).
2020/10/16
13
分析:如图所示,此题的相等关系是 矩形面积减去道路面积等于 540 m 2.
20米
32米
2020/10/16
14
解法一 设道路的宽为 x m,则横向的路面面积为 32x m 2, 纵向的路面面积为 20x m 2,道路面积为(32x+20x-x2)m 2. 根据题意得: 32×20-(32x+20x-x2)=540. 化简得,x2-52x+100=0. 解得,x1=2,x2=50. 其中的 x=50 超出了原矩形的长和宽,应舍去. 答:所求道路的宽为 2 m.
❖ 有时需要通过平移的方法来解决问题。 ❖ 常见问题:挖沟的宽度,制作盒子,例如课
本探究3 设计书的封面
2020/10/16
20
练习
❖ 有一个面积为150m2的长方形鸡场,鸡场的 一边靠墙(墙长18米),另一边用篱笆围成, 如果篱笆的长为35米,求鸡场的长与宽各是 多少?
•长为15米 宽为10米
2020/10/16
2020/10/16
18
2.有些同学在列方程解应用题时,往往 看到正解就保留,看到负解就舍去.其实, 即使是正解也要根据题设条件进行检验, 该舍就舍.此题一定要注意原矩形“宽为 20 m、长为32 m”这个条件,从而进行正 确取舍.
2020/10/16
19
总结
❖ 解决此类问题 必须具备良好的几何概念知识, 熟悉长度,面积,体积等公式。
2020/10/16
3
解:设这种药品平均每次降价的百分率 是 x.
根据题意,得 200(1-x)2=128.
解得 x1=0.2,x2=1.8(不合题意,舍去).
答:这种药品平均每次降价 20%.
2020/10/16
4
小结
1. 列一元二次方程解应用题的一般步 骤与列一元一次方程解应用题一样, 所以列一元二次方程解应用题的一般 步骤也归纳为:审、设、列、解、检 验、答这六个步骤.
∵AB=10 m,AC=8 m,
∴根据勾股定理得: BC=6(m). A
根据题意,得(8-2)2+(6+x)2=102A.’
化简,得 x2+12x-28=0.
.
解得 x1=2,x2=-14(不合题意,舍去).
C
B B’
答:梯子的底端在地面上滑动的距离是 2 m.
2020/10/16
12
例 3 在宽为 20 m、长为 32 m 的矩形地 面上,修筑同样宽的两条互相垂直的道 路,余下部分作为耕地,要使耕地面积 为 540 m 2,道路的宽应为多少?