频域图像增强
图像增强的基本原理
图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。
它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。
图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。
常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。
滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。
2. 频域增强:采用频域操作,即将图像转换到频域进行处理。
常见的频域增强方法有傅里叶变换、小波变换等。
傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。
小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。
3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。
常用的增强算法有Retinex算法、CLAHE算法等。
Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。
4. 机器学习方法:利用机器学习算法对图像进行增强。
通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。
常见的机器学习方法包括卷积神经网络、支持向量机等。
综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。
这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。
基于频域的图像增强方法探讨
基于频域的图像增强方法探讨基于频域的图像增强方法探讨基于频域的图像增强方法是一种常用的图像处理技术,它可以通过对图像的频域进行操作来改善图像的质量和视觉效果。
下面是一篇基于频域的图像增强方法的步骤思路。
第一步:图像预处理在进行频域增强之前,首先需要对原始图像进行预处理。
这包括图像的灰度化、降噪和调整图像的亮度对比度等操作。
这些预处理步骤可以帮助提取图像中的有效信息,减少噪声对频域增强的干扰。
第二步:傅里叶变换将预处理后的图像进行傅里叶变换,将其转换为频域表示。
傅里叶变换可以将图像从空域转换为频域,通过分析图像的频谱信息,可以得到图像的频域特征。
第三步:频域滤波在频域中,通过应用各种滤波器来增强图像。
常见的频域滤波方法包括低通滤波和高通滤波。
低通滤波器可以平滑图像,减少图像中的高频噪声;高通滤波器可以增强图像的边缘和细节。
第四步:逆傅里叶变换对经过频域滤波后的图像进行逆傅里叶变换,将其转换回空域表示。
逆傅里叶变换可以将图像从频域恢复到空域,并得到增强后的图像。
第五步:后处理对逆傅里叶变换得到的图像进行后处理。
这包括对图像进行亮度、对比度、饱和度等的调整,以进一步改善图像的视觉效果。
最后,可以通过与原始图像进行比较,评估基于频域的图像增强方法的效果。
如果增强后的图像在视觉上更清晰、更有对比度,并且保留了图像的细节信息,那么可以认为该方法是有效的。
总结起来,基于频域的图像增强方法主要包括图像预处理、傅里叶变换、频域滤波、逆傅里叶变换和后处理等步骤。
通过这些步骤,可以通过对图像的频域进行操作来改善图像的质量和视觉效果。
这种方法在图像处理和计算机视觉领域有着广泛的应用。
图像处理第三讲第二节频域图像增强
F(u)是复函数,可以写成: F(u)=R(u)+jI(u)=|F(u)|exp[j(u)] F(u)称为f(x)的傅立叶频谱, (u)称为相位角
Fourier基函数
(a)正弦分量(前1/2) (b)余弦分量(前1/2)
0 1 2 3
0 1 2 3
4
5 6 7 8
0 4 8 12 16
4
5 6 7 8
H(u,)
u
H(u,v)作为D(u,v)/D0的函 数的截面图
1 H (u, v) 2n 1 [ D(u, v) / D0 ]
n=3 n=1
理想滤波器
D0=45
Butterworth 低通滤波
Lowpass44.m f=imread('d:\work\z6.bmp'); f=rgb2gray(f); imshow(f) [M,N]=size(f); F=fft2(f); D0=45; n=1; H=lpfilter('btw',M,N,D0,n); G1=H.*F; g1=real(ifft2(G1)); D0=11; H=lpfilter('btw',M,N,D0,n); G2=H.*F; g2=real(ifft2(G2)); D0=5; H=lpfilter('btw',M,N,D0,n); G3=H.*F; g3=real(ifft2(G3));
图像变换的目的:
正变换 逆变换
图像空间 f(x,y)
频率空间
处理起来 •更有效 •更方便 •更快捷 ……
图像空间 g(x,y)
下列同学交作业 16 7 46 29 41 26 14 5 44 27 39 24
图像增强 第四讲-频域增强
=
1 9
F(Zm
,
Zn
)
1 i = -1
Zmi
1
Znj
j=-1
H(Zm , Zn
)
=
G(Zm , Zn ) F(Zm , Zn )
=
1 9
(1 +
Zm
+
Zm-1
)(1 +
Zn
+
Zn-1 )
以 Zm = e 和 jωm Zn = ejωn 代入上式,
图4.4.2 加权平均模板的频率响应
f(x,y)和h(x,y)卷积定义为:
f (x, y) * h(x, y)
1
M 1 N 1
f (m, n)h(x n, y n)
MN m0 n0
有: f (x, y)*h(x, y) F(u, v)H(u, v) f (x, y)h(x, y) F(u,v)* H(u,v)
15
设 g(x, y) f (x, y) * h(x, y)
得到傅立叶变换式:
1 H(ωm ,ωn ) = 9 (1 + 2cosωm )(1 + 2cosωn )
”分量当即ω图m 像= ω的n 灰= 0度平时均,|值H |处具理有前最后大不值变1;,当这ωm说明或“ωn直= 23流π 时,具有最小值0,即高频得到最大程度的抑制。
低通滤波法举例
(a) 原图像; (b) 频谱(r=5,11,45,68); (c)(f) 低通滤波(r=5,11,45,68)
4.4 频域图像增强
图像增强的目的主要包括:①消除噪声, 改善图像的视觉效果;②突出边缘,有利于 识别和处理。前面是关于图像空间域增强的 知识,下面介绍频率域增强的方法。
频域图像增强报告
频域图像增强一、前言1.1背景和实际意义人类传递信息的主要媒介是语言和图像。
俗话说:百闻不如一见;图像信息是十分重要的信息传递媒体和方式。
在实际应用中,由于很多场景条件的影响,图像的视觉效果很差,使图像的信息无法被正常读取和识别。
例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。
因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。
图像增强从处理的作用域出发可分为空间域和频域两大类。
其中,频域增强是将原空间的图像以某种形式转换到其他空间,然后利用该转换空间的特有性质进行图像处理,最后在转换回到原空间,得到处理后的图像,是一种间接增强的算法。
法国数学家傅里叶最大的贡献就是傅里叶级数和变换,它被广泛地应用为基础工具学习,最初人们只在热扩散领域内使用;20世纪50年代随着数字计算的出现和快速傅里叶变换的出现在信号领域产生了巨大变革。
这两个核心技术允许对人类本身的特殊信号和工业的重要信号(从医学监视器和扫描仪到现代电子通信),进行实际处理和有意义的解释】1【。
1.2已有的研究成果数字图像处理发展的历史不长,但已经足够引起人们的重视,图像处理技术始于20世纪60年代,由于当时图像存储成本高,设备造价高,因而应用面较窄。
1964年美国加州理工学院首次对徘徊者7号太空飞船发回的月球照片进行了处理得到了清晰的照片,这标志着图像处理技术开始得到实际应用。
70年代,出现了CT和卫星遥感图像,这对图像处理的发展起到了很好的促进作用。
80年代,微机已经能够承担起图像处理的任务,VLSI的出现更使得处理速度大大提高,极大地促进了图像处理系统的普及和应用。
90年代是图像处理技术实用化时期,图像处理的信息量大,对处理速度的要求极高。
图像增强作为图像处理的重要组成部分,促进了图像增强方法研究的不断深入。
第四章+频域图像增强
F (u, v) exp[ j2(ux vy ) / N ]
F ( u, v ) R (u, v ) I
2 2
频谱(幅度)
( u, v )
12
相位角 (u, v ) arctan[I (u, v ) R(u, v )]
功率谱
P(u, v) F (u, v)
二、没有振铃现象。因为滤波器是平
滑连续的。
低通滤波
4、其他低通滤波器
梯形
指数
低通滤波
D0=10
低通滤波
D0=50
D0=50 巴特沃思
比相应的巴特沃思滤波器要稍微模糊,但没 有振铃现象。
对1个连续函数 f (x) 等间隔采样
f (x ) 75 50 10 15 0 25 x 85 90
1 2 3 4 5 6 7
2-D傅里叶变换
1-D反变换
F 1 F (u ) f ( x) F (u ) exp[ j2ux / N ]
u 0
N 1
变换表达
F (u) R(u) jI (u) F (u) exp j (u)
傅里叶变换定理
2. 旋转性
借助极坐标变换:
x r cos
y r sin
u cos v sin
将其带入到傅里叶变换式中可以得到
f (r, 0 ) F (, 0 )
将f(x,y)旋转θ 对应于F(u,v)也旋转θ ,反之 亦然
傅里叶变换定理
低通滤波
1)原理
Lenna
加入高斯噪声的Lenna
低通滤波
Lenna的谱图像
有高斯噪声Lenna的谱图像
第5章 图像频域增强
我们人眼能分别得出图像的灰度不仅仅是由于光照函数(照射分量)决定,而且还与 反射函数(反射分量)有关: 反射函数反映出图像的具体内容。光照强度一般具有一致性,在空间上通常会有缓 慢变化的性质,在傅立叶变换下变现为低频分量 然而不一样的材料的反射率差异较大,经常会引起反射光的急剧变化,从而使图像 的灰度值发生变化,这种变化与高低频分量有关。 为了消除不均匀照度的影响,增强图像的高频部分的细节,可以采用建立在频域的 同态滤波器对光照不足或者有光照变化的图像进行处理,可以尽量减少因光照不足 引起的图像质量下降,并对感兴趣的景物进行有效增强,这样就在很大程度上做到 了原图像的图像增强。 同态滤波器能够减少低频并且增加高频,从而能减少光照变化并锐化边缘细节。
频域空间中,图像的信息表现为不同频率分量的组合。通过抑制某些频率分 量的输出,改变频率分布,达到不同的增强目的。 频域空间的增强有三个步骤: step 1:空域 频域 step 2:频域内增强 step 3:频域 空域
卷积定理
去除(抑制)图像中的高频分量而使低频通过,达到平滑和去除噪音 的效果。 (1)理想低通滤波器 截止频率 (5.2.1)
(3)带通和带阻滤波器的联系 两者是互补关系。
带通滤波器 带阻滤波器
陷波滤波器可以阻止或通过以某个频率为中心的邻域里的频率,所以本质上仍然是带 阻或带通滤波器 可分为陷波带阻滤波器和陷波带通滤波器 借助陷波滤波器可以消除周期噪声
理想陷波带阻滤波器
根据Fourier 变换的对称性,为了消除不是以原点为中心的给定区域内的频率,陷波带
(频域图像增强)_2023年学习资料
卷积定理:-时域(或空域)中的卷积等价于频域的乘积。-f*g=fxg-xdxe Mdr-fx8-xemdi x-=∫fxe2wGux-=FuGu-f x,y*hx,yF-15
空域滤波和频域滤波之间的关系-M-1W-1-fx,y*hx,y=∑∑fm,nhx-m,y-n-m=0n=0 fx,y*hx,yFu,vHu,v-16
b-FIGURE 4.4-aSEM image of-a damaged-integrated circu t.-bFourier-spectrum of a.-Original image-courtesy of Dr.J.-M.Hudak,-Brockhouse-Institute for-Materials-Res arch,-McMaster-University,-Hamilton,-Ontario,Canada.4
4.2平滑的频域滤波器-通过衰减指定图像傅里叶变换中高频-成分的范围来实现对图像平滑的目的。-冬理想滤波器 巴特沃思滤波器-高斯滤波器-21
频域中的滤波处理-1.用-1x+y乘以输入图像来进行中心位移;-2.计算图像的DFT,即Fu,v;-3.用 波器函数Hu,V乘以Fu,V;-4.计算Fu,vHu,V的反DFT;-5.取4步结果中的实部;-6.用-1 +y乘以5中的结果。-Hu,V称为“滤波器”。
Frequency domain filtering operation-Filter-Fourier-I verse-function-transform-Hu,v-Fu,v-Hu,vFu,v-Pre--Post -processing-fx,y-gx,y-Input-Enhanced-image-FIGURE 4.5 Basic steps for filtering in the frequency domain.-18
第5章-频域图像增强20161028
知识回顾(1)
第3章 空域图像增强
图像平滑:模糊和降噪; 图像锐化:增强图像中的边缘和细节,减弱或清除灰度变 化缓慢的区域。
空域图像增强和频域图像增强结合起来就是图像增强技术的 完整内容。
输入图像
进行傅里叶逆变换,转换回空域中: 表示傅里叶逆变换。
傅里叶逆变换 增强图像
为滤波图像,
F (u; v )
傅里叶变换 滤波函数
H (u; v ) F (u; v )
f (x; y )
H (x; y )
g (x; y )
频域滤波的方框图
9
频域滤波基本步骤
传递函数 为实数的滤波器称为零相位滤波器,不
图像平滑
均值平滑模板 高斯平滑模板
图像锐化
4邻域拉普拉斯 8邻域拉普拉斯
知识回顾(2)
第4章 频域变换
傅里叶变换:频谱是一种在频域中描述图像特征的方法, 反映了图像的幅度和相位随频率的分布情况。
频谱特性:图像的平坦区域对应频谱中的低频成分,而图 像的细节内容对应频谱中的高频成分。
频域图像增强正是利用图像在频域中特有的频率特征进行 滤波处理。
截止频率为15
截止频率为30
理想高通滤波器的传递函数及其冲激响应函数
35
理想高通滤波器
高通滤波器的空域冲激响应函数中心都有一个冲激,这 是因为
式中,
为单位脉冲函数,
表示互为傅里叶变换对。
36
理想高通滤波器
灰度图像
截止频率为5
截止频率为15
傅里叶谱
图像增强原理
图像增强原理图像增强是数字图像处理中的一项重要技术,它通过对图像进行各种处理,改善图像的质量,使图像更适合于后续的分析和应用。
图像增强的原理是通过增强图像的对比度、亮度、锐度等特征,以提高图像的视觉效果和信息表达能力。
在本文中,我们将介绍图像增强的原理及常见的增强方法。
图像增强的原理主要包括两个方面,空间域增强和频域增强。
空间域增强是指直接对图像像素进行操作,包括灰度变换、直方图均衡化、滤波等方法;频域增强是指将图像转换到频域进行处理,包括傅里叶变换、滤波器设计等方法。
在空间域增强中,最常见的方法之一是灰度变换。
灰度变换通过对图像的灰度级进行变换,可以改变图像的对比度和亮度。
常见的灰度变换函数包括线性变换、对数变换、幂次变换等。
线性变换可以通过拉伸或压缩图像的灰度范围来增强对比度,对数变换可以扩展图像的暗部细节,幂次变换可以调整图像的亮度分布。
这些方法都是通过对图像的像素值进行重新映射来实现增强的效果。
另一个常见的空间域增强方法是直方图均衡化。
直方图均衡化是一种通过重新分配图像灰度级来增强对比度的方法。
它通过对图像的灰度直方图进行变换,将原始的灰度级分布变换为均匀分布,从而增强图像的对比度。
直方图均衡化在很多图像处理领域都有广泛的应用,特别是在医学影像、遥感图像等领域。
在频域增强中,傅里叶变换是一种重要的方法。
傅里叶变换可以将图像从空间域转换到频率域,通过对频率域进行滤波来实现图像增强。
频域滤波可以通过去除图像中的噪声、增强图像的边缘等方式来改善图像的质量。
常见的频域滤波方法包括低通滤波、高通滤波、带通滤波等。
低通滤波可以去除图像中的高频噪声,高通滤波可以增强图像的边缘细节,带通滤波可以选择性地增强或抑制特定频率成分。
除了上述方法外,图像增强还可以通过图像增强技术来实现。
图像增强技术是一种通过对图像进行分析和处理来实现增强效果的方法。
常见的图像增强技术包括锐化、平滑、边缘增强等。
锐化可以增强图像的细节和边缘,平滑可以去除图像中的噪声,边缘增强可以突出图像中的边缘信息。
频域图像增强
其 W 带 宽 , 0为 射 心 D(u, v) =[u + v ] 中 为 的 度 D 放 中 。
例6.4.1放射对称的带阻滤波器的透射示意图。 6.4.1放射对称的带阻滤波器的透射示意图。 类似 n阶放射队乘的巴特沃思带阻滤波器。
1 H(u, v) = D(u, v)W 1+[ 2 ]2n D (u, v) − D2 0
2、空域技术或频域技术的选择 如果两个域内的滤波器具有相同的尺寸,则 借助开傅立叶变换在频域中进行滤波的效 率更高。 但在空域中常可以适用较小的滤波器来达到 相似的滤波效果,所以计算量反而较小。
if if
D(u, v) ≤ D 0 D(u, v) > D 0
2、理想低通滤波器的模糊 会造成图像模糊和“振铃”现象/ 会造成图像模糊和“振铃”现象/效应出现。 如果 D 较小,则使h(x, y) 产生数量较少, 0 但较宽的同心圆环,并使 g(x, y) 模糊得比 较厉害。 如果 D 较大,则使 h(x, y)产生数量较多, 0 但较窄的同心圆环,并使 g(x, y) 模糊得比 较少。 如果 D 超出 F(u, v)定义域则相当于不滤波。 0
1 2 2 1 2 2
D (u, v) =[(u −u0 )2 + (v −v0 ) ] 1
D (u, v) =[(u +u0 )2 + (v + v0 ) ] 2
图6.4.1是一个典型的带阻滤波器的透视示意图
设计成除去以原点为中心的一定频率范围
1 H(u, v) = 0 1 如 (u, v) < D −W / 2 D 0 如 0 −W / 2 ≤ D(u, v) ≤ D +W / 2 D 0 如 (u, v) > D +W / 2 D 0
06频域图像增强
g( x, y) IDFT H (u, v)F (u, v)
•频域空间的增强方法的步骤: (1) 将图像从图像空间转换到频域空间; (2) 在频域空间对图像进行增强; (3) 再将图像从频率空间转换回图像空间
4
卷积定理 G(u, v) H (u, v) F (u, v) 增 强 图 g ( x, y) IDFT H (u, v)F (u, v)
16
例 频域低通滤波所产生的模糊
17
(a)
(b)
(c)
(d)
(e)
18
(f)
理想低通滤波器的优缺点:
优点:概念清楚,通阻分明; 缺点:产生模糊和振铃现像 D0越小,模糊越厉害 理想低通滤波器在数学上定义得很清楚,在计算机模 拟中也可实现,但在截断频率处直上直下的理想低通 滤波器是不能用实际的电子器件实现的
2
6.1 原理和分类
卷积理论是频域技术的基础
• 设函数f (x, y)与线性移位不变算子h(x, y)的卷积结果是g(x, y)
即g(x, y) = h(x, y) * f (x, y),那么根据卷积定理在频域有:
G(u, v) H (u, v) F (u, v)
卷积在频域变成点积
• G(u, v),H(u, v),F(u, v)分别是g(x, y),h(x, y),f (x, y)的傅里叶变换
H P (u, v) 1 H R (u, v)
H (u,v) 1 W
H (u,v)
D (u,v) 0 D0
u
v
37
H (u,v)
H (u,v)
W
带通
1
D (u,v) 0
如果其频率范围下限是0(上限不为∞), 则带阻滤 波器为高通滤波器。 如果其频率范围上限为∞(下限不为0), 则带阻滤
《频域图像增强》课件
在本课程中,我们将探索频域图像增强的概念、原理和应用。了解傅里叶变 换、频率域滤波、统计频域增强方法和空间频率滤波等常见技术。
什么是频域图像增强
频域图像增强是一种图像处理技术,通过在图像的频域进行操作,改善图像 的质量和增强图像的细节。它基于信号处理和数学变换的原理,可以优化图 像的视觉效果。
常见的频域图像增强技术
傅里叶变换
通过将图像转换到频域,可以分析和改变图像 的频率成分。
统计频域增强方法
通过统计图像的频域特征,可以对图像进行增 强和修复。
频率域滤波
利用频域滤波器,可以增强或抑制图像的特定 频率成分。
空间频率滤波
利用空间领域和频率领域的关系,可以改善图 像的细节和对比度。
频域图像增强的应用领域
频域图像增强的作用和意义
频域图像增强可以提高图像的可视性,使图像更清晰、更鲜艳。它可以增强图像的细节,并减少噪点和模糊。 频域图像增强在许多应用领域都起到重要的作用。
频域图像增强的基本原理
频域图像增强的基本原理是将图像转换到频域,并利用频域滤波和变换等方法对图像进行处理。通过对图像的 频域表示进行操作,可以改变图像的频率分布,从而改善图像的质量。
挑战:频域图像增强需要高级数学和信号处理技术,同时需要根据具体应用 场景选择适当的算法和参数。
1 医学图像处理
频域图像增强在医学影像诊断和治疗中起着重要作用,帮助医生提取和分析图像特征。
2 航空航天图像处理
频域图像增强可以改善航空航天图像的清晰度和对比度,提高目标检测和识别的准确性。
3 摄影图像处理
频域图像增强可用于提升摄影作品的质量,改善细节和色彩还原。
频域图像增强的优势和挑战
频域图像增强(加强版)
•
一维傅里叶变换及其反变换实质
单变量连续函数f(x)的傅里叶变换F(u)定义:
其中 .相反, 给定F(u),通过傅里叶变换可以获得f(x):
这些等式很容易扩展到两个变量u和v 单变量离散函数f(x)(其中x=0,1,2,3,…,M-1)的傅里叶变换:
给出F(u),能用反DFT来获得原函数
离散傅里叶变换和它的反变换总是存在的
H(u,v)被称为滤波器的原因是它在变换中抑制某些频率 但其他频率不受影响。
频率域中的滤波基础
图像在频域上增强的基本流程
傅里叶变换和频率域的介绍
• 傅里叶在这个特殊领域的贡献是他指出任何周期期函数都 可以表示为不同频 率的正弦和/或余弦和的形式,每个正弦和/或余弦和乘以不同的系数(现在称 为傅里叶级数)。无论函数有多么复杂,只要它是周期的,并且满足 某些软 的数学条件,都可以用这样的和来表示。 甚至非周期的函数(但是这些领域是在曲线是有限的情况下)也可以用正弦 和/或余弦乘以加权函数的积分来表示。
二维DFT及其反变换与一维的DFT性质相似 一个恰当的比喻是将傅里叶变换比做一个玻璃棱镜。棱镜是可以将光分成 不同颜色成分的物理仪器。每个成分的颜色由波长(或频率)决定。 傅里叶变换可以看做“数学的棱镜”,将函数基于频率分成不同的成分。
一些基本的滤波器及其性质
陷波滤波器:当可以识别由特定的、局部化频域成分引起的空间图像效果时, 陷波滤波器是一个非常有用的工具。图像的平均值由F(0,0)给出 如果在频率域中设置此项为零,并进行反变换,那么结果图像的 平均值将为零. 低通滤波器 : 使低频通过而使高频衰减的滤波器 .被低通滤波的图像比原始图 像少一些尖锐的细节部分,因为高频部分已被衰减。 高通滤波器: 使高频通过而使低频衰减的滤波器 .被高通滤波的图像在平滑区域 中将减少一些灰度级的变化并突出过渡(如边缘)灰度级的细节部分 这样的图像将更为锐化。 同态滤波器: 基于照度反射模型所开发的滤波器,通过同时进行的灰度范围的 压缩和对比度增强来改变一幅图像的外观。基本原理在于一幅图 像能被表达成照度和亮度的乘积。 带通滤波器:
第6章频域图像增强
例
128*128 原始图像
理想低通滤波后图像 (模糊和振铃现象)
10
讨论题
〔数字信号处理〕
理想的低通滤波 器在工程上是不存在的,为 什么?
理想低通滤波器的单位取样响应hd(n)为无限 长、非因果序列,实际工程中是不可实现的。
11
• 1.理想的低通滤波器是 不存在的,实际工程中 如何实现低通滤波?
35
例
原始图像
一副图像在获得时 由于光照不均匀或光动 态范围过大而使图像的 某些细节分辨不清,为 消除这种光照影响可以 用同态滤波来解决。在 动态范围压缩的同时, 使对比度增加。
36
光照下获得景物图像模型:
f(x,y)=i(x,y) r(x,y)
其中: f(x,y)为所获得图像. i(x,y)为入射光随坐标(x,y)不同的照 度分量. r(x,y)为从景物反射到眼睛的反射分量.
同态滤波步骤:
f(x,y)=i(x,y) r(x,y)
(1)将上式两边取对数: lnf(x,y)=lni(x,y)+lnr(x,y) (2)将上式两边取傅立叶变换,从空域到频域: F(u,v)=I(u,v)+R(u,v) (3)在频域中用转移函数处理F(u,v): H(u,v)F(u,v)=H(u,v)I(u,v)+H(u,v)R(u,v) (4)将上式两边取傅立叶反变换,从频域到空域: hf(x,y)=hi(x,y)+hr(x,y) (5)将上式两边取指数: g(x,y)=exp|hf(x,y)| =exp|hi(x,y)|+exp|hr(x,y)|
从透视图可以看出两个透视图可以合 成一个高度为H(u,v)的方体。
28
带阻滤波器转移函数: 0 D1(u,v) ≤ D0 或 D2(u,v) ≤ D0 H(u,v) 1 其他 其中:D1(u,v)=[(u-u0)2+(v-v0)2)1/2,是频域中以(u0,v0)
频域增强(图像平滑)
exp{ 0 . 347 [ D ( u , v ) D 0 ] }
D(u,v)=D0,H(u,v)降为最大值的 n为阶数。
1 2
。
3阶指数形低通滤波器转移函数剖面图
(4)梯形低通滤波器
1 H ( u , v ) [ D ( u , v ) D 1 ] ( D 0 D 1 ) 0 D (u , v ) D 0 D 0 D (u , v ) D1 D (u , v ) D1
(2)巴特沃思低通滤波器
H (u , v ) 1 1 ( 2 1)[ D ( u , v ) D 0 ] 1 1 0 . 414 [ D ( u , v ) D 0 ]
1 2
2n
2n
D(u,v)=D0,H(u,v)降为最大值的 n为阶数。
。
(3)指数形低通滤波器
H ( u , v ) exp{[ln( 1 2 )][ D ( u , v ) D 0 ] }
4.4.2 低通滤波法
低通滤波法: 滤除高频成分,保留低频成分,在频域中实 现平滑处理。 滤波公式: G ( u , v ) H ( u , v ) F ( u , v ) F(u,v) 原始图象频谱, G(u,v) 平滑图象频谱, H(u,v) 转移函数。
空间域与频率域
傅氏光谱图像 中间高频,四周低频
4.4
频域增强
4.4.1 原理与分类 设原始图像f(x,y),增强后的图g(x,y),线性位不变算 子h(x,y)。F(u,v),G(u,v),H(u,v)分别是对应傅立叶变 换,(在线性系统里H(u,v)称为转移函数),则有: g(x,y)=F-1[H(u,v)F(u,v)] 由上式可知频域中增强是相当直观的,其步骤: a.计算原始图像f(x,y)的傅立叶变换F(u,v)。 b.将F(u,v)与转移函数(根据需要设计)相乘。 c.将结果施于傅立叶反变换即得增强图。 上述原理是基于卷积为基础,即g(x,y)=h(x,y)*f(x,y),根 据卷积定理有G(u,v)=H(u,v)F(u,v)。 分类:常用频域增强方法有低通滤波、高通滤波、带通和 带阻滤波、同态滤波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对转移函数乘以一个常数k ,加一个常数c He(u, v) = kH(u, v) + c
Ge(u, v) = kG(u, v) + cF(u, v)
6.2 高通滤波器
2)高频提升滤波器 把原始图乘以一个放大系数A再减去低通图
GHB(u,v) AF(u,v) FL(u,v) (A1)F(u,v) FH(u,v)
当A = 1时,就是普通的高通滤波器。当A > 1,原始图的一部分与高通图相加,恢复了部分高 通滤波时丢失的低频分量,使得最终结果与原图 更接近
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.3 带阻带通滤波器
用合适的滤波器滤波、反变换、取指数。
6.4 同态滤波器
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.5 空域技术与频域技术
1.空域技术的频域分析
借助频域的概念对空域滤波的工作原理进行 分析常比较直观
空域的平滑滤波对应频域的低通滤波 空域的锐化滤波对应频域的高通滤波 频域里低通滤波器的转移函数应该对应空域 里平滑滤波器的模板函数的傅里叶变换 频域里高通滤波器的转移函数应该对应空域 里锐化滤波器的模板函数的傅里叶变换
3、结果进行傅里叶反变换,得到增强的图像。
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.1 低通滤波器
将图像中的高频部分滤除而保留低频部分
1.理想低通滤波器
转移函数
1 H (u,v) 0
如 D(u,v) D0 如 D(u,v) D0
w是权值。
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.4 同态滤波器
在频域中,同时将图像亮度范围进行压缩、 将图像对比度进行增强。
用于消除图像中的乘性噪声、光照不均匀。 同态滤波流程图
f (x, y ) ln
6.3 带阻带通滤波器
当 u0 v0 0 时,陷波带阻滤波器成为高通滤波器
2)理想陷波带通滤波器 H(u,v) 与理想陷波带阻滤波器互补:
H (u,v) 1 HR (u,v)
u
v
当 u0 v0 0时,陷波带通滤波器成为低通滤波器
6.3 带阻带通滤波器
4.交互消除周期噪声
6.1 低通滤波器
2.实用低通滤波器
1)巴特沃斯低通滤波器
转移函数:
H (u,v)
1
1D(u,v) /
D0 2n
H (u,v)
阶为n,截断频率为D0 1
0.5
D (u,v)
n=1时剖面 :
0
D0
0.5 1
过渡比较光滑
截断频率---取使H最大值降到某个百分比的频率。
6.1 低通滤波器
6.1 低通滤波器
H(u,v) 1exp{[D(u,v)/ D0]n}
H(u, v)
相比巴特沃斯高通滤波器的转移函
1
数,指数高通滤波器的转移函数随
频率增加在开始阶段增加得比较
快,能使一些低频分量也可以通
0
1 2 D(u, v) 过,对保护图像的灰度层次较有利
6.2 高通滤波器
3.特殊高通滤波器
1)高频增强滤波器 通过对频域里高通滤波器的转移函数加一个
6.2 高通滤波器
3)梯形高通滤波器
转移函数
0
H
(u,
v
)
D(u,v) D0 D' D0
1
D(u,v) D0 D0 D(u,v) D' D(u,v) D'
过渡不够光滑,振铃现象 比巴特沃斯高通滤波器的 转移函数所产生的要强一 些
6.2 高通滤波器
4)指数高通滤波器 转移函数(阶为2时成为高斯高通滤波器 )
2)梯形低通滤波器
转移函数
1
D(u,v
D(u,v) D0 D ' D0
D' D(u,v) D0
H(u, v)
0
D(u,v) D0
1
过渡不够光滑,导致振铃
现象。
0
D ' D0
D(u, v)
6.1 低通滤波器
3)指数低通滤波器 转移函数(阶为2时成为高斯低通滤波器 )
6.2 高通滤波器
1.基本高通滤波器
1)理想高通滤波器
转移函数
0 H (u,v) 1
如 D(u,v) D0 如 D(u,v) D0
一般地,高通滤波器与低通滤波器间关系:
H (u,v) 1 HL (u,v)
6.2 高通滤波器
2)巴特沃斯高通滤波器
阶为n,截断频率为D0的转移函数
H(u,v) exp{[D(u,v)/ D0]n}
H(u, v) 1
0
1
2
D(u, v)
随频率增加在开始阶段一般衰减得比较快,对高频分量的 滤除能力较强,对图像造成的模糊较大,产生的振铃现象 一般弱于巴特沃斯低通滤波器。
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
1.带阻滤波器
阻止一定频率范围内的信号通过而允许其它 频率范围内的信号通过
用以消除频率原点为中心的邻域的带阻滤波 器是放射对称的,转移函数是
H(u, v) D0–W/2 u
D0+W/2
1 如 D(u, v) D0 W 2
H (u, v) 0 如 D0 W 2 D(u, v) D0 W 2
卷积使原先清晰的亮点模糊。 2D:同心圆半径反比于截止
频率D0, D0大,圆环小,图清晰; D0小,圆环大,图模糊 D0覆盖整图像,图无变化
6.1 低通滤波器
c,r=5, 含90%能量 d,r=11, 含95%能量 e,r=45, 含99%能量 f,r=68, 含99.9%能量
(a) 原图; (b) 滤波器频谱( r=5,11,45,68 ); (c) --(f) 低通滤波 (r=5,11,45,68)
6.3 带阻带通滤波器
在频率域对应噪声亮点处放置带通滤波器:
P(u,v) H(u,v)G(u,v)
周期噪声 p(x, y) F 1H(u,v) G(u,v)
从g(x, y)中减去p(x, y)就可得到f (x, y)
fˆ (x, y) g(x, y) w(x, y) p(x, y)
第6章 频域图像增强
图像增强除可在空域进行外,也可以在 变换域进行。最常用的变换域就是频率域。
频域增强有直观的物理意义
卷积理论是频域技术的基础
在频域空间的增强是通过改变图像中不 同频率分量来实现的。图像频谱给出图像全局 的性质,所以频域增强不是对逐个像素进行 的,从这点来讲它不像空域增强那么直接。但 用频率分量来分析增强的原理却比较直观。
陷波滤波器可以消除周期性噪声。 若已知周期性噪声的频率,可直接设计带阻 滤波器滤除。 若未知周期性噪声的频率,可将退化图像的频 谱幅度图G(u, v)显示出来, 单频率的周期噪声会 在频谱幅度图上产生两个离开坐标原点较远的亮 点,依靠视觉观察在频率域交互地确定出脉冲分 量的位置并在该位置利用带阻滤波器消除它们。
6.4 同态滤波器
同态滤波把乘性噪声变成加性噪声: 图像:f(x,y) 乘性噪声图像:g(x,y)
g(x, y) f (x, y)[1 n(x, y)]
分离: ln g(x, y) ln f (x, y) ln[1 n(x, y)]
ln f (x, y) ln n(x, y)
其中: D(u,v) (u u0)2 (v v0)2 1/2
6.3 带阻带通滤波器
傅里叶变换有对称性,陷波带阻滤波器必须两
两对称工作:
H
(u,v)
0 1
D1(u,v) D0或D2 (u,v) D0 其它
D1(u,v) (u u0 )2 (v v0 )2
H (u,v)
H (u,v)
1 D0
1
D(u, v )2n
1
D (u,v) D0
0
在高低频率间的过渡比较光滑
截断频率-----取使H最大值降到某个百分比的频率
H
(u,v)
1
H
L
(u,v)
1
1
1 D(u,v)
D0 2n
1 D0
1
D(u,v)2n
6.2 高通滤波器
圆半径
D(u, v) (u2 v2 )1 2
截止频率 D0>0
H(u,v) 1
0
D0
(a)
D (u,v) u
H (u,v )
v (b)
不能物理实现
6.1 低通滤波器
低通滤波器使输出图像模糊,有振铃现象。D0 越小,这种现象越严重。
1D:设图像f(x)为一个像素的亮点(脉冲) f(x)与 h(x)的卷积是将h(x)的中心复 制到x位置.
g (x, y )
FFT
H (u, v)
(FFT) -1
exp
f (x, y) i(x, y)r(x, y)
同态滤波函数分别作用于照度分量(低频段)和反射 分量(高频段)上