指数与指数函数
指数与指数函数知识点
指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。
在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。
本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。
一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。
指数是由两个数构成,其中一个为底数,另一个为指数。
底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。
例如,2的3次方即为2的指数为3的结果,即2x2x2=8。
指数函数是指数的一种特殊形式,即以常数为底数的幂函数。
指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。
指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。
指数有一些基本的性质。
首先,任何数的0次方都等于1,即a^0=1。
其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。
此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。
二、指数函数的应用指数函数在各个领域都有广泛的应用。
以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。
经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。
指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。
2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。
例如,放射性物质的衰变速度可以用指数函数进行建模。
指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。
3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。
指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。
4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。
指数与指数函数知识点
指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数与指数函数高考知识点
指数与指数函数高考知识点指数和指数函数是高考数学中的重要知识点,涉及到数学中的指数概念、指数运算、指数函数及其性质等内容。
本文将以深入浅出的方式,详细介绍指数与指数函数的相关知识。
一、指数的概念及性质指数是数学中常用的表示方式,用于表示一个数的乘方。
指数的定义为:若a为非零实数,n为自然数(n≠0),则aⁿ称为以a为底的指数。
其中,a称为底数,n称为指数。
指数的性质有以下几点:1. 任何非零数的0次方都等于1,即a⁰=1(a≠0);2. 任何非零数的1次方都等于它本身,即a¹=a(a≠0);3. 指数相同、底数相等的两个指数相等,即aⁿ=aᵐ(a≠0,n≠0,m≠0);4. 任何数的负整数次方都可以表示为其倒数的相应正整数次方,即a⁻ⁿ=1/(aⁿ)(a≠0,n≠0);5. 不同底数、相同指数的指数大小可以通过底数的大小来判断,当0<a<b时,aⁿ<bⁿ(a,b,n都是实数且n>0)。
二、指数运算法则指数运算是指在进行乘方运算时,如何将指数进行运算。
在指数运算中,有以下几条法则:1. 乘法法则:同底数的指数相加,保持底数不变,指数相加,即aⁿ⋅aᵐ=aⁿ⁺ᵐ(a≠0,n≠0,m≠0);2. 除法法则:同底数的指数相减,保持底数不变,指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ(a≠0,n≠0,m≠0);3. 乘方法则:一个数的乘方再乘以另一个数的乘方,底数不变,指数相乘,即(aⁿ)ᵐ=aⁿᵐ(a≠0,n≠0,m≠0);4. 开方法则:一个数的乘方再开方,底数不变,指数取两个数的最小公倍数,即(aⁿ)^(1/ᵐ)=aⁿ/ᵐ(a≠0,n≠0,m≠0)。
三、指数函数的定义与图像指数函数是一种特殊的函数形式,具有以下定义:形如y=aᵘ(a>0,且a≠1)的函数称为指数函数。
在指数函数中,a称为底数,u称为自变量,y称为因变量。
指数函数的图像特点如下:1. 当底数0<a<1时,函数图像呈现下降趋势,越接近x轴,函数值越接近于0;2. 当底数a>1时,函数图像呈现上升趋势,越接近x轴,函数值越接近于0;3. 当底数a=1时,函数图像为水平直线y=1,与自变量无关。
第10讲 指数与指数函数
第10讲 指数与指数函数【备选理由】 例1考查指数幂的运算法则与性质,考查学生的计算能力;例2考查比较大小,根据α的取值范围,明确三角函数sin α,cos α的取值范围,再利用指数函数和幂函数的单调性,可得答案;例3、例4、例5都是考查指数型函数的性质,其中例5涉及奇偶性、单调性及不等式恒成立问题,综合性较强,难度较大.例1 [配探究点一使用] 化简:a 43-8a 13b a 23+2√ab 3+4b 23÷(1-2√b a 3)×√a 3(a>0,b>0)= a . [解析]a 43-8a 13b a 23+2√ab 3+4b 23÷(1-2√b a 3)×√a 3=a 13(a -8b )(a 13)2+2a 13b 13+(2b 13)2÷(1-2·b 13a 13)·a 13=a 13(a -8b )(a 13)2+2a 13b 13+(2b 13)2·a 13a 13-2b 13·a 13=a 13+13+13(a -8b )(a 13)3-(2b 13)3=a.例2 [配例2使用] [2024·广东深圳人大附中月考] 已知α∈(π4,π2),a=(cos α)sin α,b=(sin α)cos α,c=(cos α)cos α,则 ( A )A .b>c>aB .c>b>aC .c>a>bD .a>b>c[解析] 因为α∈(π4,π2),所以0<cos α<sin α<1.因为y=(cos α)x 在(0,1)上单调递减,所以c=(cos α)cos α>(cos α)sin α=a.因为幂函数y=x cos α在(0,1)上单调递增,所以c=(cos α)cos α<(sin α)cos α=b ,故b>c>a.故选A .例3 [配例4使用] 已知函数f (x )=(3x -3-x )x+x 13,则f (8)-f (-8)= 4 .[解析] 设g (x )=(3x -3-x )x ,因为g (-x )=(3-x -3x )(-x )=g (x ),所以g (x )为偶函数,所以f (8)-f (-8)=g (8)+813-g (-8)-(-8)13=2-(-2)=4.例4 [配例4使用] 函数y=(12)2x -8·(12)x +17的单调递增区间为 [-2,+∞) ,单调递减区间为 (-∞,-2) .[解析]设t=(12)x >0,则y=t 2-8t+17=(t -4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.令(12)x ≤4,得x ≥-2,令(12)x >4,得x<-2.因为函数t=(12)x 在R 上单调递减,所以函数y=(12)2x -8·(12)x +17的单调递增区间为[-2,+∞),单调递减区间为(-∞,-2).例5 [配例4使用] [2023·重庆质检] 已知函数f (x )=2x -a 2x +1是定义在R 上的奇函数,若不等式f [mf (x )]+f (2x -1-a )≤0对任意的x ∈(-∞,1]恒成立,则实数m 的取值范围是 [-2,0] .[解析] 因为函数f (x )=2x -a 2x +1是定义在R 上的奇函数,所以f (0)=1-a 2=0,解得a=1,此时f (x )=2x -12x +1.因为f (-x )=2-x -12-x +1=1-2x 1+2x =-f (x ),所以函数f (x )为奇函数,满足题意,所以f (x )=2x -12x +1=2x +1-22x +1=1-22x +1,因为y=2x 在R 上单调递增,所以y=22x +1在R 上单调递减,所以f (x )=1-22x +1在R 上单调递增.由f [mf (x )]+f (2x -1-a )≤0,可得f [mf (x )]≤-f (2x -2),可得f [mf (x )]≤f (2-2x ),又f (x )在R 上单调递增,所以mf (x )≤2-2x ,则m ·2x -12x +1≤2-2x对任意的x ∈(-∞,1]恒成立.令t=2x -1,则m ·t t+2≤1-t (*).当0<x ≤1时,t=2x -1∈(0,1],不等式(*)可化为m ≤(1-t )(t+2)t =-t+2t -1,令g (t )=-t+2t-1,t ∈(0,1],则g (t )在(0,1)上单调递减,所以g (t )min =g (1)=0,所以m ≤0;当x=0时,t=2x -1=0,不等式m ·t t+2≤1-t 显然成立;当x<0时,t=2x -1∈(-1,0),不等式(*)可化为m ≥(1-t )(t+2)t =-t+2t -1,令h (t )=-t+2t-1,t ∈(-1,0),则h (t )在(-1,0)上单调递减,又h (-1)=-2,所以m ≥-2.综上,m 的取值范围为[-2,0].。
指数与指数函数
47 .
方法总结
指数幂运算的一般原则
1.有括号的先算括号里的,无括号的先进行指数运算.
2.先乘除后加减,负指数幂化成正指数幂的倒数.
3.底数是负数的,先确定符号;底数是小数的,先化成分数.底数是带分数
的,先化成假分数.
4.若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运
为选项C.
考点三
指数函数的性质及应用
◉角度(一) 比较指数式的大小或解不等式
例3
(1)(2024·吉林白山模拟)已知 a =0.310.1, b =0.310.2, c =
0.320.1,则(
D )
A. a > b > c
B. b > a > c
C. c > b > a
D. c > a > b
由 y =0.31 x 单调递减可知0.310.1>0.310.2,即 a > b ;
即b<a<c.
C )
6.
2 −4
1
不等式 3
> 的解集为
27
−∞,1 ∪ 3,+∞
2 −4
1
由3
> =3-3,所以 x 2-4 x >-3,即
27
<1或 x >3.
.
− 1 − 3 >0,解得 x
7. 函数 y =
1
1
-
+1在区间[-3,2]上的值域是
4
2
因为 x ∈[-3,2],所以若令 t =
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 幂的运算
1. 指数与指数运算
指数与指数函数
指数与指数函数1.1指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 当n 是偶数时,正数a 的正的n表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈例题精讲【例1】求下列各式的值:(1(*1,n n N >∈且); (2. 解:(1)当n3π-; 当n|3|3ππ-=-. (2||x y -.当x y ≥x y =-;当x y <y x =-.【例2】已知21na =+,求33n nn na a a a --++的值.解:332222()(1)1111n n n n n n n n n n n na a a a a a a a a a a a ------++-+==-+=+-=++. 【例3】化简:(1)211511336622(2)(6)(3)a b a b a b -÷-; (2a >0,b >0); (3).解:(1)原式=2111150326236[2(6)(3)]44a bab a +-+-⨯-÷-==.(2)原式=1312322123[()](/)a b ab ab b a ⋅⋅=1136322733a b a b a b⋅=104632733a b a b=a b.)原式22111144336444(33)(3)(3)33=⨯=⨯=⨯=.点评:根式化分数指数幂时,切记不能混淆,注意将根指数化为分母,幂指数化为分子,根号的嵌套,化为幂的幂. 正确转化和运用幂的运算性质,是复杂根式化简的关键.【例4】化简与求值:(1(2)++⋅⋅⋅解:(1)原式=22(2)原式=+⋅⋅⋅+=112-⋅⋅⋅=11)2.练习:1.2指数函数及其性质(4)指数函数¤例题精讲:题型一:求函数的定义域【例1】求下列函数的定义域: (1)132xy -=; (2)51()3xy -=; (3)1010010100x x y +=-.解:(1)要使132xy -=有意义,其中自变量x 需满足30x -≠,即3x ≠. ∴ 其定义域为{|3}x x ≠.(2)要使51()3xy -=有意义,其中自变量x 需满足50x -≥,即5x ≤. ∴ 其定义域为{|5}x x ≤.(3)要使1010010100x x y +=-有意义,其中自变量x 需满足101000x -≠,即2x ≠. ∴其定义域为{|2}x x ≠.题型二:求函数的值域【例2】求下列函数的值域:(1)2311()3x y -=; (2)421x x y =++解:(1)观察易知2031x ≠-, 则有203111()()133x y -=≠=. ∴ 原函数的值域为{|0,1}y y y >≠且.(2)2421(2)21x x x x y =++=++. 令2x t =,易知0t >. 则22131()24y t t t =++=++.结合二次函数的图象,由其对称轴观察得到213()24y t =++在0t >上为增函数,所以221313()(0)12424y t =++>++=. ∴ 原函数的值域为{|1}y y >.【例3】函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A .1,0a b >< B .1,0a b >> C .01,0a b <<> D .01,0a b <<<解:从曲线的变化趋势,可以得到函数()f x 为减函数,从而0<a <1;从曲线位置看,是由函数(01)x y a a =<<的图象向左平移|-b |个单位而得,所以-b >0,即b <0. 所以选D.点评:观察图象变化趋势,得到函数的单调性,结合指数函数的单调性,得到参数a 的范围. 根据所给函数式的平移变换规律,得到参数b 的范围. 也可以取x =1时的特殊点,得到01b a a -<=,从而b <0.【例4】已知函数23()(0,1)x f x a a a -=>≠且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.解:(1)当230x -=,即23x =时,2301x a a -==. 所以,该函数的图象恒过定点2(,1)3.(2)∵ 23u x =-是减函数,∴ 当01a <<时,()f x 在R 上是增函数;当1a >时,()f x 在R 上是减函数.【例5】按从小到大的顺序排列下列各数:23,20.3,22,20.2.解:构造四个指数函数,分别为3x y =,0.3x y =,2x y =,0.2x y =,它们在第一象限内,图象由下至上,依次是0.2x y =,0.3x y =,2x y =,3x y =. 如右图所示.由于0x ,所以从小到大依次排列是:,,点评:利用指数函数图象的分步规律,巧妙地解决了同指数的幂的大小比较问题. 当然,我们在后面的学习中,可以直接利用幂函数的单调性来比较此类大小.【例6】已知21()21x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.解:(1)()f x 的定义域为R . ∵ 21(21)21221()()21(21)21221x x x x x x x x x x f x f x ---------====-=-++++.∴ ()f x 为奇函数.(2)设任意12,x x R ∈,且12x x <,则121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.由于12x x <,从而1222x x <,即12220x x -<.∴ 12()()0f x f x -<,即12()()f x f x <. ∴ ()f x 为增函数.点评:在这里,奇偶性与单调性的判别,都是直接利用知识的定义来解决. 需要我们理解两个定义,掌握其运用的基本模式,并能熟练的进行代数变形,得到理想中的结果.【例7】求下列函数的单调区间:(1)223x x y a +-=; (2)10.21x y =-.解:(1)设2,23u y a u x x ==+-.由2223(1)4u x x x =+-=+-知,u 在(,1]-∞-上为减函数,在[1,)-+∞上为增函数. 根据u y a =的单调性,当1a >时,y 关于u 为增函数;当01a <<时,y 关于u 为减函数. ∴ 当1a >时,原函数的增区间为[1,)-+∞,减区间为(,1]-∞-; 当01a <<时,原函数的增区间为(,1]-∞-,减区间为[1,)-+∞. (2)函数的定义域为{|0}x x ≠. 设1,0.21x y u u ==-. 易知0.2x u =为减函数. 而根据11y u =-的图象可以得到,在区间(,1)-∞与(1,)+∞上,y 关于u 均为减函数. ∴在(,0)-∞上,原函数为增函数;在(0,)+∞上,原函数也为增函数题型:指数函数相关的函数图像例题一:函数331x x y =-的图象大致是( ).题型二:指数函数性质的应用练习:例1、若231++<x x a a()1,0≠>a a 且,求:x 的取值范围。
指数式与指数函数
解析:因为
CLI
Cf(xK)=T
1 O2
x,f(x1+x2)=
ADD TITL
1 x1 2E
x2
=
1 2
x1
·1 2
x2
=f(x1)·f(x2),
所以①成立,②不成立;
感谢您的欣赏 显然函数
f(x)=
1 2
x
单调递减,即fxx11- -fx2x2<0,故③成立;
当 x1<0 时,f(x1)>1,fx1x1-1<0, 当 x1>0 时,答0<案f(x1:)<1①,f③x1x④1-⑤1<0,故④成立;
∴f(x1)-f(x2)<0,即 f(x1)<f(x2).
因此 f(x)在[0,+∞)上是增函数.
我们所要研究的函数都是将一次函数、二次函数、 反比例函数、指数函数等通过加减乘除或者复合而成的. f(x)= 3x+23-x可以看做 y=32x与 y=32-x相加而得到;也可通过 y=12t+1t , t=3x 复合而成.因此可利用复合函数的单调性判断 f(x)=3x+23-x的 单调区间.
m an,
1.分数指数
在运算过程中,
幂的定义揭示 要贯彻先化简后
了分数指数幂 运算的原则,并
与根式的关系, 且要注意运
因此
算的顺序. 2.利用指数函数的单调性可比较两个幂的 大小.当幂的底数、 指数都不同时,可选择中间量进行比较.
01
添加标题
在指数函数解析式中,必须时刻注意底 数 a>0 且 a≠1,对于
进行化简时,要先 a6b6
是以分数指数幂的
将根式化
形式给出的,则结果用分数指数幂的形式表示;
指数与指数函数图像及性质(学生版)
指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。
(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。
(3)()()*∈>==N n n a a nnn ,1,00。
,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。
2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。
(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。
4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。
5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。
指数与指数函数
指数与指数函数指数与指数函数1.1 指数与指数幂的运算1) 根式的概念如果$x=a$,$a\in R$,$x\in R$,$n>1$,且$n\in N^+$,那么$x$叫做$a$的$n$次方根。
当$n$是奇数时,$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
当$n$是偶数时,正数$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
负数$a$没有$n$次方根。
式子$n\sqrt{a}$叫做根式,这里$n$叫做根指数,$a$叫做被开方数。
当$n$为奇数时,$a$为任意实数;当$n$为偶数时,$a\geq0$。
根式的性质:$(n\sqrt{a})^n=a$;当$n$为奇数时,$n\sqrt{a^n}=a$;当$n$为偶数时,$n\sqrt{a^2}=|a|$,即$\begin{cases}a&(a\geq0)\\-a&(a<0)\end{cases}$。
2) 分数指数幂的概念正数的正分数指数幂的意义是:$a^{m/n}=\sqrt[n]{a^m}$。
正数的负分数指数幂的意义是:$a^{-m/n}=\dfrac{1}{\sqrt[n]{a^m}}$。
正分数$a^{1/m}=\sqrt[m]{a}$,负分数指数幂没有意义。
注意口诀:底数取倒数,指数取相反数。
3) 分数指数幂的运算性质a^r\cdot a^s=a^{r+s}$($a>0,r,s\in R$)。
a^r)^s=a^{rs}$($a>0,r,s\in R$)。
ab)^r=a^rb^r$($a>0,b>0,r\in R$)。
例题精讲例1】求下列各式的值:1) $n(3-\pi)$($n>1$,且$n\in N^+$);2) $(x-y)^2$。
1) 当$n$为奇数时,$n\sqrt{3-\pi}=|\sqrt{3-\pi}|=\sqrt{3-\pi}$。
指数与指数函数
调性来研究函数的单调性,构建方程获解. 解 令 t=ax (a>0 且 a≠1),
则原函数化为 y=(t+1)2-2 (t>0). ①当 0<a<1 时,x∈[-1,1],t=ax∈a,1a, 此时 f(t)在a,1a上为增函数. 所以 f(t)max=f1a=1a+12-2=14. 所以1a+12=16,所以 a=-15或 a=13. 又因为 a>0,所以 a=13.
3.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
(1) R
值域 性质
(2) (0,+∞)
(3)过定点 (0,1) (4)当 x>0 时, y>1 ; (5)当 x>0 时, 0<y<1 ;
x<0 时, 0<y<1
x<0 时, y>1
(6)在 R 上是 增函数 (7)在 R 上是 减函数
[难点正本 疑点清源] 1.根式与分数指数幂的实质是相同的,通常利用分数
∴y2=4a,y2= 2x2 =4a.
∴x2=2a,即 B(2a,4a). 又∵点 O、A、B 共线,∴2aa=24aa, ∴2a=2,即 a=1.∴A 的坐标为(1,2).
题型三 指数函数的性质
例3 设 a>0 且 a≠1,函数 y=a2x+2ax-1 在[-1,1]上
的最大值是 14,求 a 的值.
由上式推得 t2-2t>-2t2+k.
[12 分]
即对一切 t∈R 有 3t2-2t-k>0, 而 Δ=4+12k<0,解得 k<-13.
指数与指数函数
由二次函数单调性可知 y=-t-122+14在12,2是减函 数.
∴函数 g(x)在[-1,1]上是减函数.
(3)由(2)知 t=2x∈12,2,则方程 g(x)=m 有解 ⇔方程 2x-4x=m 在[-1,1]内有解
题型二 利用指数函数的单调性比较大小
例 2 比较大小: (1)1.72.5,1.73;(2)0.6-1,0.62; (3)0.8-0.1,1.250.2;(4)1.70.3,0.93.1.
解析:(1)∵函数 y=1.7x 是增函数,2.5<3, ∴1.72.5<1.73. (2)∵y=0.6x 是减函数,-1<2,∴0.6-1>0.62. (3)∵(0.8)-1=1.25, ∴问题转化为比较 1.250.1 与 1.250.2 的大小. ∵y=1.25x 是增函数,0.1<0.2, ∴1.250.1<1.250.2,即 0.8-0.1<1.250.2. (4)∵1.70.3>1,0.93.1<1,∴1.70.3>0.93.1.
题型四 指数函数的综合应用 例 4 设 a>0,f(x)=eax+eax是 R 上的偶函数. (1)求 a 的值; (2)求证:f(x)在(0,+∞)上是增函数.
解析:(1)∵f(x)是 R 上的偶函数,∴f(-x)=f(x), ∴ea-x+ea-x=eax+eax,
∴a-1aex-e1x=0 对一切 x 均成立, ∴a-1a=0,而 a>0,∴a=1.
A.f(xy)=f(x)f(y) B.f(xy)=f(x)+f(y) C.f(x+y)=f(x)f(y) D.f(x+y)=f(x)+f(y)
解析:∵axy≠ax·ay,axy≠ax+ay,ax+y≠ax+ay,而 ax+y= ax·ay.故只有 C 正确.故应选 C.
指数与指数函数概念
指数与指数函数一. 知识要点: 1.指数运算(1) 根式的定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若 则x 称a 的n 次方根()1*∈>N n n 且,①当n 为奇数时,n a 的次方根记作 ;②当n 为偶数时,负数a 无 n 次方根,而正数a 有 两个 n 次方根且互为相反数, 记作 (2)根式性质:①a a n n =)(; ②当n 为奇数时,a a n n =;③当n(0)||(0)a a a a a ≥⎧==⎨-<⎩。
(3)幂运算法则:①∈⋅⋅⋅=n a a a a n (ΛN *) ②)0(10≠=a a ;n 个 ③∈=-p aa p p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n 。
(4)幂运算性质: ①r a a a a sr sr,0(>=⋅+、∈s R ;② r a a a sr s r ,0()(>=⋅、∈s R ); ③∈>>⋅=⋅r b a b a b a r r r ,0,0()( R )。
2.指数函数:(1) 指数函数定义:函数 称指数函数,函数的定义域为 ;函数的值域为 (2)指数函数图像:性质:①指数函数的图象都经过点 ,且图象都在 象限;②当10<<a 时函数为 ,当1>a 时函数为 (单调性)③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于 对称。
⑤函数值的变化特征:(同向取大,异向取小)()()()10110010y x a y x y x >>⎧⎪>==⎨⎪<<<⎩时 ()()()010011010y x a y x y x <<>⎧⎪<<==⎨⎪><⎩时二.基础练习:1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4x y = (3)x y )4(-= (4)24x y =。
指数运算与指数函数
指数运算与指数函数
指数运算是数学中一种常见的运算方式,它可以帮助我们简化复杂的计算过程。
在指数运算中,我们使用指数来表示一个数的乘方。
指数函数则是以指数为变量的函数,它在数学和科学领域中有着广泛的应用。
指数运算可以表示为a的n次幂,其中a被称为底数,n被称为指数。
例如,2的3次幂可以写成2³,它的值为8。
指数运算还具有一些特殊的性质,比如指数为0时,任何数的0次幂都等于1;指数为1时,任何数的1次幂都等于它本身。
指数函数是指以指数为变量的函数,通常表示为f(x) = aˣ,其中a 是常数。
指数函数在数学和科学中有着重要的应用,例如在复利计算、放射性衰变等领域。
指数函数的图像通常具有特殊的形状,当指数大于1时,函数图像上升得很快;当指数小于1时,函数图像下降得很快;当指数为0时,函数图像经过点(0, 1);当指数为负数时,函数图像在x轴的正半轴上。
指数运算与指数函数在实际生活中有着广泛的应用。
在金融领域中,我们可以利用指数运算来计算复利,帮助我们更好地理解财务问题。
在自然科学中,指数函数可以用来描述物质的衰变过程,帮助我们预测放射性元素的衰变速率。
在生物学中,指数函数可以用来描述生物种群的增长规律,帮助我们研究生物的进化和生态系统的平衡。
指数运算与指数函数在数学和科学中扮演着重要的角色。
它们不仅可以帮助我们简化复杂的计算,还可以帮助我们更好地理解和解决实际问题。
通过学习和应用指数运算与指数函数,我们可以提升我们的数学和科学能力,为更广阔的领域做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数函数
一.基础知识 1.幂的有关概念
(1)正整数指数幂)(*∈⋅⋅⋅⋅=N n a a a a a n n
个
(2)零指数幂)0(10
≠=a a (3)负整数指数幂()10,n
n
a
a n N a
-*
=
≠∈
(4)正分数指数幂)0,,,1m n
a a m n N n *=>∈>;
(5)负分数指数幂)10,,,1m n
m n
a
a m n N n a
-*
==
>∈>
(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质
()()
10,,r s r s a a a a r s Q +=>∈
()()
()20,,s
r rs a a a r s Q =>∈
()()
()30,0,r
r r ab a b a b r Q =>>∈
3.根式的内容
(1)根式的定义:一般地,如果a x n
=,那么x 叫做a 的n 次方根,其中(
)*
∈>N
n n ,1,
n
a 叫做根式,
n 叫做根指数,a 叫被开方数。
(2)根式的性质: ①当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨
⎧<-≥==0
0a a
a a a a n n
②负数没有偶次方根, ③零的任何次方根都是零
4指数函数y=a x
名称 指数函数
一般形式 y=a x (a>0且a≠1)定义域 (-∞,+ ∞) 值域 (0,+ ∞)过定点 (0,1) 图象
单调性 a> 1,在(-∞,+ ∞)上为增函数
0<a<1, 在(-∞,+∞)上为减函数
值分布 当时且0,1>>x a y>1 当时且0,10><<x a 0<y<1
时且0,1<>x a 0<y<1 时且0,10<<<x a y>1
5.记住常见指数函数的图形及相互关系
二、题型剖析 1.指数化简和运算 例1.计算下列各式
①3031
2)26()03.1(2
323)661()41(-⋅--+++-
②
)0,0()21(2483
3
3
23
3
23
134>>⨯-÷++⋅-b a a a
b a
ab b b a a 思维分析:式子中既有分数指数、又有根式,可先把根式化成分数指数幂,再根据幂的运算性质进行计算。
在指数式运算中,注重运算顺序和灵活运用乘法公式。
解
:(1)原式
=
166
60814636256161)866()
2()3()23()6(16122231
23
+=++++=---+++- (2)原式=
a a b
a a
b a a a a
b a a
b a b b a a =⋅--=⨯-÷
++-3
13
13
13
13
13131313
13
1313
23
13
13
2
3
12)
2(224)8(
练习:计算
(1)2
133
2312
1
)
()1.0()4()4
1(----⨯
b a ab 答案:
25
4 (2)021
23
1)12()9
7
2()71()
027.0(--+---- 答案:45
2.条件求值证明问题 例2.已知42
12
1
=+-a
a ,求下列各式的值
(1)1
-+a a (2)
2
12
1232
3-
-
--a
a a a
思维分析:如何合理运算已知条件,熟练掌握乘法公式及方程的观点处理问题。
解:(1)42
12
1=+-
a
a 两边平方得1416211=+∴=++--a a a a
(2)原式=
151)
1)(()()(12
12
112
12
12
12
13
2
13
2
1
=++=-++-=
------
--a a a
a a a a a a
a a a
练习:设13
32--+=+x x x x 求的值。
答案:2
设
20)2()1(0)2)(1(32)1(31,2
213
331=∴=-+∴=--+⇒+=+⋅++
==+--t t t t t t t x x x x x
x t t x x 则
3指数函数的图象
例3.若直线y=2a 与函数)1,1(1≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是(2
1
0<
<a ) 变式一:函数b
x a x f -=)(的图象如图,其中a 、b 为常数,则下列
结论正确的是 ( D )
A .0,1<>b a
B .0,1>>b a
C 0,10><<b a
D .0,10<<<b a
4.指数函数的性质
5.综合应用
例5、函数y=a 2x +2a x -1(a>0,a ≠1)在区间[-1,1]上的最大值为14,求a 的值。
参考答案:3
1
3==a a 或 三、小结
1.指数式的运算、求值、化简、证明等问题主要依据幂的运算法则及性质加以解决,要注意运用方程的观点处理问题。
2.指数函数的图象的熟记和性质的灵活应用是关键。
四、作业 1.已知函数5
)(5
)(3
13
13
13
1-
-
+=
-=
x x x g x x x f
①证明:f(x)是奇函数,并求f(x)的单调区间, ②分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,
由此概括出涉及函数f(x)和g(x)的对所有不等于零的x 都成立的一个等式。
解:(1)函数f(x)的定义域为),0()0,(+∞-∞ ,关于原点对称,又
)(5
5
)
()()(3
13
13
13
1x f x x x x x f -=--
=---=
--
-
∴f(x)是奇函数
设
)11)((515
5
)()(),0(,3
123113123113
123
12
3
11
3
11
21212
1x x x x x x x x x f x f x x x x +-=---=-+∞∈<-
-
0)()(011,0213
12
3
113
1231
1<-∴>+
<-x f x f x x x x f(x)在(0,+∞)上单调递增,
又∵f(x)是奇函数,∴f(x)在(-∞,0)上也单调递增。
(2)计算得f(4)-5f(2)g(2)=0,f(9)-5f(3)g(3)=0,由此概括出对所有不等于零的实数x 的: f(x 2)-5f(x)g(x)=0.
0)(5
1)(515
5
55
)()(5)(32
323
2323
13
13
13
13
23
2
2=---=+⋅
-⋅
--=
----
-
-
x x x x x x x x x
x x g x f x f
2.已知过原点O 的一条直线与函数x y 8log =的图象交于A 、B 两点,分别过点A 、B 作y 轴的平等线与函数x y 2log =的图象交于C 、D 两点,证明点C 、D 和原点O 在同一直线。