流体输送机械基本原理讲义

合集下载

第二章流体输送机械精品PPT课件

第二章流体输送机械精品PPT课件
2020/10/6
在高速旋转的叶轮当中,液 体质点的运动包括: • 液体随叶轮旋转 ; • 经叶轮流道向外流动。
液体与叶轮一起旋转的速度u1或u2方向与所处圆周的切线方
向一致,大小为:
u1
2r1n
60
u2
2r2n
60
2020/10/6
液体沿叶片表面运动的速度ω1、ω2,方向为液体质点所
处叶片的切线方向,大小与液体的流量、流道的形状等有关
由弹簧的弹力互相贴紧而作相对运动,
2020/10/6
起到密封作用。
2020/10/6
2020/10/6
2020/10/6
2020/10/6
3、离心泵的分类 1)按照轴上叶轮数目的多少
单级泵 轴上只有一个叶轮的离心泵,适用于出口压力 不太大的情况;
多级泵 轴上不止一个叶轮的离心泵 ,可以达到较高的 压头。离心泵的级数就是指轴上的叶轮数,我国 生产的多级离心泵一般为2~9级。
2020/10/6
• 在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使 大部分动能转化为压力能。最后液体以较高的静压强从排 出口流入排出管道。 • 泵内的液体被抛出后,叶轮的中心形成了真空,在液面压 强(大气压)与泵内压力(负压)的压差作用下,液体便 经吸入管路进入泵内,填补了被排除液体的位置。
油泵 输送石油产品的泵 ,要求密封完善。(Y 型)
杂质泵
2020/10/6
输送含有固体颗粒的悬浮液、稠厚的浆液等的泵 ,又细分为污水泵、砂泵、泥浆泵等 。要求不易 堵塞、易拆卸、耐磨、在构造上是叶轮流道宽、 叶片数目少。
2020/10/6
二、离心泵的基本方程式
1、离心泵基本方程式的导出
假设如下理想情况: 1)泵叶轮的叶片数目为无限多个,也就是说叶片的厚度 为无限薄,液体质点沿叶片弯曲表面流动,不发生任 何环流现象。 2)输送的是理想液体,流动中无流动阻力。

流体输送机械培训课件

流体输送机械培训课件

流体输送机械培训课件1. 引言流体输送机械是一种用于将流体从一个地方运输到另一个地方的装置或设备。

它在许多行业中都有广泛应用,包括石油化工、煤矿、食品加工等。

本课件旨在介绍流体输送机械的基本原理、分类、选型等内容,帮助学员更好地理解和应用流体输送机械。

2. 基本原理流体输送机械的工作原理主要基于流体的压力和流动性质。

根据伯努利定理,流体在管道中的速度越大,压力越小。

利用增压泵或离心泵将流体推入管道中,通过管道内的阀门和控制装置调节流体的流量、压力和方向。

对于需要输送固体颗粒的流体,还可通过搅拌装置或离心分离器实现固液分离。

3. 主要分类根据不同的工作原理和应用场景,流体输送机械可以分为以下几类:3.1. 泵类泵类是最常见的流体输送机械,主要用于增压、输送和循环流体。

根据工作原理,泵类可以分为离心泵、容积泵、潜水泵等不同类型。

3.1.1. 离心泵离心泵通过离心力将流体推向出口,广泛应用于城市供水、工业生产等领域。

它的主要特点是结构简单、效率高、容量大。

3.1.2. 容积泵容积泵通过气体或液体的容积变化来输送流体,适用于特殊工况和高粘度流体输送。

它的主要特点是输送流量稳定、压力波动小。

3.2. 搅拌器搅拌器主要用于混合流体、增强反应和悬浮固体颗粒。

它根据搅拌方式的不同可以分为搅拌桨、螺旋叶片等类型。

3.3. 分离器分离器主要用于固液分离,将固体颗粒从流体中分离出来。

常见的分离器包括离心分离器、滤油机等。

4. 选型注意事项选择合适的流体输送机械是确保系统正常运行的关键。

在选型时,需要考虑以下几个方面:4.1. 流体性质根据输送的流体性质选择相应的流体输送机械,如液体、气体或固液混合物。

4.2. 流量和压力要求根据系统的流量和压力要求选择合适的流体输送机械,确保其能够满足系统的工作条件。

4.3. 使用环境考虑流体输送机械运行的环境条件,如温度、湿度、腐蚀性等因素。

4.4. 维护和运行成本综合考虑设备的维护和运行成本,选择经济合理的流体输送机械。

《流体输送输送机械》课件

《流体输送输送机械》课件

安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。

流体输送设备讲义

流体输送设备讲义

流体输送设备讲义一、流体输送设备的概念流体输送设备是一种用来输送液体或气体的机械设备,它们能够将流体从一处输送到另一处,以满足工业生产过程中的流体输送需求。

二、流体输送设备的分类1. 泵:泵是一种用来输送液体的设备,通过机械或电力的作用,将液体从低压区域抽送至高压区域。

2. 阀门:阀门是用来控制流体流动的设备,通过打开或关闭阀门来控制流体的流量和流速。

3. 管道:管道是用来输送液体或气体的通道,一般由金属、塑料或橡胶等材料制成,通过连接多段管道来完成流体输送的功能。

4. 压缩机:压缩机是一种用来压缩气体的设备,将气体从低压区域压缩至高压区域,以便于输送和使用。

三、流体输送设备的应用1. 工业生产:在化工、石油、食品、制药等行业中,流体输送设备被广泛应用于液体和气体的输送和控制。

2. 建筑工程:在建筑工程中,流体输送设备用于建筑物的供水、供暖和空调系统中。

3. 农业灌溉:在农业生产中,流体输送设备被用于灌溉系统的设计和建设,确保农田得到合适的水源供给。

四、流体输送设备的选型和维护1. 选型:根据具体的输送需求和流体性质,选择适合的泵、阀门、管道和压缩机,以确保流体输送设备能够满足工业生产需求。

2. 维护:定期检查和维护流体输送设备,保证其正常运行,避免故障和漏漏。

五、流体输送设备的发展趋势1. 智能化:流体输送设备的智能化趋势明显,通过传感器和控制系统实现设备的自动化操作和监控。

2. 节能环保:随着节能环保理念的普及,流体输送设备的设计和制造越来越注重节能和环保性能。

3. 高效化:流体输送设备的技术水平不断提高,以提高设备的输送效率和可靠性。

六、未来发展趋势随着科学技术的不断进步和工业生产的快速发展,流体输送设备将面临着新的挑战和机遇。

未来,流体输送设备有望在以下几个方面取得进一步发展:1. 新材料应用:随着新材料科技的不断发展,具有高强度、耐腐蚀和耐高温性能的新型材料将逐渐应用于流体输送设备的制造中,以提高设备的耐久性和可靠性。

《流体输送》PPT课件

《流体输送》PPT课件

3〕HT与VT的关系
令:A=u2/g
B= u2ctgβ2/g2πr 2b2
HT=A-BV 直线 〔三条〕
一般采用后弯叶片, 原因:
2.3、离心泵的性能曲线
2.3.1.实际的H~V线 1、实际情况为: ① 叶片数目是有限的6~12片,叶 片间的流道较宽,这样叶片对液体流 束的约束就减小了,使HT有所降低。 ② 液体在叶片间流道内流动时存在 轴向涡流,导致泵的压头降低。
1、离心泵的汽蚀现象
汽蚀现象汽蚀状态:扬程比正常下降 3%
泵的安装以不发生汽蚀现象为依据
2、正常操作必须满足 的条件
pk/ρg≥pv/ρg+e e=0.3-0.5 我国e=0.3 pv:饱和蒸汽压 允许极限状态:pk允/ρg=
pv/ρg+e pk到达pk允时,p2到达p2允
3、最大安装高度Hg,max的 计算
3、最大安装高度Hg,max的 计算
Hg,max=p1/ρg -pv/ρg△h允-∑Hf1-2 (2-20式)
一般△h允与泵的构造和尺寸 有关,由实验测定,并同标 绘于性能曲线图上。
实验条件为大气压
3、最大安装高度Hg,max的 计算
2〕允许汲上真空度 HS,允计算 在1-2截面间列柏式 p1/g=Hg,max+p2允/ρg
工作原理:离心式 往复式 旋转式 流体作用式〔如喷射式〕
一.离心泵的工作原理及 主要部件
1.构造
1〕叶轮:叶轮内6~12片弯曲的叶 片
作用:原动机的机械能→液体→静压 能↑和动能↑
一.离心泵的工作原理及 主要部件
叶轮按其构造形状分有三种:
① 闭式:前后有盖板
② 半闭式:前有盖板
③敞式〔开式〕:前后无盖板

化工原理 流体输送机械 课件

化工原理 流体输送机械 课件

液体密度对特性曲线的影响
离心泵的流量等于叶轮周边 出口截面积与液体在周边处 的径向速度之乘积。
qV 2 r2b2c2r
所以,泵的流量与密度无关。
离心力 物质的质量 为单位体积液体的质量 离心力 液体在离心力作用下,从低压p1变为高压p 2而排出 2 -p1) (p p2 -p1 p -p 与 无关,由于H 2 1 ,所以H与 无关。 g g
流体输送机械Βιβλιοθήκη 烟气脱硫流程概 述
生产过程中的流体输送一般有以下几种情况: 低压 低处 近处 高压 高处 远处 流体物性不同 操作条件各异
对于这些情况,都必须通过向流体提供机械能的方法 来实现。向流体提供机械能的设备称为流体输送机械。
概 述
流体输送设备分类:
按流体类型
输送液体—泵(pumps) 输送气体—通风机、鼓风机、压缩机、真 空泵
qV n qV ' n ' n 2 n 2 2 n' 2 2 ( ) H ' A B( ) qV ' H ' A( ) BqV ' n' n' n H n 2 ( ) H ' n'
4、离心泵的并联操作
H
H并 =H
' 单
管路特性曲线
C A
B
H单
泵性能实验装置示意图
讨论:
(1)H~qV线: qV↑, H↓
(2)P~qV线: qV↑, P↑ qV = 0→P=Pmin 所以,离心泵启动 时,关闭出口阀。 (3)η~qV线: qV↑,η先↑后↓ η最高点:泵的设计工况点。 注意:实际生产中,泵不可能正好在设计工况下运 转,一般取最高效率以下7%范围内为高效区。

流体输送机械学习教材PPT课件

流体输送机械学习教材PPT课件

2.2.1 离心泵的主要部件和工作原理

(1)离心泵的外观与内部结构 (2)离心泵的主要部件



1)叶轮 2)泵壳 3)泵轴

(3)离心泵的工作原理
(1)离心泵的外观与内部结构 离心泵的外观
离心泵的内部结构
1)叶轮

叶轮是离心泵的核心部件,由4-8片的叶片 组成,构成了数目相同的液体通道。按有 无盖板分为开式、闭式和半开式(其作用 见教材)。



后盖板上的平衡孔消除轴向推力。 离开叶轮周边的液体压力已经较高,有一部分会 渗到叶轮后盖板后侧,而叶轮前侧液体入口处为 低压,因而产生了将叶轮推向泵入口一侧的轴向 推力。 这容易引起叶轮与泵壳接触处的磨损,严重时还 会产生振动。 平衡孔使一部分高压液体泄露到低压区,减轻叶 轮前后的压力差。但由此也会此起泵效率的降低。
流体输送机械分类



按工作介质不同: 液体——泵 气体——风机、压缩机 按工作原理不同: 离心式 正位移式(容积式):往复式、旋转式 其它(如喷射式)
2.2 离心泵




离心泵结构简单,操作容易,流量易于调 节,且能适用于多种特殊性质物料,因此 在工业生产中普遍被采用。 2.2.1 离心泵的主要部件和工作原理 2.2.2 离心泵的性能参数与特性曲线 2.2.3 离心泵的工作点和流量调节 2.2.4 离心泵的组合操作 2.2.5 离心泵的安装高度 2.2.6 离心泵的选用、安装与操作
环境工程原理 第二章 流体输送机械
西北民族大学 化工学院
2 流体输送机械



2.1 概 述 2.2 离心泵 2.3 其它类型泵 2.4 气体输送机械 2.5 真空泵

流体输送机械课件讲解

流体输送机械课件讲解
3).轴封装置
由于泵轴转动,泵壳不动,故轴穿过泵壳处必存在空隙。 所以要设置轴封装置。
a.轴封作用:减少泵内高压液体外流,防止空气进入泵内。 b.分类:填料密封和机械密封。
机械密封的效果好,但价格高。一般用于易燃易爆、有毒 液体的输送。
二、离心泵的性能参数及基本方程
1、性能参数 A.流量Q(m3/h,L/s) :单位时间内,流体输送设备提供给 管 路系统的流体体积量,是泵供液能力的一个参数。 Q=f(结构、尺寸、转速) B.压头H(J/N,m):又称扬程,单位重量流体从流体 输送设备上获得的机械能,是泵供能能力的一个参数。 H=f(结构、尺寸、流量、转速)。 C.轴功率N(W,kW):泵单位时间得到的能量。即电机传 给泵轴的功率。
单吸式 双吸式
平衡 孔
单吸:在叶轮两侧,只有一侧进液。
特点:流量低;会产生轴向推动力(因为对于闭式叶轮, 一部分高压液体可漏入叶轮与泵壳间的空腔中,而叶轮前 测吸入口为低压,故两侧压力不等,产生指向叶轮入口处 的轴向推动力,引起叶轮与泵壳间的磨损甚至造成泵的振 动)。
消除轴向推动力的办法: 在叶轮后盖板上开平衡小孔; 采用双吸式叶轮。
F离心力 mR2 VR2 气体较小,所产生的离心力也很小。
故泵启动前一定要灌满液体。
2、主要部件 离心泵主要由包括旋转的叶轮、静止的泵壳防泄
漏的密封装置。
1)、叶轮 a.作用:将原动机的机械能传给液体,使液体静压能和 动能↑。 b.结构:一般由4~12片后弯叶片组成(后弯指叶片弯 曲方向与叶轮旋转方向相反)。
第二章 流体输送机械
学习目的
通过本章学习,掌握化工中常用流体输送机 械的基本结构、工作原理和操作特性,能够根据 生产工艺要求和流体特性,合理地选择和正确操 作流体输送机械,并使之在高效下安全可靠运行。

《流体输送设备 》课件

《流体输送设备 》课件

05
CHAPTER
流体输送设备的发展趋势
高效率化
总结词
随着工业生产对效率的要求不断提高,流体输送设备的高效率化成为发展趋势。
详细描述
高效率化的流体输送设备能够加快生产速度,提高产能,降低生产成本,从而为企业创造更大的经济 效益。
智能化
总结词
智能化是流体输送设备的另一个重要 发展趋势,通过引入先进的技术和智 能化控制系统,实现设备的自动化和 智能化运行。
详细描述
智能化流体输送设备能够提高设备的 运行效率和稳定性,减少人工干预和 操作,降低事故风险,同时为企业的 信息化和数字化转型提供支持。
环保化
总结词
随着环保意识的不断提高,流体输送设备的环保化成为必然的发展趋势。
详细描述
环保化的流体输送设备在设计、制造、使用和废弃处理等环节充分考虑环保因素,采用 环保材料和节能技术,降低设备对环境的影响,同时满足日益严格的环保法规要求。
当叶轮旋转时,液体在叶轮叶片的作用下获得能 量,提高压力和流速。
液体离开叶轮后,经过泵壳的导流作用,以一定 原理
1
往复泵是利用活塞或柱塞在缸体内的往复运动来 输送液体的泵。
2
当活塞或柱塞向前运动时,将液体吸入缸体;当 活塞或柱塞向后运动时,将液体排出缸体。
3
通过活塞或柱塞的往复运动,实现液体的连续输 送。
常见故障及排除方法
故障一
流体输送设备无法启动。排除方法:检查电源是否正常,检查电机 是否损坏,检查控制电路是否正常。
故障二
流体输送设备运行不稳定。排除方法:检查设备的机械部分是否正 常,检查电机和泵的轴承是否损坏,检查流体是否正常。
故障三
流体输送设备泄漏。排除方法:检查设备的密封件是否老化或损坏, 检查连接处是否紧固,对损坏的密封件进行更换。

流体输送机械培训课件

流体输送机械培训课件

离心泵铭牌上标出的 H、 Q、N 性能参数即为最高
36
32
IS00-80-160B 离心泵
n=2900r/min
效 率 时 的 数 据 , 称 为 28
24
“最佳工况参数” 。一 20
H
般将最高效率值的 92% 16
的 范围称为 泵的高效 区 , 12
泵应尽量在该范围内操 8
N
90 80 70 60 50 40 12 30 8 20
泵的总效率:η=ηQ·ηH·ηM 小泵η:0.5~0.7,大泵η:可达0.9 效率与流量有关,额定流量:泵在最高效率时的流量
17
4、离心泵的特性曲线及其影响因素
(1)特性曲线:
描述压头、轴功率、效率与流量关系(H—Q、N—Q、 —Q)的曲线。对实际流体,这些曲线尚难以理论推导,
而是由实验测定。
离心泵的特性曲线反 映了泵的基本性能, 由制造厂附于产品样 本中,是指导正确选 择和操作离心泵的主 要依据。
的增加而下降。
0 0
20 40 60 80 100 120 1400
0
Q/ m3/h
有的离心泵在小流量时有驼峰,即同一压头下有两个不同 的流量,在驼峰附近操作时泵工作不稳定,压头损失大, 效率低,故一般不应在此区域内操作。
21
H [m] N [kW]
[%]
N—Q 曲线
轴功率 N: 随流量增加而
增大,流量为0时轴功率最 小,但不为0(泵启动时要 关出口阀,使起动电流减 小以保护电机。 )。 有 效 功 率 Ne : 流 体 从 泵 获 得的实际功率,可直接由 泵的流量和扬程求得
填料套
填料
填料压盖
填料环
双头螺栓
螺母

流体输送机械PPT课件

流体输送机械PPT课件

第一节 液体输送机械
3.2黏度的影响:当输送液体的黏度大于常温水的黏度时,泵内液体 的能量损失增大,导致泵的流量、压头减小、效率下降,轴功率增加,
泵的特性曲线均发生变化。理论上应进行校正。但通常由于实际应用 的液体粘度总是小于20×10-6时,如汽油、煤油、轻柴油等,可不必校 正。否则可按下式校正:
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比 较高,既不允许漏入空气,又力求不让液体渗出。近年来在制药生产中 离心泵的轴封装置广泛采用机械密封。如图2-7所示,它是有一个装 在转轴上的动环和另一个固定在泵壳上的静环所构成,两环的端面借 弹簧力互相贴紧而做相对运动,起到密封作用。
第一节 液体输送机械
第一节 液体输送机械
一、概述 在化工生产过程中,常常需要将流体物料从一个设备 输送至另一个设备;从一个位置输送到另一个位置。当流 体从低能位向高能位输送时必须使用输送机械,用来对物 料加入外功以克服沿程的运动阻力及提供输送过程所需的 能量。为输送流体物料提供能量的机械装置称为输送机械, 分为液体输送机械和气体输送机械。 本节先介绍液体输送机械。 液体输送机械统称为泵。因被输送液体的性质,如黏 性、腐蚀性、混悬液的颗粒等都有较大差别,温度、压力、 流量也有较大的不同,因此,需要用到各种类型的泵。根 据施加给液体机械能的手段和工作原理的不同,大致可分 为四大类,如表2-1所示。
2.3轴封装置:泵轴与泵壳之间的密封成为轴封。其作用是防止 高压液体从泵壳内沿轴的四周漏出,或者外界空气以相反方向漏入泵 壳内的低压区。常用的轴封装置有填料密封和机械密封两种,如下图 所示。普通离心泵所采用的轴封装置是填料函,即将泵轴穿过泵壳的 环隙作为密封圈,于其中填入软填料(例如浸油或涂石墨的石棉绳), 以将泵壳内、外隔开,而泵轴仍能自由转动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章流体输送机械第一节概述(略)第二节离心泵一、离心泵的基本结构和工作原理1、离心泵的基本结构2、离心泵的工作原理例:一杯热水为使之冷却,用筷子在水中旋转,水也产生速度,跟着筷子一块转动(本质上是筷子的附着力大于水之间的内聚力,内摩擦力使水旋转)靠近筷子的水转的快而远离筷子的水转的慢。

另外中心凹,四周水沿壁上升高于中间。

为什么呢?离心泵工作原理离心力 RmR m F 22νω==ππωn T22==[弧度/秒] ω角速度 R 半径(叶轮半径) m 质量(流体质量kg ) rn Trππν22===ωr ν线速度,T —周期,n--转速,n T 1=(周期是物体做圆周运动旋转一周所需要的时间,单位是秒;转速n 是物体单位时间所转的周数,单位是1/秒)。

R 或ω 则 F手转动筷子,水产生动能,水旋转碰到管壁动能转化为静压能,静压能又转化为位能使水沿壁面上升。

边上水上升后,中心能减少,形成空隙,产生真空度,故在同一个大气压下,中心凹下去。

(1) 泵轴带动叶轮旋转,充满叶片之间的液体也跟在旋转,在离心力作用下,液体从叶轮中心被抛向叶轮边缘,使液体静压能、动能均提高。

(类似我们旋转雨伞,伞上面的雨滴飞出去)。

(2) 液体从叶轮外缘进入泵壳后,由于泵壳中流道逐步加宽,液体流速变慢,又将部分动能转化为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强从泵的排出口进入排出管路输送到所需场所。

(3) 当泵内液体从叶轮中心被抛向外缘时,在中心出形成低压区,由于贮槽液面上方的压强(一般为 1 [atm])大于吸入口处的压强,在压强差的作用下,液体便经吸入管路,连续地被吸入泵内,以补充被排出的液体。

离心泵之所以能够输送液体,主要依靠高速旋转的叶轮,产生离心力,在惯性作用下,获得了能量以提高压强。

3、 离心泵使用注意点:离心泵启动时,必须灌满水否则产生气缚。

何为气缚?离心泵启动时,如果泵壳与吸入管路没有充满液体,则泵壳内存有空气,由于空气的密度远小于液体的密度,产生的离心力小,(离心力F ∝m 、↓m ↓F )从叶轮中心甩出的液体少,因而叶轮中心处所形成的低压(真空度)不足以将贮槽内的液体吸入泵内(打不上水),此时虽启动离心泵也不能输送液体,此种现象称为气缚。

4、离心泵的主要部件: (1)叶轮(泵的心脏)如讲义离心泵的结构图,每个叶轮有6~~12片弯曲的叶片。

A 、 按有无盖板分()()()⎪⎩⎪⎨⎧无前后盖板开式无前盖板半闭式有无前后盖板闭式B 、按吸液方式分⎩⎨⎧双吸单吸C 、平衡孔:在叶轮后盖板上钻一些小孔,它的作用是使盖板与泵壳之间的空腔中一部分高压液体漏到低压区(吸入口处)以减少叶轮两侧的压力差。

从而起到平衡一部分轴向推力的作用。

(2)泵壳又称为蜗壳,因壳内有一个截面逐渐扩大的蜗牛式通道,泵壳不仅作为一个汇集由叶轮抛出液体部件,而且使部分动能有效地转变为静压能。

在叶轮与泵壳之间有时还装一个固定不动而带有叶片的圆盘,这个圆盘称为导轮,由于导轮具有很多逐渐转向的流道,使高速液体流过时,均匀而缓和地将动能转变为静压能,减少能量损失。

(3)轴封装置:泵轴与泵壳之间的密封称为轴封。

其作用是防止高压液体从泵壳内沿轴而漏出,或者空气以相反方向漏入泵壳内。

轴封⎩⎨⎧机械密封填料密封二、离心泵的主要性能参数与特性曲线 1、离心泵的主要性能参数(1) 流量:离心泵的流量又称送液能力,是指泵在单位时间里排到管路系统的液体体积[]s LQ 或[]h m 3。

(2) 压头:离心泵的压头又称为泵的扬程,是指泵对单位重量的流体所提供的有效能量,[][]m NmN H =.。

升扬高度: 离心泵将液体从低处送到高处的垂直距离.[]m(3) 效率: η反应能量损失⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧能量损失。

均产生摩擦引起的叶轮外表面与液体之间之间,泵轴与填料函泵运转时,泵轴与轴承机械损失流体摩擦阻力。

击而损失能量,即粘性在泵体内产生冲一致输送流量与设计流量不量损失产生流动阻力而引起能壳流速与方向的改变粘性液体流过叶轮与泵水力损失低压区高压液体从平衡孔漏回至泵壳外高压液体从填料函处漏壳间缝隙漏回吸入口高压液体通过叶轮与泵容积损失,,;,;;m h v ηηηο (4) 轴功率:离心泵的轴功率是泵轴所需的功率.当泵直接由电机带动时,也就是电动机传给泵轴的功率N, [J/s] 或 [w] 或 [kw]。

e N : 有效功率, 是输送到管道的液体从叶轮所获得的功率.由于有容积损失,水力损失与机械损失,所以泵的轴功率大于有效功率,即: ηeN N =g QH N e ρ=-Q 泵的流量[]s m 3-H 泵的压头[]m-ρ被送液体的密度[]3m kg -g 重力加速度[]2s m如e N 用[kw]计算ηηηηm h v =102100081.9ρρρQH QH g QH e N =⨯==ηρ102QH N = [kw] ηρW Q N =W --[]1-*kg J 2、离心泵的特性曲线表示流量Q 与η⋅⋅N H 变化的关系曲线,它由泵的制造厂通过实验测定后提供的。

离心泵的特性曲线只与叶轮的直径、转速和测试时的工作介质有关,它是在泵的制造厂通过实验作出来的。

①Q H -曲线 ↑Q ↓H②Q N -曲线 ↑Q ↑N 0=Q =N 最小故离心泵启动时,应关闭出口阀,使启动电流减少以保护电机。

③Q -η曲线 0=Q 0=η↑Q ↑η 上升到最大值 ↑Q ↓η4B20型离心泵的特性曲线N=2900 r/minηη离心泵在一定转速下有一最高效率点,称为设计点。

离心泵的工作范围称为泵的高效率区。

通常为最高效率的92%左右 ,离心泵最好在此范围内工作。

-A 最高效率点,称为设计点。

泵在最高效率相对应的流量及压头下工作最为经济,所以与最高效率点对应的N H Q ..称为最佳工况参数。

离心泵的铭牌上标出的性能参数就是指该泵在运行时效率最高点的状况参数,根据输送条件的要求,离心泵往往不可能正好在最佳状况点上运转,因此一般只能规定一个工作范围,称为泵的高效率区,通常为最高效率的92%左右,如图中波折线所示的范围。

究竟离心泵的特性曲线是如何作出来的请看例题 : 当转速为min2900r控制阀门 01=Q 1H 1N 1η2Q 2H 2N 2η3Q 3H 3N 3η联接以上各点,即得该泵在固定转速之下的特性曲线。

三、离心泵性能的改变和换算泵的生产部门所提供的离心泵特性曲线一般都是在一定转速和常压下,以常温的清水为例作实验测得的。

若输送的液体物理性质(密度和粘度)或泵的转速或叶轮直径改变,泵的性能参数及生产部门所提供的泵的特性曲线应当重新换算。

1、 密度的影响① 对H 的影响 Θ离心力R m F 2ω=ρV m =↑↑↑F m ..ρ↑p (出口静压强 ) 则又H gp=ρρ∴对H 无影响 ② 对Q 的影响 g CV Cm AR v mA Fp ρ====2V C g g CV g p H '===ρρρ 离心泵的流量取决于离心泵叶轮直径和离心泵的转速与流体密度无关。

③ 对η的影响 ηηρρη===g QH gQH NN e 密度对效率无影响。

④ 对N 的影响 ηρ102QH N =↑↑N .ρ 2、 粘度的影响被输送的液体粘度若大于常温下清水的粘度,则泵体内部的能量损失增大、泵的 压头、流量要减少,(H 与Q 一致↓↓Q H .),效率下降。

轴功率增大,即泵的特性曲线发生改变。

(NgHQ ρη=Θ∴↓ηηρ102QH N =↑N )。

当输送液体的运动粘度)(ρμυυ=υ<20[cst]无须换算。

当υ>20[cst]时,离心泵的性能需按下式进行换算,即:Q C Q Q ='H C H H ='ηηηC =' 式中:Q 、H 、η——离心泵输送水时的流量、压头、效率;'Q 、'H 、'η——离心泵输送其它粘性液体的流量、压头、效率; Q C 、H C 、ηC ——流量、压头、效率的换算系数。

3、 离心泵的转速影响 (其推导参考大连化学工业学校,湖北省工业技术学校合编1966年版《泵和压缩机》132p 利用相似定律推导出来的)。

当液体的粘度不大且泵的效率不变时,泵的流量、压头、轴功率与转速的近似关系为 当泵的转速变化小于20%时,用离心泵比例定律换算偏差不大。

比例定律:2121n n Q Q =22121⎪⎪⎭⎫ ⎝⎛=n n H H 32121⎪⎪⎭⎫⎝⎛=n n N N式中:1Q 、1H 、1N ——转速为1n 时的泵的性能参数;2Q 、2H 、2N ——转速为2n 时的泵的性能参数。

4、 叶轮直径的影响当叶轮直径变化不大、叶轮外径的减小变化不大于20%的情况下,转速不变时,叶轮直径和流量、压头、轴功率之间的 近似关系为:22''D D Q Q =222''⎪⎪⎭⎫ ⎝⎛=D D H H 322''⎪⎪⎭⎫⎝⎛=D D N N 称为切割定律,此式只有在叶轮直径的变化不大于20%时才适用。

'Q 、'H 、'N ——叶轮直径为2'D 时泵的性能; Q 、H 、N ——叶轮直径为2D 时泵的性能;某离心泵输送水的特性曲线已由泵的生产厂家标出来了,现在是用输送水的泵输送[]3900m kg =ρ,粘度为[]cst 220的油。

液体的性质发生了改变,由前分析可知:离心泵的压头、流量、效率均与密度无关,只是轴功率随密度的增加而增加。

代入ηρ102QH N =[kw]中计算。

粘度的影响 当υ>[]cst 20离心泵的性能必须按下式 Q C Q Q ='H C H H ='ηηηC =' 进行计算。

查本讲义, 清水 C 020 、 []32.998m kg =ρ 、[]s a P .1050.1005-⨯=μ[]s m 26510007.12.9981050.100--⨯=⨯==ρμν又因为 [][][]s m cst st 24101001-==[][]cst s m 62101=[]cst D 007.11010007.166=⨯⨯=-油[]cst 220=υ[]cst 993.218007.1220=-=-水油υυ当υ>[]cst 20时,离心泵性能就须校正 即 υ>)水(C 0202υ 必须校正。

必须用C 020的清水最高效率点对应的流量——额定流量S Q ,查有关图以求取Q C 、H C 、ηC 。

四、离心泵的气蚀现象与允许吸上高度1、 离心泵内的压强变化 R m F 2ω=ωm 常数 ↑R ↑离F ↑p ↑H由g CV c AF p ρ===离V C gpH '==ρ'C —常数 V —输液体积[]3m 泵的工作原理:通过叶轮带动液体匀速旋转将离心力转变为静压头的过程,当然流体由静即动也产生部分动压头,二者之和为总压头。

相关文档
最新文档