基于MC1496的混频器的设计

基于MC1496的混频器的设计
基于MC1496的混频器的设计

课程设计

班级:

姓名:

学号:

指导教师:

成绩:

电子与信息工程学院

信息与通信工程系

基于MC1496的混频器的设计

一、概述

混频器在高频电子线路和无线电技术中,应用非常广泛,在调制过程中,输入的基带信号都要经过频率的转换变成高频的已调信号。在解调过程中,接受的已调高频信号也要经过频率转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用比较广泛,如AM广播接收机将已调信号535KHZ-1605KHZ要变成465KHZ的中频信号,电视接收机将48.5M-870M的图像信号要变成38M的中频图像信号。再发射机中,为提高发射频率的稳定度,采用多级式发射机。用一个频率较低的石英晶体振荡器为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加减乘除运算变换成射频,所以必须使用混频电路。由此可见,混频电路是电子技术和无线电专业必须掌握的关键电路。

关键词:模拟相乘器MC1496;混频电路

1.混频器

1.1 基本概念

混频是将已调波中载波频率变换为中频频率,而保持调制规律不变的频率变换过程。

f I = f L - f C 或f I = f L+f C (其中f I表示中频频率,f L表示本振频率,f C表示载波频率。一般取差频)

图1是混频电路组成原理图。混频电路的输入是载频为f

c 的高频已调波信号u

s

(t)和

频率为f

L 的本地正弦波信号(称为本振信号)u

L

(t), 输出是中频为f

I

的已调波信号u

I

(t)。

通常取f

I =f

L

-f

c

。以输入是普通调幅信号为例,若u

s

(t)=U

cm

[1+m

a

u

Ω(t)]cos2πf c t, 本振

信号为u

L (t)=U

Lm

cos2πf

L

t, 则输出中频调幅信号为u

I

(t)=U

Im

[1+m

a

u

Ω(t)]cos 2πf I t。可

见, 调幅信号频谱从中心频率为f

c 处平移到中心频率为f

I

处, 频谱宽度不变, 包络形状不

变。图2是相应的频谱图。

图2中(a )混频前(b )混频后

中频调幅波上下边带与原调幅波上下边带是倒置的

本地振荡信号为高频等幅波

虽然混频电路与调幅电路、检波电路同属于线性频率变换电路, 但它却有两个明显不

同的特点:

① 混频电路的输入输出均为高频已调波信号。由前几节的讨论可知, 调幅电路是将低频调制信号搬移到高频段, 检波电路是将高频已调波信号搬移到低频段, 而混频电路则是将已调波信号从一个高频段搬移到另一个高频段。

② 混频电路通常位于接收机前端, 不但输入已调波信号很小, 而且若外来高频干扰信号能够通过混频电路之前的选频网络, 则也可能进入混频电路。选频网络的中心频率通常是输入已调波信号的载频。

混频电路中的非线性器件对于实现频谱搬移这一功能是必不可少的。 但是另一方面, 其非线性特性不但会产生许多无用的组合频率分量, 给接收机带来干扰, 而且会使中频分量的振幅受到干扰, 这两类干扰统称为混频干扰。它们都会使有用信号产生失真。由于以上两个特点, 混频电路的干扰来源比其它非线性电路要多一些。 分析这些干扰产生的具体原因, 提出减小或避免干扰的措施, 是混频电路讨论中的一个关键问题。

f c f L

f (a) (b)

f I = f L -f c

图2

图1混频电路原理图 C L C c L I L C I C

f f f f

f f f f f f f f ?-?=+=?-??或 >>

1.2变频干扰

(哨声干扰)

信号本振

(交叉(寄生(本振

调制)通道)噪声)

干扰噪声

(互相调制)(倒易混频)

图1-2混频干扰分类及其名称示意图

哨叫干扰是由于变频器不满足时变参量线性电路条件而形成。这是,信号本身的谐波不可忽略,其产生干扰的条件是

︱±pw

l ±qw

c

︱=wI+W

式中,W是可听的音频频率。上式包括以下四种情况

Pw

L -qw

c

=w

I

+W

-pw

L +qw

c

=w

I

+W

pw

L +qw

c

=w

I

+W

-pw

L -qw

c

=w

I

+W

如取wI= wL-wc,则第三种情况是不可能的,第四种情况是不存在的。而是第一、二种

情况可写成pw

L -qw

c

=±(w

I

+W)

通常Wi≥W,因此上式可化简为w

c ≈(p1±1)w

I

/(q-p)

上式表明,当信号频率wc和已选定的中频频率wI满足上式关系时,就可能产生干扰哨叫声。若p和q取不同的正整数,则可产生干扰哨声的信号频率就会有无限多个,并且其值均接近于wI的整数倍或分数倍。但实际上,一旦任何一部接收机的工作频率段都是有限宽的;二因混频器管集电极电流组合中组合频率分量的振幅总是随着(p+q)的增加而迅速地减小,因而只有对应于p和q值较小的信号才会产生明显的干扰哨声,而对应

于p和q较大的信号所产生的干扰哨声均可忽略。

由此可见,减少干扰噪声的方法是合理选择中频频率,将产生最强的干扰哨声的频率移到接收频段以外。其次是限制信号和本振电压的振幅不宜过大。

寄生通道干扰

寄生通道干扰是由于变频器必须工作在非线性状态而形成的。如果变频器前的高频放

大器也具有非线性特性,则当频率为w

M 的干扰信号Vm(t)通过放大器是,产生了w

M

的各次

谐波,用qw

M 表示,q=0,1,2,...他们与本振信号各次谐波差排,如满足︱±pw

L

±qw

M

︱≈

Wi

该干扰信号将通过接收机,造成对有用信号的干扰,称这种烦扰为寄生通道干扰。

对于中频干扰,混频电路十几起到中频放大的作用,因而它具有比有用信号更强的传输能力;对于像频干扰,它具有与有用通道相同的变换能力。只要这两种干扰信号一旦加到混频电路输入端,就无法将其削弱或抑制。因此,减少中频和像频干扰的主要方法是提高混频电路前级的选择性。

交叉调制干扰

交叉调制干扰是由于混频器或高频放大电路的非线性传输特性产生的。

交调干扰仅与干扰信号振幅有关,而与频率无关,因此它是一种危害性更大的干扰,减少交调干扰的有效方法是提高混频电路前级的选择性。

互相调制干扰

互相调制干扰也是由于混频电路或高频放大电路的非线性传输特性产生的。

减少互调干扰的主要方法是提高混频电路前的选择性和设法是混频器件特性四次方项以及四次方项以上的偶次方项系数为零。

本振噪声干扰与倒易混频干扰

一般情况下,特别是在厘米波段混频电路中,本机振荡电路提供本真信号的同时,还不可变地会产生噪声,其频谱按本振回路谐振特性曲线形状分布。这样,混频器件就可以把那些与本振频率相差一个中频的噪声频谱分量变换为中频通频带内的噪声,使混频电路的噪声输出增大,通常称为本振噪声干扰。

减少振荡器噪声影响的一个最基本和最重要的手段是提高振荡器的选频回路的Q值,回路Q值越高,谐振曲线也越尖锐,对噪声的衰减也越大,一般LC组成的回路,其空载Q 值一般在300以下。为提高回路Q值人们采用了许多方法,其中采用石英晶体振荡器是最有效的方法之一。

2. 模拟乘法器

1. 基本概念

含义:可实现任意两个互不相关模拟信号相乘的三端口的非线性电子器件 (A M 为相乘增益,亦称比例系数或标尺因子) 模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图3所示。

若输入信号为x u , y u ,则输出信号o u 为:

o u =k y u x u (k 为乘法器的增益系数或标尺因子,单位为V 1-.)

根据两个输入电压的不同极性,乘法输出的极性有四种组合,如图4所示的工作象限来说明。

若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象

I

(+) (+)=(+)

II

(-) (+)=(-) III (-) (-)=(+) IV (+) (-)=(-)

图4模拟乘法器的工作象限

U x

图3模拟乘法器电路符号

U y

o

0M 12

v v v =+A

限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。

一个理想的乘法器中,其输出电压与在同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。

对于一个理想的乘法器,当x u 、y u 中有一个或两个都为零时,但在实际乘法器中,由于工作环境、制造工艺及元件特性的非理想性,当0=x u ,0=y u 时,0≠o u ,通常把这时的输出电压称为输出失调电压;当0=x u ,0≠y u (或0=y u ,0≠x u )时,0≠o u ,这是由于y u (或x u )信号直接流通到输出端而形成的,称这时的输出电压为y u (或x u )的输出馈通电压。输出是调电压和输出馈通电压越小越好。此外,实际乘法器中增益系数K 并不能完全保持不变,这将引起输出信号的非线性失真,在应用时需加注意。

2.传输特性

① 直流和低频传输特性

零输入响应 :零输入状态时,是非零的输出,存在误差电压(输出失调电压和馈通误差电压)

直流传输特性 (一个输入为直流时) 平方律特性 (V1=V2) ② 非线性传输特性 ③ 正弦信号传输特性

二、硬件设计

下图为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。本实验中输入

信号频率为fS =10MHz(由DDS 信号发生器输出),实验箱自己提供的信号源作为本振信号,其频率fL =16.465MHz 。

为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频

放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰影响最大的是中频干扰和镜象干扰。

MC1496采用双电源+12V,-12V供电。R12,R13组成平衡电路,J7为本振信号输入端;J8为接收信号输入端;F2为中心频率为4.5MHz带通滤波器。输入信号频率f

s

=4.5MHZ,本振

频率f

L =8.7MHZ。电路的作用是将中心频率为f

s

的信号,变换为中心频率为f

I

的信号。电

路的基本工作过程是,接收到的频率为f

s 的信号和频率为f

L

的本振信号分别加到非线性集

成模拟相乘器的两个相乘端,相乘的结果经过晶体滤波器,选出其中的f

I

信号,实现了频率变换的功能。

MC1496构成的混频器

三、模拟仿真

根据设计方案,应用计算机Multisim软件进行了模拟仿真。显示输出得到双边带的调幅波波形,及调幅波的频谱。

四、结论和总结

结论:有计算值与仿真值的比较可得,本设计基本完成了设计要求,并且由示波器可观察到相应的波形,仿真值基本满足要求,说明电路各部分均正常工作。美中不足的是仿真结果同理论值仍存在一定的误差,需要进一步改善电路的性能,使电路更加精确和抗干扰能力更强。

总结:这次课程设计我们按照课程设计上的程序,先复习混频电路的原理,然后选择电路,计算关键元件的值,学习Multisim的使用,最后连线调试出预期的混频和滤波效果.在做课程设计报告时我对混频的认识只限于基本原理和理论---在通信接受机中,混频电路的作用在于将不同载频的高频已调波信号变换为同一个固定载频中的高频已调波信号。调幅信号频谱宽度不变,包络形状不变。正式开始设计后,在对电路的实现中,我先学习了Multisim软件的使用,这个虚拟电子实验室可以仿真各种电路。应用过程中我发现这个软件确实功能强大的操作软件!

在搭设电路的过程中,我对混频电路有了进一步的认识,将理论知识加入实际设计

当中去,更加加深了我对理论知识的理解和认识。在设计过程中曾遇到高频干扰,输出波形失真相当严重,经过同学的帮助,失真现象有了明显的改善,最终得到比较理想的结果。

两周的课程设计中遇到过各种困难,有学习软件时的困难,有调试时的学术问题。同学的帮助下,终于克服了困难。从中我学习到遇到问题时怎么分析问题,解决问题,如何分清主次。课程设计使我获益良多,它将很好地衔接理论与实际的工作

参考文献

[1] 张义芳.高频电子线路(第四版).哈尔滨工业大学出版社.2009年7月

[2] 杨翠娥.高频实验与课程设计.哈尔滨工程大学出版社.2005年1月

[3] 陈邦媛.射频通信电子线路学习指导.科学出版社.2007年6月

[4]李新春,陈俊霏.高频电路实验与仿真.高等教育出版社.2008年6月

平衡混频器设计

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 ) 2cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以2 π 相位差分配到两只二极管上,故这类混频器称为 2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑∑ ∞-∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

场效应晶体管混频器原理及其电路

场效应晶体管混频器原理及其电路 混频器一般由输入信号回路、本机振荡器、非线性器件和滤波网络等4部分组成,如图1所示。这里的非线性器件本身仅实现频率变换,本振信号由本机振荡器产生。若非线性器件既产生本振信号,又实现频率变换,则图1变为变频器。所谓混频,是将两个不同的信号(如一个有用信号和一个本机振荡信号)加到非线性器件上,取其差频或和频。 图1 混频器的组成部分 混频器可根据所用非线性器件的不同分为二极管混频器、晶体管混频器、场效应管混频器和变容管混频器等。混频器又可根据工作特点的不同,分为单管混频器、平衡混频器、环形混频器、差分对混频器和参量混频器等。在设计混频器时应注意如下几点:(1)要求混频放大系数越大越好。混频放大系数是指混频器的中频输出电压振幅与变频输入信号电压振幅之比,也称混频电压增益。增大混频放大系数是提高接收机灵敏度的一项有力措施。(2)要求混频器的中频输出电路有良好的选择性,以抑制不需要的干扰频率。(3)为了减少混频器的频率失真和非线性失真以及本振频率产生的各种混频现象,要求混频器工作在非线性特性不过于严重的区域,使之既能完成频率变换,又能少产生各种形式的干扰。(4)要求混频器的噪声系数越小越好,在设计混频器时,必须按设备总噪声系数分配给出的要求,合理地选择线路和器件以及器件的工作点电流。(5)要考虑混频器的工作稳定性,如本机振荡器频率不稳定引起的混频器输出不稳等。(6)注意混频器的输入端和输出端的连接条件,在选定电路和设计回路时,应充分考虑如何匹配的问题。场效应管混频性能比三极管混频好,原因在于场效应管工作频率高,其特性近似平方率,动态范围大,非线性失真小,噪声系数低,单向传播性能好。场效应管混频器实际电路举例(1)有源混频器1)200MHz 场效应管混频器电路(有源混频器) 为提高混频增益,在下列的A、B电路中输入、输出端都有匹配网络完成阻抗匹配,获得大的变频增益;并且L3,C5均谐振ωL,起了抑制本振信号输出的作用。电路A)υs,υ L均从栅极注入(如图2所示)。 图2 υs,υL均从栅极注入电路图 电路B)υs从栅极注入,本振υL从源极注入(如图3所示)。

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

ADS射频电路课程设计——混频器设计与仿真

混频器的设计与仿真 设计题目:混频器的设计与仿真 学生姓名: 学院: 专业: 指导老师: 学号: 日期: 2011年 12 月 20 日

目录 一、射频电路与ADS概述 (3) 1、射频电路概述 (3) 2、ADS概述 (3) 二、混频器的设计 (7) 1.混频器的基本原理 (7) 2、混频器的技术指标 (9) 三、混频器的设计 (9) 1、3 D B定向耦合器的设计 (9) 1.1、建立工程 (9) 1.2、搭建电路原理图 (10) 1.3、设置微带线参数 (11) 1.4、耦合器的S参数仿真 (12) 2、完整混频器电路设计 (17) 3、低通滤波器的设计................................... 2错误!未定义书签。 四、混频器性能仿真 (23) 1、混频器功能仿真 (23) 1.1、仿真原理图的建立 (23) 1.2功能仿真 (25) 2、本振功率的选择 (27) 3、混频器的三阶交调点分析 (28) 3.1、三阶交调点的测量 (28) 3.2、三阶交调点与本振功率的关系 (31) 4、混频器的输入驻波比仿真 (31) 五、设计总结 (33)

一、 射频电路与ADS 概述 1、 射频电路概述 射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF )电路”或“微波电路”等等。 工程上通常是指工作频段的波长在10m ~ 1mm 或频率在30MHz ~ 300GHz 之间的电路。此外,有时还含有亚毫米波( 1mm ~0.1mm 或300GHz ~ 3000GHz )等。 一方面,随着频率升高到射频频段,通常在分析DC 和低频电路时乐于采用的基尔霍夫定律、欧姆定律以及电压电流的分析工具,已不精确或不再适用。分布参数的影响不容忽略。另一方面,纯正采用电磁场理论方法,尽管可以很好的全波分析和计及分布参数等的影响,但很难触及高频放大器、VCO 、混频器等实用内容。所以,射频电路设计与应用已成为信息技术发展的关键技术之一。 2、ADS 概述 ADS 电子设计自动化(EDA 软件全称为 Advanced Design System ,是美国安捷伦(Agilent )公司所生产拥有的电子设计自动化软件;ADS 功能十分强大,包含时域电路仿真 (SPICE-like Simulation)、频域电路仿真 (Harmonic Balance 、Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真设计(DSP );支持射频和系统设计工程师开发所有类型的 RF 设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC ,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件软件。 2.1 ADS 的仿真设计方法 ADS 软件可以提供电路设计者进行模拟、射频与微波等电路和通信系统设计,其提供的仿真分析方法大致可以分为:时域仿真、频域仿真、系统仿真和电磁仿真;ADS 仿真分析方法具体介绍如下: 2.1.1 高频SPICE 分析和卷积分析(Convolution ) 高频SPICE 分析方法提供如SPICE 仿真器般的瞬态分析,可分析线性与非线性电路的瞬态效应。在SPICE 仿真器中,无法直接使用的频域分析模型,如微带线带状线等,可于高频SPICE 仿真器中直接使用,因为在仿真时可于高频SPICE )()/(1038Hz f s m f c ?==λ

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

FPGA_ASIC-基于FPGA的正交数字混频器的设计与验证

基于FPGA的正交数字混频器的设计与验证 摘 要:本文研究了用DDS加乘法器实现正交数字混频器的设计及其完整的验证方法,用DDS产生的正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。其中DDS采用正弦和余弦波形幅值存储功能依靠片内EAB 实现,省去了片外ROM,符合片上系统(SoC)的思想;用MATLAB软件增强QUARTUS的仿真功能,得到的仿真结果完整而且直观。 关键词:FPGA;NCO;DDS;MATLAB 中图分类号:TN773 Design and Certification of Quadrature NCO Based on FPGA Abstrct: The paper mainly studies the design and certification of quadrature NCO realized by DDS and multiplication based on FPGA, sin and cos sequences are produced by DDS, and the two output sequences then multiplicate with the input digital sequence, after by LPF we can get the results of quadrature NCO. in which, the wave amplitude are stored in memory of on-chip EAB. The emulational function of QUARTUS are enganced by MATLAB, and the result is rounded and intuitionistic. Key Words: FPGA;NCO;DDS;MATLAB 1 概述 数字混频器是数字通讯中调制解调单元必不可少的部分,同时也是各种数字频率合成器和数字信号发生器的核心。随着数字通信技术的发展,对传送数据的精度和速率要求越来越高。如何得到可数字的高精度的高频载波信号是实现高速数字通信系统必须解决的问题,利用FPGA(现场可编程逻辑门阵列)实现数字混频具有设计灵活、精确度高、频率高和稳定性好等优点,可以产生各种调制信号,广泛应用于通信、遥测、电子对抗和仪表工业等领域。 数字混频可采用CORDIC加累加器或DDS加乘法器实现,由于DDS加乘法器实现比较简捷因此得到普遍应用, DDS产生正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。 2 DDS的实现 2.1 DDS的原理与设计 DDS的作用是产生正交的正弦和余弦样本。正(余)弦样本可以用实时计算的方法产生,但这只适用于信号采样频率很低的情况。在软件无线电超高速信号采样频率的情况下,用实时计算的方法实现比较困难。此时,产生正弦波样本的最有效、最简便的方法就是查表法,即事先根据各个正弦波相位计算好相位的正弦值,并按相位角度作为地址存储该相位的正弦值数据,因此,DDS采用图1所示的顶层电路。其基本功能包括:接收频率控制字FSW进行相位累加;以相位累加器的输出为地址,对存有正 (余) 弦幅度值的存储器进行寻址。输出的离散幅度码即为DDS的输出结果,用查表法实现DDS的性能指标取决于查表的深度和宽度,即取决于表示相位数据的位数和表示正弦值数据的位数。 假设存储器有1024个波形数据,系统时钟频率FCLK为1.024MHZ,相位累加器字长N=10:当频率字FSW=1,在系统时钟作用下,相位累加器累加1024个系统时钟后溢出,即经过1024个系统时钟输出波形循环一周,系统输出频率FOUT=FCLK/1024=1KHZ。当频率字FSW=2,相位累加器累加512个系统时钟后溢出,即经过512个系统时钟输出波形循环一周,系统输出频率 FOUT=FCLK/512=2KHZ。可见,输出频率FOUT与系统时钟频率FCLK关系为FOUT=FSW*FCLK/2N,从存储器中读出数据的过程是对存储器所存储波形的再次采样,一个周期查表的点数即为采样点数,根据奈奎斯特定理,每个周期至少采样2点才能重构波形,这样理论上最大输出频率

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

模拟乘法器MC1496 1596设计混频电路

班级: 姓名: 学号: 指导教师:林森 成绩: 电子与信息工程学院 信息与通信工程系

混频器的设计 1概述 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。 1.1混频器原理 混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,

变频器硬件设计方案

一.设计思路 通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元;开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSAl20组成。二.控制回路 1.整流电路 整流电路中,输人为380V工频交流电。YRl~YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。输人电源经二极管整流桥6R130G-160整流为直流,并经电的作用。发光二极管用于指示变频器的工作状态。Rl是启动过程中的限流电阻,由El~E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放于E1~E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗。继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。R1应选择大功率电阻,本电路中选择的是20W的水泥电阻,而且为了散热该电阻安装时应悬空。电路中的+5V、+12V和±15V电压是由开关电源提供的电压。LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用。UDCM是电压传感器的输出信号。通过外接插排连接至外接计算机控制电路。 2.开关电路 输出电压进行变换,为IPM模块和外接的计算机控制电路提供电源,提供的 电压为±该电路主要由PWM控制器TL3842P、MOSFETK1317和开关变压器组成, 其功能是对整流电路的流15V、+1直2V、+5v。

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

混频器仿真实验报告

混频器仿真实验报告 一.实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理以及实验电路原理图 (一).晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 (二).模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 三.实验内容及记录 (一).晶体管混频器电路仿真 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析” 选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

混频电路设计3

通信电路实验报告 ——谐振功率放大器设计及仿真 姓名:陈强华 学号: 班级: 专业:通信工程

实验三混频器设计及仿真 一、实验目的 1、理解和掌握二极管双平衡混频器电路组成和工作原理。 2、理解和掌握二极管双平衡混频器的各种性能指标。 3、进一步熟悉电路分析软件。 二、实验准备 1、学习二极管双平衡混频器电路组成和工作原理。 2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、 LO 本振输入频率:, RF 输入频率: 1MHz, IF 中频输出频率: 450KHz。 2、 LO 本振输入电压幅度: 5V, RF 输入电压幅度:。 3、混频器三个端口的阻抗为50Ω 。 4、在本实验中采用二极管环形混频器进行设计,二极管采用 DIN4148。 5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。 四、设计步骤 1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。两个输入端分别为射频端( RF)和本振( LO),输出端称为中频端( IF)其基本的原理如下图所示。

通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下: 输入的两个信号的频率分别为ωRF \ωLO ,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO ?ω (下变频),从而实现变频功能。在本试验中,我们采用二极管环形混频器,其的原理电路如图 3-2 所示,其中v V t RF RF RF = cosω ,v V t LO LO LO = cosω ,并且有V V LO RF >> ,因此二极管主要受到大信号v LO 控制,四个二极管均按开关状态工作,各电流电压的极性如图 3-2 所示。在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。因此,混频电路可以拆分成两个单平衡混频器。

简单二阶低通滤波器设计与仿真

二阶低通滤波器部分 1、设计任务 信号放大后,需要进行滤波,滤除干扰,温度信号是一个缓慢变化的信号,在此需要设计出一个截止频率为10Hz 左右的低通放大器。因二阶低通滤波器的频率特性比一阶低通滤波器好,故决定采用由型号为OP07的运算放大器组成的二阶低通滤波器,OP07运放特点:OP07具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,具有低温度漂移特性。另外,需要求滤波电路的幅频特性在通带内有最大平坦度,要求品质因数Q=0.707. 2、电路元件参数计算和电路设计: 根据二阶低通滤波器的基础电路进行设计,如图3.1所示。 图3.1二阶低通滤波器的基础电路 该电路(1)、传输函数为:)()()(i o s V s V s A =2 F F )()-(31sCR sCR A A V V ++= (2)、通带增益 :F 0V A A = (3)、截止频率:RC f c π21=其中RC 1c =ω称为特征角频率 (4)品质因数:O A Q -= 31, Q 是f=fc 时放大倍数与通带内放大倍数之比 注: 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。 由O A Q -=31=0.707得放大倍数586.1==O VF A A 一般来说,滤波器中电容容量要小于F μ,电阻器的阻值至少要Ωk 级。 由RC f c π21==10Hz,取C=0.5F μ,计算得R ≈31.8Ωk 又因为集成运放要求两个输入端的外接电阻对称,可得:R R R A VF 2//)1(11=-

求得:Ω=k R 1.1721 电路仿真与分析: (1)采用EDA 仿真软件multisim 13.0对有源二阶低通滤波器进行仿真分析、调试,从而对电路进行优化。Multisim 仿真电路图如图3.2所示 图3.2二阶低通滤波器仿真电路图 (2)通过仿真软件中的万用表验证电路是否符合要求: 设输入电压有效值为1V 当f=1Hz 时,输出如图3.3所示。 图3.3 由图可知,在通带内有增益585.1==VF O A A ,与理论值1.586相近 当Hz f f c 10==时,输出如图3.4所示。

相关文档
最新文档