基于层次分析法的灰色关联度综合评价模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章基于层次分析法的灰色关联度综合评价模型
灵活型公共交通系统是一个复杂的综合性系统,单一的常规评价方法不能够准确对系统进行全面评价【39】,这就要求在进行灵活型公共交通系统评价时,结合系统固有特点,根据各种评价方法的优缺点,构建适合该系统的综合评价模型。本章以灵活型公共交通系统评价指标体系为基础,参考常规型公共交通系统评价方法,建立了基于层次分析法的灰色关联度综合评价模型。
1.1评价方法适应性分析
灰色关联度分析法基于灰色系统理论,是一种多指标、多因素分析方法,通过对系统的动态发展情况进行定量化分析,考察系统各个要素之间的差异性和关联性,当比较序列与参考序列曲线相似时,认为两者有较高关联度,反之则认为它们之间关联度较低,从而给出各因素之间关系的强弱和排序【50】。与传统的其它多因素分析法相比【80】【81】【82】,灰色关联度分析法对数据量要求较低,样本量要求较少,计算量较小,可以利用各指标相对最优值作为参考序列,为最终综合评价等级的确定提供依据,而不必对大量实践数据有过高要求,能够较好解决灵活型公共交通系统作为新型辅助式公系统没有足够的经验数据支撑其模型参数的问题。此外,灵活型公共交通系统评价体系是基于乘客、公交企业、政府三方主体的综合评价体系,涉及因素较多,指标较为复杂,部分指标之间存在关联性和重复性,信息相对不完全,而灰色系统的差异信息原理以及解的非唯一性原理,可以很好的解决这一问题【79】。综上所述,认为灰色关联度分析法比较适合于灵活型公共交通系统的综合评价。然而灰色关联度分析法将所有指标对于总目标的影响因素大小视作等同,没有考虑指标权重的影响,评价值可信度较低,应当通过科学的方法,确定指标权重,将其与关联度系数相结合,增加评价结果的科学性和有效性【83】。
常见的权重确定方法包括,专家打分法、等权重法、统计试验法、熵值法等。等权重法不能很好的体现不同指标影响程度的差异性,并且在综合评价值相差不大时不利于方案的选择【84】;专家打分法、统计试验法评价的主观性较高,并且不适用于指标较多的情况【85】;行和正规化法、列和求逆法等指对判断矩阵的一部分数据进行利用,结果可信度不高【86】;最小偏差法、对数回归法等,利用同一指标不同方案值,认为变化程度较大的指标传递更多信息,应具有较高权重,然而对于灵活型公共交通系统单方案综合水平等级评价的情况,并不适用。本文应用层次分析法确定系统各指标权重,层次分析法【51】【52】(Analytic Hierarchy Process—AHP)是一种典型的系统工程分析方法,它将人们复杂的系统思维过程数学化、层次、条理化,把复杂问题的各种因素整合为相互联系的有序层次【53】,有助于保持决策者思维的一致性,适用于各种类型的复杂综合评价系统,能够有效的将定性分析和定量分析进行综合集成,具有的可置换性、互容性、对称性等较优性质,是目前确定指标权重的一种常用方法。
鉴于此,本文引入了基于层次分析法的灰色关联度综合评价模型【54】【55】【56】,在建立基于三方主体的综合评价体系同时量化评价指标的基础上,进一步对各指标进行无量纲化处理,通过层次分析法确定各指标权重,进而建立灰色关联度评价矩阵,与各指标权重相结合,确定灵活型公共交通系统综合评价结果。考虑到灵活型公共交通系统综合评价体系评价指标较多,本文采用了基于灰色关联度的二级指标评价矩阵,由低层向高层逐步进行评价,避免
了由于每一个评价指标分得的权重较小,造成评价矩阵信息丢失较多的问题。灰色关联度矩阵的应用,使得最终评价结果以占各等级比例的形式呈现,不仅给出了系统最终评价等级,而且给出了系统在各个等级内所占比例,能够更全面的反映系统的综合水平。
利用基于层次分析法的灰色关联度法对灵活型公共交通系统进行综合评价的具体步骤可分为以下七步:
1. 评价指标无量纲化
根据评价指标的实际评价值,按照指标特性进行无量纲化处理,将没有统一计量标准的各指标,转化为[0,1]之间的统一的量化指标,消除它们之间的量纲效应。
2. 确定综合评价等级
根据一定的标准和尺度,将综合评价等级确定为(优秀,良好,一般,较差,差)五个等级,作为综合评价结果的衡量标准。
3. 确定指标权重
基于层次分析法,通过构造判断矩阵,对判断矩阵进行一致性检验,并确定一级、二级各指标权重。
4. 建立二级指标评价矩阵
根据规定的指标评价等级,对无量纲化的二级指标值进行单独评价,形成二级指标评价矩阵。
5. 建立灰色关联度评价矩阵
通过关联度系数计算公式,对无量纲化指标进行关联度系数计算,形成二级指标的灰色关联度评价矩阵。
6. 确定一级指标评价向量
二级指标灰色关联度评价矩阵以及二级指标权重向量,得出一级指标灰色关联度评价矩阵,结合一级指标权重向量,最终获得一级指标评价向量。
7. 确定综合评价结果
根据一级指标评价向量,可知系统对于五个等级的不同关联度情况,亦可根据不同评价等级标准值向量,获得灵活型公共交通系统综合评价结果。
1.2 评价指标的无量纲化
综合评价模型具有呈多层次结构分布的指标体系,指标数量较多,特点各不相同,各评价指标没有统一的计量标准,评价值具有不同的单位,并处于不同的计量范围当中,不具有任何可比性。为了消除各评价指标之间的量纲效应,确定评价指标的灰色关联度评价矩阵,需要将各评价指标进行无量纲化处理,使各个评价值转化为0~1之间的具体数值,从而使建模具有通用性。
一般情况下,评价指标分为越小越优型(例如成本、污染等负面影响因子)和越大越优型(例如效益、安全性等正面影响因子)两种类型,如果用U i (i=1,2)分别表示这两种类型的评价指标集合,那么对于U 中的n 个所有指标来说,可以知道:
2
121
i i U U U U ==⋂=∅∑
公式 1-1
对于评价指标集合U i ∈U ,定义它的评价值的取值范围,即论域,为d i =[m i ,M i ],其中m i 表示该评价指标集合中评价指标的最小值,M i 表示该评价指标集合中评价指标的最大值,下面定义: