激光深熔焊接的熔池行为与焊接缺陷的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光深熔焊接的熔池行为与焊接缺陷的研究
郑启光辜建辉王涛王忠柯陶星之段爱琴
摘要:分析了激光深熔焊接的小孔机制的数学模型。研究了焊接熔池的稳定性与金属蒸气压的关系及金属蒸气压与等离子体的关系。着重研究了激光焊接工艺参数(包括激光模式、功率、聚焦条件、焊接速度和辅助吹气)对焊接熔池行为的影响,最后,还研究了熔池行为与焊缝组织结构和缺陷(如气孔、裂纹等)的关系。
关键词:激光深熔焊接熔池稳定性金属蒸气反冲压气孔Investigation on melting pool behavior and defects of laser weldi
ng
Zheng Qiguang,Gu Jianhui,Wang Tao,Wang Zhongke,Tao Xingzhi
(National Laboratory of Laser Technology,HUST,Wuhan,430074)
Duan Aiqin
(High Energy Beam Processing Laboratory of National Defense) Abstract:In this paper,a mathematical model of keyhole mechanism of l aser deep welding has been analyzed.We studied the relationship of the stability of weld pool with metallic vapor pressure and the relationship of metallic vapor with plasma.The effect of laser weld parameters(including laser mode,laser power,focusing condition,welding speed and assistant g as etc.)on weld pool behavior have been investigated in detail.Finally,we also have analyzed the weld pool behavior related weld structure and de fects(such as crack and porosity etc.).
Key words:laser deep penetration weld stability of melt pool met al vapor recoil pressure porosity
引言
激光深熔焊接的本质特征为小孔效应。当高功率密度激光束入射到金属表面时,材料被迅速加热,由于热传导作用,材料将产生熔化、蒸发。如果材料蒸发速度足够高,激光束将在金属中打出一个小孔,在小孔内,金属蒸气反冲压力与液态静压力、表面张力之间的作用的动态平衡将维持小孔的存在[1]。小孔内的蒸气压力分布和有关的气体动力学及离化作用将影响到小孔的形状。在激光深熔焊接中,由于存在小孔,激光束能深入到材料内部,被熔化的液态金属环绕在小孔的周围,激光对材料的热输入主要是在小孔壁上的液化界面上,随着激光束的移动,小孔前沿的金属被熔化、汽化,而在小孔后部,液态金属重新凝固形成焊缝。由于小孔附近的很大温度梯度,使小孔周围的金属熔体产生很大的表面张力梯度,其相应的金属蒸气反冲压力使小孔前沿产生强烈的环流。图1示出激光深熔焊接熔池的流动情况,熔池内的热传输和液体流动可以显著地影响熔池的几何形状、温度梯度、局部区域的冷却速率和凝固结构,并可导致熔深的波动、气孔、熔池不足等缺陷。采用实验方法很难确定焊接过程中的温度分布、冷却速度和熔池流动的形态。因此,采用数学方法定量分析激光深熔焊接过程中的具体温度分布和流动状态引起了人们的广泛注意。
图1:激光深熔焊的熔池流动
许多学者根据激光深熔焊中的小孔机制,对激光焊接的温度场、液体流动及小孔形状和尺寸进行了计算。例如Swift-Hook和Peretj等人采用均匀介质中的线源模型来模拟小孔内的热输入,求解热传导方程而计算出了激光焊接中的温度场[2,3]。Dowden等人提出了入射激光的逆韧致吸收模型,假定能量通过传导机制传递给小孔壁,通过解热传导方程,得到一个最大的理论熔深[4]。Mazumder 等人采用有限差分法发展了一个三维稳态激光深熔焊接的数值模型,根据传热理论可得到小孔的形成过程[5]。Sonti等人采用二维有限元非线性模型进行了铝合金激光深熔焊接传输过程的三维计算,得到了激光焊接的三维温度场[6]。Kleme ns是第一个从小孔压力平衡角度研究了稳态下的小孔的形态,由于压力是小孔深度的函数,小孔半径将随深度而变化[7]。Andrens等人更加具体地分析了小孔形状与小孔内压力之间的关系[8]。Dowden等系统地分析了深而窄的小孔内的能量和压力平衡,建立了一个小孔内液体和蒸气流动的通用模型,并认为小孔内的压力主要是由表面张力决定的,小孔的形状和半径主要是由固相和汽相的能量平衡决定的[9]。
本文中主要是研究激光深熔焊接中的熔池行为,并着重研究激光工艺参数
(包括激光功率、聚焦条件、模式及辅助吹气)对焊接熔池行为的影响,尤其是研究熔池行为与焊接缺陷(如气孔)的关系。
1 激光深熔焊接中的熔池行为
1.1 熔池稳定性与金属蒸气压及等离子体的关系
大量研究人员讨论分析了激光表面重熔或热传导激光焊接现象,依据基本的控制方程,即连续方程、动量方程和能量方程,采用数值方法计算得到了熔池内液态金属的流动形态和温度分布[10~12]。
与激光深熔焊接与激光重熔和热传导焊接不同的是,高功率密度作用下的材料蒸发过程将在熔化金属表面产生反冲压力。由于激光束具有高斯型的功率密度分布,金属液面上的反冲压力将具有中心大边缘小的压力分布。如图2所示,由于反冲压力沿光斑中心往边缘区域逐渐降低,压力差将驱使熔化金属由光束中心区域向小孔前沿两侧和小孔后部流动,从而造成小孔前沿液面向焊接方向移动。
图2:匙孔壁上的金属蒸汽的反冲力
实验中观察到,尽管入射激光功率不变,激光焊接所产生的等离子体强度和扩展角发生改变,并驱使焊接熔池出现不稳定现象,即小孔尺寸及形状随着金属蒸气压的改变而变化。
当金属蒸气压驱动金属溶液沿小孔后壁方向流动,这时熔池小孔变宽,而从小孔后壁反射的激光束则使小孔变窄。