金属材料海洋环境生物污损腐蚀研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2001210201;修订日期:2001212204
基金项目:国家重点基础研究发展规划项目(G 19990650),国家自然
科学基金重大项目(59899144-3)
作者简介:王庆飞,1967年生,男(汉族),博士,研究方向为生物腐蚀
电化学
金属材料海洋环境生物污损腐蚀研究进展
王庆飞1 宋诗哲1,2
(1.天津大学材料学院天津300072;2.金属腐蚀与防护国家重点实验室沈阳110016)
摘要:海生物因素是影响海洋环境金属材料腐蚀行为的主要因素之一.综述了金属材料海生物腐蚀研究领域中有关生物膜的结构与功能、海水环境微生物腐蚀机理研究和宏观海生物附着引起的局部腐蚀等几个方面近年来的进展情况.并结合我国开展海生物腐蚀研究的现状提出建议和讨论.关键词:生物腐蚀 生物膜 微生物腐蚀 海洋污损生物
中图分类号:TG 174 文献标识码:A 文章编号:100524537(2002)0320184205
1前言
金属材料在海水环境中的腐蚀是一个涉及物理、化学、生物、气象等因素的复杂电化学过程.生物污损腐蚀,包括微生物腐蚀(Microbiologically Induced Corrosion -MIC )及宏观生物附着引起的腐蚀是近年来腐蚀科学工作者广泛关注的课题.随着各种实验技术的发展,人们对生物腐蚀的认识越来越深入.由于生物附着现象存在的广泛性及生物腐蚀的复杂性,这方面有许多问题有待于深入研究.B Little 等综述了各种环境、各行业存在的微生物腐蚀现象[1,2],Mansfeld [3]等介绍了各种电化学技术在微生物腐蚀研究中的应用.
海水中影响腐蚀的海生物可分为3类:一类是细菌和单细胞有机质,如各类细菌及藻类;一类是柔软的生长物如海绵体等;第三类是硬质海洋动物,如藤壶、贝类等.各类微有机体很快附着于表面,进而微生物繁殖,微生物膜形成,宏观生物幼体依附于微生物膜逐渐成长,材料表面被生物覆盖,宏观生物死亡腐烂处微生物大量繁殖,3类生长物在金属材料、船舰体及海洋构筑物表面形成污损生物群落.本文主要介绍海洋环境生物腐蚀研究中有关生物膜的结构与功能、微生物腐蚀机理和宏观海生物附着引起的局部腐蚀等几个方面的进展.
2微生物膜的结构与功能
211海水环境中的生物膜(Biof ilm)
微生物附着于金属表面后,由于新陈代谢活动会产生粘稠的细胞胞外高聚物(Extracellular polymer substances 简称
EPS ).EPS 由高聚糖及蛋白质、糖蛋白或脂蛋白组成,有一
定的强度和粘性,在金属表面的附着性好.于是微生物就包藏于EPS 组成的凝胶中,从而在金属表面与液体环境之间形成凝胶相,EPS 的粘性使得其易粘附一些特殊颗粒物质,
例如粘土矿物、钙镁沉淀物、腐蚀产物和腐殖质等.EPS 凝胶、微生物及粘附沉积物等共同构成生物膜.自然界中生物膜厚度随环境条件不同而变化很大.在有强剪切力的系统中,生物膜只有几个微米厚;而很少承受液压的区域,微生物的沉积可达数厘米厚[4].
212生物膜的特征与功能
凝胶相生物膜除具有一定的透过性能外,还有较好的粘弹性、亲水性、生物学性能以及一定的吸附能力.由于细菌高聚物如丙酮酸或糖醛酸中的荷电基团的存在,使得生物膜具有离子交换器的性质.在所有情况下,EPS 都是亲水性的,因此生物膜能赋于疏水表面以亲水性质,由此基体的表面性质也就发生了变化.生物膜通常具有如下特征:微生物在EPS 组成的凝胶中是静止的且靠近生长表面,各菌种在空间上有固定的微同生现象,细胞相互之间长时间接触;p H 值、氧浓度、基质浓度、代谢产物浓度、有机物浓度及无机物浓度在空间上(垂直和水平的)具有不均匀性,存在浓度梯度;随时间、环境条件的改变,各种微生物可能不断演替,生物膜也发生变化[5].
生物膜覆盖在金属表面时,在金属表面与溶液本体间起扩散屏障作用,产生浓度梯度.EPS 基质起扩散屏障作用,一方面有强度,可以保持形态而又柔软,另一方面允许新陈代谢、排泄废物、吸取营养等微生物活动,因此生物膜的存在使金属/本体溶液界面状态发生了很大变化,例如p H 值、氧浓度、基质浓度、代谢产物浓度、溶解盐浓度和有机物质浓度等均与溶液本体不同,加之生物膜凝胶相内各成分也是不均一的,这些界面反应会影响各电化学参数,而这些参数决定着腐蚀机理、腐蚀形态.
Little [1,2]等考察了影响生物膜的表面附着力的几种因
素.表面粗糙度和成分在生物膜积累的早期,即生物膜的初生阶段,起主要作用.而且,可以影响细胞的积累速度和扩散速率.同时考察了生物膜组成物上电解液的影响.水剪切应力,与流速有关,影响着生物膜内运输、传质和反应速率,同
样也影响着分离速率,以及生物膜内的运输过程.Mansfeld 和Little 将微生物技术应用于微生物腐蚀.由于生物膜内的微生物能在异于本体电解质的独特环境中生存下来,MIC 能导致腐蚀产物的产生,这种腐蚀产物不能由非生物环境的
第22卷第3期
2002年6月 中国腐蚀与防护学报Journal of Chinese Society for Corrosion and Protection
Vol 122No 13J un 12002
实验得到,也不能用热力学分析法预测.Meneil和Little考察了在MIC中发现的矿物质腐蚀产物[1].
近年来膜功能材料作为能量转换场、信息传递场和特异化学反应场等在生物化工、生物冶金等领域应用推动了对微生物膜的深入研究.J R Lawrence等[6]采用共焦扫描激光显微镜证实复杂的生物膜结构中,微有机体生长于被基质包围的、充水的小孔(voids)隔开的微聚集区中,生物膜从结构、生态功能、化学成分到荷电情况各方面都可能是非均一的,这给尝试定量研究其复杂结构的工作带来困难.Dirk de Beer 等观察了好氧微生物膜结构对空间氧分布及传质过程的影响[7];Z Lewandowski对生物膜的结构与功能的研究报道指出[8],目前阻碍从微观层次进一步研究生物膜的难题是缺少规范化步骤和对观察结果定量化的理论框架,例如生物膜内传质问题及MIC研究中金属/生物膜界面电化学作用本质等.
3海洋环境的微生物腐蚀机理
微生物腐蚀(MIC)是指由微生物引起或加速的腐蚀,是一个十分复杂的电化学过程,尤其易引起或加速破坏性极强的局部腐蚀.海水是易于微生物生长的介质,海水中金属材料上生物膜的存在具有普遍性,海洋宏观生物就生长于微生物的环境中,在较高级的生物组织如藤壶、贝类等宏观生物附着之前总是微生物先附着成膜,在宏观生物壳表面周围有大量微生物存在,宏观生物死亡、腐烂处更有大量微生物繁殖生长.微生物在金属表面附着、生长、新陈代谢及死亡等生命过程主要从以下几方面影响海水环境中金属的腐蚀过程. 311浓度差异电池形成
由于微生物的附着在金属表面形成不规则的聚集地,材料不可避免地形成几何的不均匀性,EPS基质的扩散屏障作用阻碍氧向材料表面的扩散,微生物膜分布及其本身结构的不均匀性、腐蚀产物的局部堆积等形成氧浓度差异电池,微生物的新陈代谢产物和腐蚀产物的向外扩散也同样被阻止.于是形成局部浓度差异电池.
另外一种情况是海藻和光合作用细菌利用光产生氧气,积聚于生物膜内.氧浓度的增加,加速了阴极过程,也就加快了腐蚀速度.海藻象其它细菌一样,无论光线强弱,即使在黑暗中也呼吸,将O2转化成CO2.局部的呼吸作用/光合作用可形成氧浓差电池,导致局部阴、阳极区的产生[1].
共焦扫描激光显微镜及扫描振荡微电极技术已能给出生物膜的结构、化学组分及电化学特征的一些参数[7,9],E. L’Hostis等采用旋转电极技术分析了金电极上天然海水生物膜内氧扩散动力学[10],氧浓差存在满足了局部腐蚀的初始条件.腐蚀产物及代谢物沉积使局部腐蚀得以发展.
312微生物的新陈代谢过程及产物对腐蚀电化学过程的影响
生物膜的存在及微生物的新陈代谢活动影响金属腐蚀过程,改变腐蚀机理、腐蚀形态,一方面代谢过程改变腐蚀机制,另一方面代谢产物具有腐蚀性,恶化金属腐蚀的环境. 31211新陈代谢过程对腐蚀行为的影响 生物的新陈代谢活动影响了电化学过程,生物膜内生物的呼吸频率高于氧的扩散速率,则腐蚀的阴极过程机理就发生了变化.在贫氧的生物膜与金属界面上不可能再消耗氧.阴极反应可能转变为消耗水或微生物产生H2S.Thomas等认为生物膜的存在起到弥散屏障作用,减缓了钢在海水中的腐蚀.较均匀分布的微生物EPS膜由于形成界面传质障碍或表层有机体生命活动消耗溶解氧从而对一些材料起缓蚀作用,但自然附着生长的生物粘膜往往是结构复杂而且分布不均匀的,一些条件下降低均匀腐蚀速度,往往造成局部腐蚀破坏.Pedersen 和Hermansson验证了细胞浓度,含氧量和腐蚀速度间的关联作用[11].嗜铁菌、锰沉积菌的代谢过程本身就是去极化反应.
31212酸的产生 指有氧区好氧菌代谢产物硫酸和各种有机酸的产生.当细菌代谢养份时,有机物会除去代谢过程产生的电子,在嗜氧菌中,最终的电子接收者通常是氧,有机物发酵时大多数异养细菌代谢分泌有机酸(各种短链脂肪酸).产生的酸的种类和数量依赖于微生物的类型和有效基层分子数.有机酸可能会使腐蚀的发生趋势转变.当酸性代谢物被困在生物膜/金属界面时,对腐蚀影响更加明显.细菌Clostridium aceticum产生的醋酸和硫氧化菌(SOB如Thiobacillus)产生的硫酸对腐蚀有明显的促进作用,如J Al2 hajji等在首届网上腐蚀会议(InterCorr/96,session5,1996)报道了醋酸(模拟生物环境)对含Mo不锈钢腐蚀行为的影响;张炎等研究了两种SOB诱导的几种材料的腐蚀行为[12]. 31213硫化物的产生 局部无氧区厌氧菌代谢生成破坏性极强的硫、硫化物、硫代硫酸盐等,加速局部腐蚀.硫酸盐还原菌(Sulfate-Reducing-Bacteria,SRB)是一类以有机物为养料的、广泛存在于土壤、海水、输运管道、油气井等处的厌氧性细菌,SRB利用硫酸根离子作为最终电子接收者而产生H2S对金属腐蚀重要作用.关于SRB腐蚀研究报道很多,其腐蚀机制的解释因观察场合等不同则主要有4种说法.(1)氢化酶阴极去极化理论:早在三十年代Von Wolzogen Kuhr和Vander Vlugt就提出下列反应机制:
4Fe→4Fe2++8e(阳极反应)(1) 8H2O→8H++8OH-(水离解)(2) 8H++8e→8H(吸附)(阴极反应)(3) SO2-4+8H→S2-+4H2O(细菌消耗)(4) Fe2++S2-→FeS(腐蚀产物)(5) 4Fe+SO2-4+4H2O→3Fe(OH)2+FeS+2OH-(总反应)
(6)这些方程式是在SRB含有一种氢化酶,它能将氢原子聚集在阴极的理论基础上建立起来的;(2)细菌代谢产物去极化理论,又可分为硫化氢去极化和硫化亚铁去极化理论[13]:在厌氧情况下,腐蚀速度由于阴极产生H2S而上升,并且因形成FeS而加速了阳极反应.
H2S+2e→H2+S2-(7) Fe+S2-→FeS+2e(8)许多作者报道钢铁表面有一多孔的FeS层而使腐蚀速度增加;(3)硫铁化合物和氢化酶一起作为去极化剂理
581
3期王庆飞等:金属材料海洋环境生物污损腐蚀研究进展