合金钢与铸铁基本知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、概述

1.合金钢的显微组织

合金钢依合金元素含量的不同,可分为三种:合金元素总量<5%的称为低合金钢;合金元素为5%~10%的称为中合金钢;合金元素>10%的称为高合金钢。

一般合金结构钢、合金工具钢都是低合金钢。由于合金元素的加入,使铁碳相图发生一些变化,但其平衡状态的显微组织与碳钢没有本质的区别。低合金钢热处理后的显微组织与碳钢没有根本不同,差别只在于合金元素加入后,使C曲线右移(除Co以外),即以较低的冷却速度也可以获得马氏体组织。例如,40Cr钢经调质处理后的显微组织和40钢调质后的显微组织基本相同,都为回火索氏体。GCr15钢840℃油淬、低温回火后的显微组织,与T12钢780℃水淬、低温回火后的显微组织也一样,皆为回火马氏体和碳化物。

合金钢种类繁多,本实验只选择高速钢进行观察和分析。

高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大左移,虽然只含有0.7%~0.8%的碳,仍可获得莱氏体组织,所以又称为莱氏体钢。

高速钢在铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物、马氏体、屈氏体以及残留奥氏体组成。如图6-1所示。虽然高速钢在铸态下的组织存在严重的成分和组织不均匀性,从而影响其性能,为此随后必须经过锻造和轧制,破碎莱氏体网络,促使其碳化物均匀分布。

高速钢锻造退火组织:在金相显微镜下观察其组织为索氏体+碳化物。其中粗大的亮色晶粒为初生共晶碳化物,较细小的为次生碳化物以及索氏体基体中的极细共晶碳化物,退火后的的硬度为HB207~255。

高速钢淬火组织:淬火加热温度一般为1260~1280℃,高温加热的目的是使较多的碳化物溶解于奥氏体中,淬火后马氏体中合金元素含量高,回火后钢的红硬性高且耐磨性好。淬火采用油冷或空冷,其显微组织为马氏体+未溶碳化物+残余奥氏体(尚有20%~30%)。马氏体呈隐针状,其针形很难显示出来,但可看出明显的奥氏体晶界及分布于晶粒内的未溶碳化物,淬火后的硬度约为HRC61~62,如图6-2所示。

高速钢淬火后需经三次回火,其组织为回火马氏体,碳化物和少量残余奥氏体(约2%~3%)。回火后硬度为HRC63~65,如图6-3所示。

2.铸铁的显微组织

按铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁和麻口铸铁。

白口铸铁:其组织具有莱氏体特征而没有游离的石墨,即全部碳以碳化物的形式存在于铸铁中。

灰口铸铁:碳全部或大部分以石墨的形式存在于铸铁中。灰口铸铁的组织是由钢的基体和石墨组成。

麻口铸铁:其组织特征介于白口铸铁与灰口铸铁之间,即表面为白口铸铁,中心为灰口铸铁。

白口铸铁和麻口铸铁由于莱氏体组织存在,因而有较大的脆性,在工业上很少应用。

根据铸铁中石墨的形态、大小和分布情况不同,铸铁分为:灰口铸铁、可锻铸铁和球墨铸铁。

灰口铸铁:根据基体组织的不同,灰口铸铁可分为:铁素体灰口铸铁;铁素体+珠光体灰口铸铁;珠光体灰口铸铁。如图6-4所示,为铁素体灰口铸铁的显微组织,其中石墨呈灰色条片状分布在白亮色的铁素体基体上。

可锻铸铁:可锻铸铁又称展性铸铁,它是由白口铸铁经石墨化退火处理而获得的,其渗碳体发生分解而形成团絮状石墨。按其组织不同,可锻铸铁分为铁素体可锻铸铁和珠光体可锻铸铁两类。

图6-5为铁素体基体可锻铸铁的显微组织,其中石墨称暗灰色团絮状,亮白色晶粒为基体。

球墨铸铁:球墨铸铁中石墨呈球状。它是用镁、钙及稀土元素球化剂进行球化处理,使石墨变为球状。由于石墨呈球状对基体的削弱作用最小,使球墨铸铁的金属基体强度利用率高达70%~90%(灰口铸铁只达30%左右),因而其机械性能远远优于普通灰口铸铁和可锻铸铁。图6-6为球墨铸铁的显微组织,其中亮白色晶粒为铁素体基体,灰色球状为石墨。

如上所述,铸铁的基本既然是铁素体和珠光体所组成,很显然和钢一样可以通过来改变基体组织,从而改善铸铁的机械性能,特别是球墨铸铁常常通过正火、调质和等温淬火来提高其机械性能。球铁正火的主要目的是增加基体中珠光体数量,从而提高球铁的强度和耐磨性。球铁调质处理后得到回火索氏体,从而有更高的综合机械性能。球铁经等温淬火后的组织为下贝氏体,部分马氏体和少量残余奥氏体,这种组织不仅具有较高的综合机械性能,而且具有很好的耐磨性,内应力少。

3.有色金属及合金

(1)铝合金

铝合金由于密度小(2.65~2.9),具有高的比强度,因而广泛用于机械工业特别是航空工业。

铝合金分为铸造铝合金和变形铝合金。

铸造铝合金:俗称硅铝明。典型的牌号有ZL102,含硅10%~13%,由Al-Si合金相图可知,硅铝明合金成分在共晶点附近,组织为粗大的针状的硅晶体和α固溶体组成的共晶体,以及少量呈多面体形的初生硅晶体,这种粗大的针状硅晶体严重降低合金的塑性。

为了提高硅铝明的力学性能,通常进行变质处理,即在浇注以前向合金熔体中加入占合金重量2%~3%的变质剂(常用2/3NaF+1/3NaCl)。处理后使合金的共晶点从11.6%Si右移,得到亚共晶组织,其组织为初生α固溶体枝晶(白亮)及细小的共晶(α+Si)(黑底),由于共晶中的硅呈细小点状颗粒,因而使合金的强度与塑性提高。如图6-7所示。

变形铝合金:硬铝是Al-Cu-Mg系时效合金,是重要的变形铝合金。由于它的强度大和硬度高,故称硬铝。在国外又称杜拉铝。现代机械制造和飞机制造业中得到广泛应用。在合金中形成了CuAl2(θ相)和CuMgAl2(S相)。这两个相在加热是均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金强化。而以Cu MgAl2(S相)在合金化过程中的作用更大,常把它称为强化相。

(2)铜合金

黄铜为Cu-Zn合金,常用的黄铜为α单相黄铜和α+β两相黄铜。

α单相黄铜:含锌在39%以下的黄铜属单相α固溶体,典型牌号为H70(即三七黄铜)。铸态组织:α固溶体呈树枝状(用氯化铁溶液腐蚀后,枝晶主轴富铜,呈亮白色,而枝晶富锌呈暗色),经变形和再结晶退火其组织为多边形晶粒,有退火孪晶。由于各个晶粒方位不同,所以具有不同的颜色。退火处理后的α黄铜能承受极大的塑性变形,可以进行深冲变形。

α+β两相黄铜:含锌量为39%~45%的黄铜为α+β两相黄铜,典型牌号有H62(即四六黄铜)。在室温下β相较α相硬得多,因而可用于承受较大载荷的零件。α+β两相黄铜可在600℃以上进行热加工。α+β两相黄铜显微组织:α为亮白色的固溶体,β是CuZn为基的有序固溶体,如图6-8所示。

(3)轴承合金

轴承合金又称巴氏合金。巴氏合金是应用较多的轴承合金,常用来制造滑动轴承的轴瓦和内衬。轴瓦材料要求同时兼有硬和软的两种性能,因此轴承合金的组织往往是软、硬两相组成的混合物。例如,在软基体上分布着硬质点,铅基或基轴承合金就具有这种组织特点。

锡基巴氏合金:基本元素为Sn83%、Sb11%及Cu6%。其牌号为ZChsnsb11-6,它的显微组织如图6-9所示。其中暗黑色部分为软基体α相(是Sb在Sn中形成的固溶体);白色方块为硬质点β(以SnSb为基的有序固溶体);而白色枝状析出物为Cu3Sn或Cu6Sn5化合物(η相),作为阻碍β相上浮,减少偏析的作用。如图12-15所示。这种既硬又软的混合物,保证了轴承合金具有足够的强度与塑性的配合从而使轴承合金有良好的减磨性及抗振性。

相关文档
最新文档