外文翻译--虚拟机床的建模和应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文资料翻译
系部:机械工程系
专业:机械工程及自动化
姓名:
学号:
外文出处:Department of Engineering of
(用外文写)
fujian Agriculture and forestry university
附件: 1.外文资料翻译译文;2.外文原
文。
附件1:外文资料翻译译文
虚拟机床的建模和应用
Weiqing Lin 1, 2, Jianzhong Fu 1
1 Institute of Manufacture Engineering of ZheJiang University,
2 Department of Engineering of Fujian Agriculture and Forestry University
E-mail: lethe_lwq@
摘要:
21th世纪的最近几年是和现代产业和制造业工程学的虚拟现实技术紧密联系在一起的。
虚拟机器工具技术用于设计,测试,控制以及在虚拟现实环境中使用机器零件。
此篇论文所要陈述了模拟虚拟机器模具适应不同加工需求。
特别的,还开发出了一套模块组合规则和机床结构的一个塑造的方法使用连通性图表。
这样使得虚拟机器工具可以被使用。
高级的虚拟机工具可以有效地为工业培训和机器学习和操作服务。
介绍
人们已经广泛的认识到,CNC机器工具工业在21世纪面临着很大的挑战。
要想使它继续保持竞争性,机器工具制造者们必须设计出新的工具来面对多样化的市场。
他们也必须引进新的技术来提升产品的质量和降低成本。
虚拟现实技术正好满足了这些要求,在过去的十年里,虚拟现实技术进入到工程学领域。
虚拟系统的核心是虚拟现实控制算法,它是用来对一个虚拟现实系统中不同的单元间不断变化的虚拟环境和实时交流进行动态控制的。
图1是一个标准的虚拟现实系统。
一个虚拟现实系统四个基本的部分是:虚拟环境中的人,虚拟现实设备,虚拟现实模型以及虚拟现实机构[2]。
那么怎样才能将虚拟现实技术引入到现有的机器制造中呢?为了能够做到这样,在最近5年中,一个新的概念叫做VMT产生了。
不同的学者对这个有不同的定义。
Y. Altintas 和C. Brecher认为:VMT引入了“虚拟原型”技术从而降低了硬件测试的成本和时间并且对实际原型不断进行了改进。
一个机器工具的虚拟原型是一个可以显示的实物产品的计算机虚拟模型,可以像一个真正的机器一样被分析和测试。
希契科克说:VMT是一个完整的,人造的和制造环境可以使制造
业的所有决策和控制的层次都得以提升。
从这些可以看出,VMT是现实制造业的抽象概念。
图1.典型的虚拟现实系统
虚拟机器工具技术不仅对设计程序有用,它对实际的机器工具的启用和机器工具上的电子模块的计算程序同样有用。
这个技术可以被用来建立各种机器工具模块并且虚拟现实环境可以提供学习机器制造的训练。
文章第二部分介绍了虚拟机器工具的建模,是完成机器工具的电子模块的最终目的。
第三部分展示了虚拟机器工具的执行。
第四部分谈论了虚拟机器工具技术引入到现实中的挑战。
该文章最后以评估虚拟机器工具的效果和未来的发展趋势结尾。
2 .建模的虚拟工具
系统产生的机械结构工具在虚拟现实环境的反应不同的要求,定义的组成部分模块和它们之间的关系是必需的。
结构的数控机床是由连接图。
组件模块的机床控制资料大小,运动,运动型等,并储存在一个模块库。
功能和形状特征的部分模块利用可视化工具机的电脑,并从中联系和运动学关系。
联系关系显示之间的联系邻近的组成部分模块。
不同类型的可行机床结构可以得出采用模块结合规则,规范交配的可行性两个组件模块。
最后,运动学关系需要出示的动议机工具可以得到利用功能特点模块和连接关系。
图2显示之间的关系建模要素机床结构[ 10 ]。
图2.建模元素之间的关系。
2.1. 根据
真正机床配置的几何学模型,机床的形状可以图解代表。
因为机床是机械组分一个运动学链子,它可以通过结合机械组分的几何显示。
每个组分有一个几何模型包括形状和对象同等的框架,并且机床几何可以引起。
因为塑造目标主要为功能的VMT,宁可比确切塑造,机械组分的形状可以由简单的形状元素代表,例如和圆筒[11]。
例如,床、专栏、桌和纺锤可以由坚实块、圆筒或者组合代表。
由这样,床、专栏和桌由块代表一个平移矩阵,纺锤由一个块与一个旋转的矩阵和工具提出由圆筒和一个旋转的矩阵。
通过结合组分的几何学模型在世界坐标框架,机床的完全几何学模型可以完全地定义。
2.2. 运动学模型
机床被构造作为机械组分和作用一个运动学链子由平移并且/或者转体动作。
要塑造VMT,在每个对组分之间输入动力学4个× 4同类的变形矩阵。
机床可以通过装配几何单位加强。
根据Shinno和Yoshimi[10],机床机械部分可以被分类入9个基本的机械部分:成纺锤形,滑,旋转幻灯片,十字架滑,专栏、桌基地、专栏基地和床,并且他们可以被结合在具体限制之下。
机械部分可以由某一连通性图表计划结合代表装配次序为运动学组分。
3.机床实例
结构模型工(VMSM)的实施使用根据机床提出的塑造的方法和VC++被实施的
图3.各种虚拟机工具的生成
.满足用户和结构需要的作用的它可能容易地和迅速引起机床最初的选择。
结果,真正机床结构模型工能自动化必要的定期过程设计机床[10]。
并且,巩固专业知识为结构设计入VMSM,最初的选择可以被被跟随的适应过程修改。
在这研究,模块和结构图书馆包含各种各样的居次要地位的图书馆:模块图书馆、模块形状图书馆、模块组合规则图书馆和结构图书馆。
模块图书馆包含组分模块,模块形状图书馆包括复杂的模块形状,模块组合规则图书馆为组合统治,并且结构图书馆存放完全机床。
图书馆为信息公用、模块或机床的结构的可再用性和标准化是有用的。
在自动地引起的最初的选择之中符合用户要求,用户在细节水平能选择一个结构和修改结构配置。
在修改以后,用户能控制和模仿在计算机显示器引起的机床。
如果用户对最初的选择不满意,用户能在增加新的模块或新的模块组合规则以后再生他们。
VMSM通过提供用户界面编辑模块规格、联络联系在模块之间,辅助模块等等支持修改过程。
在表3,提出机械工具的各种各样的类型显示提出的塑造的方法。
垂直(被留下)和一个水平的(正确的)机床在表3被提出。
4. 虚拟机应用
4.1. 支持VMT应用
以“技术推挤的”制造工业和“市场拉扯”,用户要求更低的技术费用,更加高效率的运用和人力表现改善。
对VMT技术开发商和对那些严密与工业先驱一起使用导致真正的应用, VMT应用的价值是毫无疑问的。
“经典”工业研究在Dearborn进行了在福特的Vulcan伪造,密执安。
这里,安全是至高无上的重要[12]。
图4 。
福特火神锻造(左)和VR 培训(右) [12] 实习生被暴露在4000磅连接杆锻件锤子(图4)的运动,以指示移动在一个声音掩没的环境噪声环境里被传递的一个溶解的酒吧。
晚行动能导致对设备的损伤不提及喷洒有害的熔融金属。
它必须补充说,操作员预计执行这个作用许多小时在次。
锤子和地方伪造环境为显示被再生产了对使用immersive真正机床技术的实习生。
VMT强调了需要对于另外的知觉刺激,包括植物噪声,教练员的声音和一个气动力学的圆筒系统提供现实冲击力量到VR用户。
训练结果表示,使用VMT被训练了的人(在2天的期间)比被暴露了在常规训练使用一把网上锤子的人是20%高效率。
4.2. 学会和训练在一个虚拟机环境
研究中表示,改变从一种传统教学方法例如演讲到一种交互式演讲的和教的方法是可行的并且有对学生刺激[13的]正面影响。
与真正用机器制造的系统,学生能评估多么恰当他们了解相关用机器制造的理论并且估计多么好他们经营的技能是。
根据计算机动画的VMT表示,网上过程表现知识联合显示可能提高对用机器制造的原则和理论的学生’物理理解。
这也许被认为一台虚拟机的另外的好处在一个实际机器,从观点有效学会在用机器制造的理论和知识上。
所有学生有一个一对一机会操作虚拟机工具和学习什么发生以他们的用机器制造过程参数的选择。
在被预言的处理表现的帮助下网上显示,学生能操作真正机床,当观察时什么发生在机器操作期间通过变化过程参数。
这提高对用机器制造的过程的他们的物理理解。
4.3.虚拟机床操作
操作一个真正机床,例子给显示如何的真正机床操作。
为操作在一个真正CNC机床,实习生通过估计键盘写北卡罗来纳G代码节目或输入节目行动由CAD/CAM包裹引起,然后选择用机器制造的参量、真正制件和真正切割工具。
真
正用机器制造的系统引起切口序列跟随实习生的指南和CNC控制命令[2]。
整个VMT系统是那用机器制造的理论,并且过程在立体声玻璃被观看。
实习生也能与真正CNC机器互动使用交互式VR手套。
C++节目被开发解码输入北卡罗来纳G 代码然后指示CNC用机器制造的序列,塑造网上制件形状和几何,给用机器制造的过程赋予生命和显示在网上用机器制造表现。
5结论
在本文中,虚拟机工具的主要目的是将设计.测试.优选.控制和机器零件集中在一个虚拟现实环境里。
根据用户提出的塑造方法,虚拟机工具自动地引起机床结构以回应功能和结构要求。
使用模块和连通性图表的功能元件提出的方法,自动化机床结构世代使用结合规则和连通性图表的模块和自动地获得动力学链子。
基于提议塑造方法,实施虚拟机工具模型,并且它在互联网可以使用。
提出的虚拟机工具系统可以应用于产业,应用于机器学习和培训系统。
这些目标已经迅速的在研究和工业中实现了。
参考文献:
[1]电子束Rattsa ,元朗Murpheyb和威尔宁,“热建模可控气氛钎焊工艺使用虚拟现实技术“,应用热工,爱思唯尔科技有限公司,2000年。
1667年至1678年。
[2]十,丹尼尔,南芳,和N.罗,“虚拟加工实验室为知识学习和技能培训。
“约翰威利的计算机应用工程成人教育,1998年,89-97页。
[3]元Altintas角布雷赫尔,和M. Weck ,“虚拟机工具“,春秋CIRP , 2005年,651-674页。
[4] D.富,元开,和H.勇,“虚拟布局柔性制造系统和加工仿真“。
系统建模与仿真:理论与应用:第三届亚洲仿真会议,AsianSim 2004年,
斯普林格德国海德堡, 2005年,68-76页。
[5]由安塞,“广义建模力学和动力学的铣刀“,年报 CIRP , 2001年,25-30页。
[6] “切削加工过程仿真和优化“Tagungsband Fertigungstechnisches Kolloquium ,2003年,219-246页。
[7]元Altintas先生Weck ,“颤振稳定性的金属切削与磨削加工“,年报CIRP ,
2004年,619-642页。
[8]曹元,“虚拟设计和优化机床主轴“,年报CIRP , 2005年,
[9]珍曹元“一种通用方法建模主轴轴承系统“,译。
美国机械工程师学会,机械设计,2004年,页。
1189至04年。
[10]美国董杓,“结构建模的机床和基于互联网的执行“。
程序的2005年冬季仿真会议上, 2005年,页。
1699年至1704年。
[11]美国锡焕南,“建模与实现基于Internet的虚拟机工具“,国际J腺病毒Manuf技术, 2003年,516-522页。
[12]美国罗伯特,“虚拟现实技术的交互式培训:一个工业从业者的观点“,国际。
J.人力电脑研究,2001年, 699-711页。
[13] SK队王鼎昌,马甘露,“虚拟现实技术模拟和动画在一个基于Web的交互式制造工程模块“,计算机与教育, 2004年, 361-382页。
附件2:外文原文(复印件)
Modeling and Application of Virtual Machine Tool
Weiqing Lin 1, 2, Jianzhong Fu 1
1 Institute of Manufacture Engineering of ZheJiang University,
2 Department of Engineering of Fujian Agriculture and Forestry University
E-mail: lethe_lwq@
Abstract
The recent years of the 21th Century are associated with the advent of virtual reality technologies for modern industry and manufacturing engineering. Virtual Machine Tool Technology is given to design ,test, control and machine parts in a virtual reality environment. This paper presents the methods to model and simulate the virtual machine tools in response to change in the machining requirements. Specifically, as et of module combination rules and a modeling method of the structure of machine tools using connectivity graph are developed. By this way virtual machine tool is implemented. The developed virtual machine tool can be efficiently used for industry training and machine leaning and operating.
1. Introduction
It is widely accepted understanding that CNC machine tool industry in the 21st century faces big challenges. To stay competitive, machine tool builders must be able
to design new machine tools for rapid response to the variable market. They also need to employ advanced technology to enhance products’ quality and reduce cost. Virtual reality (VR) technology may partially satisfy these needs. VR technology has exploded in to the engineering arena in the last 10 years [1]. The core part of a virtual system is the VR control algorithms that are used for dynamic control of the changing virtual environment and real-time communication among different units in a VR system. A typical VR system is shown in Figure1. The four basic components of a VR system are human in a virtual environment, VR devices, VR models and VR control mechanism [2].
How could employ the virtual reality to the current manufacture engineering? To do this, a new concept named virtual machine tool (VMT) is presented in the recent 5 years. Different scholars have different definitions. Y. Altintas and C. Brecher think that: VMT employs “virtual prototyping” technology to reduce the cost and time of hardware testing and iterative improvements of the physical prototype. The virtual prototype of a machine tool is a computer simulation model of the physical product that can be presented, analyzed and tested like a real machine [3].Hitchcock presents that: VMT is an integrated, synthetic design and manufacturing environment exercised to enhance all levels of decision and control in a manufacturing enterprise [4]. From all of these, it is obvious that VMT is abstract of realistic manufacturing [5~9].
Figure 1. A typical virtual reality system [2].
The virtual machine tool technologies are not only helpful for the design process but also for the virtual initial start-up of the machine tool or the simulation of the
machining operations on the digital model of the machine tool. This technology can be used to set up kinds of machine tool models and the virtual reality environment can provide machine tool learning training. Section 2 covers the modeling of virtual machine tool, which is the ultimate goal in realizing a complete digital model of the machine tool. The Implementation of virtual machine tool is presented in Section 3. The present research challenges which have to be put the virtual machine tool technology into use are discussed in Section 4. The paper is concluded by assessing the effectiveness and future trends in virtual machine tool and machining systems.
Proceedings of the 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)
0-7695-2754-X/06 $20.00 © 2006
2. Modeling of Virtual Machine Tools
To systematically generate the structure of machine tools in virtual reality environment in response to different requirements, definitions of component modules and the relations between them are required.The structure of machine tools is represented by a connectivity graph.
Component modules of machine tool contain the information on size, motion, motion type, etc. and are stored in a module library. Functional and shape characteristics of component module are utilized to visualize machine tools on computer and to derive contact and kinematics relations. Contact relations show the linkages between adjacent component modules. Various types of feasible machine tools’structure can be derived by applying module combining rules, which regulate the mating feasibility of two component modules. Finally, kinematics relations required to show the motions of machine tools can be derived by using functional characteristics of modules and connectivity relations. Figure 2 shows the relationships between the modeling elements of machine tools’ structure [10].
2.1. Geometric Model
Based on the virtual machine tool configuration, the shape of the machine tool can be graphically represented. Since the machine tool is a kinematic chain of mechanical components, it can be displayed by combining the geometry of the mechanical components. Each component has a geometrical model including the shape and object coordinate frame, and the machine tool geometry can be generated. Since VMT modeling aims mainly for functionality, rather than exact shaping, the shape of the mechanical components can be represented by simple shape elements, such as blocks and cylinders [11].
For instance, bed, column, table, and spindle can be represented by solid blocks, cylinders or a combination. By this way, bed, column, and table are represented by blocks with a translational matrix, spindle is presented by a block with a rotational matrix, and tool by a cylinder and a rotational matrix. By combining the geometric models of the components in the world coordinate frame, the complete geometric model of the machine tool can be completely defined.
2.2. Kinematic Model
The machine tool is structured as a kinematic chain of mechanical components, and functions by the translational and/or rotational movements. To model VMT, the 4 ×4 homogeneous transformational matrices of kinematics between each pair of components are input.
The machine tool can be built up by assembling the geometrical units. According to Shin no and Yoshimi[10], the mechanical units of machine tools can be classified into 9 basic mechanical units: spindle, slide, swivel slide, cross-slide, column, table, base, column base, and bed, and they can be combined under specific constraints. The mechanical units can be combined to represent the assembly sequence for the kinematic components by a certain connectivity graph scheme[11].
3. Implementation of Virtual Machine Tool
Virtual machine tool structural modeler (VMSM) is implemented using OpenGL and VC++ based on the proposed modeling method of machine tools. It can generate easily and quickly initial alternatives of machine tools which satisfies the functions and structures required by user. Consequently, virtual machine tool structural modeler can automate the routine processes needed to design machine tools [10]. Also, to consolidate expert knowledge for structural design into VMSM, initial alternatives can be modified by adaptation process followed.
In this research, module and structure library contains various subordinated libraries: module library, module shape library, module combination rule library and structure library. Module library contains component modules, module shape library includes the complicated module shapes, module combination rule library for combination rules, and structure library stores the complete machine tools. The library is useful for information sharing, reusability and standardization of modules or machine tool’s structures.Proceedings of the 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)
0-7695-2754-X/06 $20.00 © 2006
Among initial alternatives automatically generated to meet the user requirements, the user can select one structure and modify the structure configurations in detail level. After modification, users can control and simulate the machine tool generated on computer monitor. If user does not satisfy with the initial alternatives, user can regenerate them after adding new modules or new module combination rules. The VMSM supports the modification process by providing user interfaces to edit module specifications, contact relations between modules, accessory modules, etc.
In Figure 3, various types of machines tools are presented to show the proposed modeling methods. A vertical (left) and a horizontal (right) machine tool are presented in the Figure 3.
4. Virtual Machine Application
4.1. Manufacturing Industry Supporting VMT Application
Both with “technology push” and “market pull”, users demand lower technology costs, more efficient utilization and manpower performance improvements .To the developers of VMT technology and to those working closely with industrial pioneers to produce real applications, the value of VMT application has been unquestionable.
A “classic” industrial study was conducted at Ford's Vulcan Forge in Dearborn, Michigan. Here, safety is of paramount importance [12]. Trainees are exposed to the movements of a 4000-pound connecting-rod forging hammer (Figure 4), with instructions to move a molten bar being relayed in a voice-masking ambient noise environment. Late actions could result in damage to equipment, not to mention the spraying of harmful molten metal. It has to be added that operators are expected to perform this function for many hours at a time. The hammer and local forge environment were reproduced for display to trainees using immersive virtual machine tool technologies. The VMT emphasized the need for additional sensory stimulation, including plant noises, the voice of a trainer and a pneumatic cylinder system to deliver realistic impact forces to the VR user. The training results show that the one who had been trained using VMT (over a 2-day period) were 20% more efficient than the one who had been exposed to conventional training using an on-line hammer.
4.2. Learning and Training in a Virtual Machine Environment
Studies have shown that changing from a traditional teaching approach such as lectures into an interactive lecturing and teaching approach is feasible and has a positive influence on the student motivation [13].With the virtual machining system, students are able to evaluate how well they understand the related machining theories and assess how good their operating skills are. VMT based on computer animation has shown that knowledge-integrated display of online process performance can enhance students’ physical understanding of machining principles and theories. This may be regarded as an additional advantage of a virtual machine over a real machine, from the viewpoint of effective learning in machining theories and knowledge. All
students have a one-to-one opportunity to operate the virtual machine tool and study what happens with their selection of machining process parameters. With the assistance of the online display of predicted process performance, students are able to operate the virtual machine tool while observing what is happening during the machining operation by varying process parameters. This enhances their physical understanding of machining processes.
4.3. Virtual Machine Tool Operation
To show how to operate a virtual machine tool, an example is given. For the operation on a virtual CNC machine tool, the trainee writes an NC G-code program through the compute keyboard or inputs the program
Proceedings of the 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06) 0-7695-2754-X/06 $20.00 © 2006 generated by CAD/CAM packages, and then selects machining parameters, the virtual work piace, and virtual cutting tools. The virtual machining system generates the cutting sequences to follow the trainee’s manual and CNC control commands [2]. The entire VMT system is that machining theories and process is viewed in stereo glasses. Trainees are also able to interact with the virtual CNC machine using interactive VR gloves.
C++ programs were developed to decode the input NC G-codes and then to instruct CNC machining sequences, model the on-line workpiece shape and geometry, animate the machining process, and display on-line machining the performance.
5. Conclusion
In this paper, the aim of virtual machine tool engineering is to design, test, optimize, control and machine parts in a virtual reality environment. A virtual machine tool modeling method is presented to generate automatically the structures of machine tools in response to the functional and structural requirements by user. The proposed method automates the machine tools’ structure generation using the module combining rules and connectivity graphs and automatically derives kinematics chain using functional elements of modules and connectivity graph. Based on proposed modeling method, the virtual machine tool modeler is implemented and it can be used
on internet. The proposed virtual machine tool system can be utilized for industry application and be applied to machine learning and training system. These goals have been rapidly realized by the research community and industrial pioneers at the present.
References
[1] E. B. Rattsa, Y. L. Murpheyb, and Z. Youning, “Thermal
Modeling of Controlled Atmosphere Brazing Process Using
Virt ual Reality Technology”, Applied Thermal Engineering,
Elsevier Science Ltd., 2000, pp. 1667-1678.
[2] X. Daniel, S. Fang, and N. Luo, “Virtual Machining Lab for Knowledge Learning and Skills Training”. John Wiley &
Sons Inc. Comput Appl Eng Educ, 1998, pp. 89-97.
[3] Y. Altintas, C. Brecher, and M. Weck, “Virtual Machine
Tool”, Annals of CIRP, 2005, pp. 651-674.
[4] D. Guofu, Y. Kaiyin, and H. Yong, “Layout of Virtual Flexible Manufacturing System and Machining Simulation”.
Systems Modeling and Simulation: Theory and Applications:
Third Asian Simulation Conference, AsianSim 2004,
Springer-Verlag Berlin Heidelberg, 2005, pp. 68-76.
[5] Y. Altintas, S. Engin, “Generalized Modeling of
Mechanics and Dynamics of Milling Cutters”, Annals of the
CIRP, 2001, pp. 25-30.
[6] Y. Altintas, “Cutting Process Simulation and Optimisation”, Tagungsband Fertigungstechnisches Kolloquium, 2003, pp. 219-246.
[7] Y. Altintas, M. Weck, “Cha tter Stability in Metal Cutting and Grinding”, Annals of the CIRP, 2004, pp. 619-642.
[8] Y. Altintas, Y. Cao, “Vir tual Design and Optimization of Machine Tool Spindles”, Annals of the CIRP, 2005, pp. M16.
[9] Y. Z. Cao, Y. Alti ntas, “A General Method for the Modeling of Spindle-Bearing Systems”, Trans. ASME,Machine Design, 2004, pp. 1089-1104.
[10] S. Yoonho, H. Dong -Pyo, and K. Insu, “Structure Modeling of Machine Tools and Internet-based Implementation”. Proceedings of the 2005 Winter Simulation Conference, 2005, pp. 1699-1704.
[11] S. Suk-Hwan, S. Yoonho, and L. So-Min, “Modeling and Implementation of
Internet-Based Virtual Machine Tools”, Int J Adv Manuf Technol, 2003, pp. 516–522.
[12] S. Robert, “Virtual Reality for Interactive Training: an
Industrial Practitioner's Viewpoint”, Int. J. Human-Computer
Studies, 2001, pp. 699-711.
[13] S. K. Ong, M.A. Manna n, “Virtual Reality Simulations and Animations in a Web-based Interactive Manufacturing Engineering Module”, Computers & Education, 2004, pp. 361–382.Proceedings of the 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06)
0-7695-2754-X/06 $20.00 © 2006。