高速磨削
超高速磨削技术在机械制造中的分析
超高速磨削技术在机械制造中的分析【摘要】随着科学技术不断发展与进步,为了提高机械制造的质量与效率,我国已经逐渐引进了超高速磨削技术。
随着这些年的应用逐渐增加,超高速磨削技术在机械制造中的应用经验越来越丰富。
本文首先概述了超高速磨削技术,对其原理及优势等进行了分析,然后就其在机械制造中的应用进行了详细分析。
【关键词】超高速;磨削技术;机械制造1.超高速磨削技术概述1.1技术分析超高速磨削技术属于超高速加工技术中主要的一种,而超高速加工技术指的是利用超硬材料的刃具,通过提高其切削速度与进给速度来实现材料加工精度、切除率及加工质量提高的一种技术。
就目前来看,超高速加工切削速度往往随着不同的材料及切削方式而不同。
超高速加工技术包括了很多方面,比如说超高速进给单元制造技术、超高速加工用刀具制造技术、超高速切削与磨削机理研究等,其在我国制造业中的应用越来越深入。
其中,最为先进的一种技术为超高速磨削技术。
1.2磨削技术原理在高速或超高速磨削加工中,其余参数保证不便的情况下,砂轮速度大幅度提高,单位时间中磨削区产生的磨粒数就会增加,而磨粒切下之后的磨屑厚度则会相应减小,这样就会使得每颗磨粒被切削后厚度也会变薄。
加之在超高速磨削过程中,磨速极高,每颗磨粒形成时间十分短,在上述情况下,每颗磨粒承受的磨削力则会大大减小,使得总磨削力大大降低。
这样,短暂的时间内所形成的高应变率往往与普通磨削之间有着天壤之别,主要表现在磨削工件表面时,弹性变形层会逐渐变浅,而磨削沟痕的两侧因为塑性流动而产生的隆起高度会降低。
当然,由于上述机理作用,也会使得磨屑形成中的滑擦距离变小,工件表面层的残余及硬化应力倾向也会逐渐减小。
1.3超高速磨削技术优势就目前我国使用超高速磨削技术相关经验效率来看,其主要有以下几个方面的优势:1.3.1磨削效率得到了大大的提升。
1.3.2磨削力得到了明显的降低,同时零件加工的精度也得到了一定的提高。
1.3.3砂轮的耐用度得到了提高,从而延长了机械的使用寿命。
磨削技术论文:超高速磨削及其优势探析
磨削技术论文:超高速磨削及其优势探析一、概述超高速磨削作为一种高精度精密加工技术,已在各个领域得到广泛应用。
本文将从超高速磨削的基本原理入手,分析其优势,探讨其在建筑领域的应用前景。
二、基本原理超高速磨削是利用高速旋转的砂轮磨削工件表面,以达到高精度加工的一种技术。
它与传统的磨削技术不同之处在于,超高速磨削使用的砂轮转速通常在1万~10万转/分之间,较传统的磨削转速快得多。
这种高速磨削技术可以大幅提高加工效率,同时还能够获得更高的精度和光洁度。
三、优势分析1. 精度高超高速磨削的砂轮转速快,磨削力大,可以快速去除工件表面杂质,得到更加精细的加工表面,精度可达到0.005mm以下。
2. 效率高由于砂轮转速快,磨削力大,超高速磨削速度比传统磨削技术快得多。
工件加工时间可以降低30%以上,大幅提高生产效率。
3. 造价低超高速磨削使用的砂轮寿命长,能够在保证加工效率的情况下,延长更换周期,降低磨具成本。
4. 应用范围广超高速磨削是一种高效、环保、精细化的磨削技术,可适用于各种材料的加工,包括金属、非金属材料、陶瓷材料等。
5. 环保超高速磨削使用的是无毒、无害、无污染的磨料,减少了对环境的污染。
四、应用前景在建筑领域,超高速磨削技术可以用于加工各类构件。
它能够大幅节约加工时间,提高生产效率。
同时,它还能精细加工各类构件表面,达到工艺标准,节约原材料,降低生产成本。
在未来,超高速磨削技术有望得到更加广泛的应用。
五、案例分析1. XXX公司的构件加工中,采用超高速磨削技术,成功优化了加工效率,降低了产品成本,得到了客户的一致好评。
2. XX公司将超高速磨削技术应用于钢筋加工中,减少了加工时间,提高了钢筋的精度和尺寸的一致性,受到了建筑公司的赞扬。
3. XX公司采用超高速磨削技术加工门窗构件,成功提高了构件的表面精度和光洁度,降低了产品的废品率,提高了客户的满意度。
4. XX公司采用超高速磨削技术加工凸轮、传动齿轮等构件,减少了加工时间,提高了精度和表面光洁度,获得了广泛应用。
高速强力磨削在机械加工中的发展与应用
关键词 :高速磨 削; 强力磨 削; 削效 率 磨
高效率是国内#N] n t 0 I的主要 发展方向之 -  ̄ 提高效率的重要方法 , 是提高切削, 磨削速度及 增大进给量。目前高速磨削已广泛应用于生产, 普 遍认为 5 -8 m s 0- 0 / 的高速磨削是经济可行的。 - 最高 磨削速度已达到 1 0 /,试验室 的速度 已达 到 2ms 2 0- 5 m/ 1 -20 s - 。现在有的工件的实际磨削速度可以 提高到 30 / 目 0 m s 前正朝着高速度磨削、 o 强力磨削 , 高速强力磨削力一向发展。
一
。
1高速磨削
4 米 / 以上 的 5 N- 磨削力—法。 高速磨削是提高磨削效率的重要途经
之一 。 1 高速磨 削的 梅 : 与普通 磨 削相 比 , 以 . 1 它 可
提高生效率 1 3 由于磨削速度的提高, -侥 工件表面 在磨粒犁耕后历形成的隆起高度减小 , 因而使磨削 的 表面粗糙度减小渺轮的寿命提高 1 倍左右瘤 削 力下降 4 ∞ 左右, 加工的精度相应也提高。 1 高速磨削必须采取的措施 : . 2 使用高速砂轮; 使用高速磨床采用 自 动上料、 自动检测装置以 , NA
辅助 时间 。 1 3高速磨削的发展与应用
近年来, 国内外高速磨床品种已有外圆 磨床、 曲 轴磨床、 凸轮磨床, 轴承磨床、 平面磨床, 磨床 内圆 等。工业发达的国家在推广采用 4 ~ 0 / 5 6 ms的高速 磨削,0 1 0 /的高速磨削已在—些国家开始应 8~ 5 m s 用。 我国已 生产磨削速度为 5 —0 /的外圆磨床、 0 8ms 凹轮磨| 和轴承磨床等。 床 目 国 前 外高速磨 削轴承环内 外沟, 在发动机行业高速磨削也得到广 泛应用, , A M公司磨削 V 发动机曲轴连 如 美国 I 8 杆颈用高速磨削 , 英国的 N w l e a 公司高速磨削锻钢 l 4 拐汽车曲轴。 不少国家磨削曲轴还采用多砂轮高
高速磨削方法简介
谢谢!
要求及原理
由于磨削深度大,砂轮与工件的接触弧长比 普通磨削大几倍至几十倍,磨削力、磨削功率和 磨削热大幅度增加,故要求机床刚度好、功率大, 并设有高压大流量的切削液喷射冷却系统,以便有 效地冷却工件,冲走磨屑。
缓进给磨削大多采用陶瓷结合剂的大气孔、 松组织的超软普通磨料砂轮,以保证良好的自锐 性、足够的容屑空间和避免工件表面烧伤;也可 采用聚氨脂树脂结合剂砂轮或超硬磨料砂轮。 这种磨削的加工效率可比普通磨削高1~5倍, 磨削精度可达2~5微米,表面粗糙度达Ra1.25~ 0.16微米。
20世纪90年代以后,人们逐渐认识到高速和超 高速磨削所带来的效益,开始重视发展高速和超高 速磨削加工技术,并在实验和研究的基础上,使其 得到了迅速的发展!
高效磨削的世界历史发展
国外磨削技术的发展 磨削加工是一种古老而自然的制造技术,应用范围遍布 世界各地,然而数千年来磨削速度一直处于低速水平。20世 纪后,为了获得高加工效率,世界发达国家开始尝试高速磨 削技术。在高速、超高速精密磨削加工技术领域,德国及欧 洲领先,日本后来居上,美国则在奋起直追!
(3) 目前世界发达工业国家,如德国、美国、日本等超高速 磨削加工技术己趋成熟,实际应用的超高速磨削速度在 200- 300m/s 之间,试验室磨削速度己达500m/s。中国超 高速磨削研究起步较晚,到目前为止仅仅停留在试验室中, 东北大学以蔡光起教授为首的研究小组在国家自然科学基 金和教育部重大科学项目的资助下正在进行电镀、陶瓷结 合剂CBN 砂轮的超高速高效、高精、快速点磨削的研究, 最高磨削速度达200m/s,部分研究成果达到世界先进水平。
其中 日本的丰田工机、三菱重工、冈本机床制作所等公司均 能生产应用CBN 砂轮的超高速磨床。至2000 年,日本已进行 500m/s的超高速磨削试验。Shinizu 等人,为了获得超高磨削 速度,利用改造的磨床,将两根主轴并列在一起:一根作为砂 轮轴,另一根作为工件主轴,并使其在磨削点切向速度相反, 取得了相对磨削速度为Vs + Vw 的结果。因此,砂轮和工件 间的磨削线速度实际接近1 000m/s。这是迄今为止,公开报 道的最高磨削速度。
先进磨削技术
第5章先进磨削技术5.1 高速与超高速磨削加工概述一、高速磨削加工概述1. 界定高速磨削加工是通过提高砂轮的线速度达到提高磨削效率和磨削质量的工艺方法。
高速磨削的定义随时间不断向前推进。
实际应用中的磨削速度在100m/s以上称为高速磨削。
2. 机理高速磨削的效果可由砂轮线速度对磨削性能的影响来表征,通过单个磨粒的最大切削厚度a来衡量。
cgmax讨论:(1)在保持其他全部参数恒定的情况下,增加砂轮速度将导致切削厚度减小,相应地减小作用于单个磨粒上的切削力。
(图8.4.1)(2)若相应于砂轮速度成正比地增加工件速度,切削厚度保持不变,磨削合力不变。
故可在磨削合力不变的情况下,成比例地增加材料去除率。
试验表明:若保持相同的材料去除率,磨削速度加倍时,切向力减小,但是磨削功率增加;保持较高相同的磨削速度条件下,比工件去除率随工件速度成倍增加,且比磨削能减少, 避免了热损伤。
(图8.4.2)切屑形成机理发生改变:在某一切削速度范围内,磨粒与切屑间的摩擦状态由固态急剧转变为流体状态,磨削力快速减小。
通过上述分析可知:高速磨削可以大幅度提高磨削生产率、延长砂轮使用寿命、减小磨削表面粗糙度。
二、高速磨削加工的关键技术(图8.4.3)1.对机床的要求1)高速主轴及其轴承(图8.4.4)a.滚珠轴承高速主轴:由转子、轴承、外壳、电机组件和测角系统组成,配备冷却系统、润滑系统和变频驱动电气装置。
角接触滚珠轴承,混合轴承(内外圈为轴承钢,滚珠为氮化硅陶瓷),油气润滑。
b.液体静压轴承高速主轴:运动精度,回转误差0.02um以下,轴向刚度大,径向刚度比滚轴轴承低。
c.空气静压轴承高速主轴:高回转精度(小于50nm)、高转速(100000r/min)、低温升。
适合工件精度极高的场合。
但承载力低。
2)高速磨床结构(图8.4.5)高动态精度、高阻尼、高抗振性和热稳定性以及高度自动化和可靠性。
2.对砂轮的要求1)机械强度2)可靠性能3)磨粒刃形4)结合剂3.对防护装置的要求1)增加防护罩的强度2)防护罩内壳加吸能材料。
高速强力磨削在机械加工中的发展与应用
高速强力磨削在机械加工中的发展与应用
高速强力磨削是一种在机械加工中相对较新的技术,它的应用领域包括航空航天、汽车、电子、半导体等领域。
高速强力磨削的发展源于对精度、表面质量和加工效率的要求。
高速强力磨削的基本原理是利用高速旋转的砂轮在磨削过程中带动工件旋转,以达到高效、精度高的加工效果。
相较于传统的磨削加工方法,高速强力磨削具有加工效率高、加工表面精度高和磨损小等优势,因此在汽车工业、模具制造和医疗器械制造等领域得到广泛应用。
在航空航天领域,高速强力磨削被广泛应用于钛合金、铝合金等难加工材料的表面加工和腔孔加工,以及零件修整和修复等工艺。
与传统的磨削加工相比,高速强力磨削在加工效率和表面质量上都有明显提高的优势。
在汽车工业上,高速强力磨削技术在轴承、传动零件、气门座等核心零件的加工中应用较广,而且随着汽车行业的快速发展,对零件加工的要求不断提高,高速强力磨削技术将会有更加广泛的应用。
在电子及半导体领域,高速强力磨削主要应用于硬盘盘片和半导体等超精密零件的制造,因其能够实现极高的加工精度和表面质量,而且磨削切进量小、残留应变小,从而提高了零件的使用寿命。
综上所述,在机械加工中,高速强力磨削技术是一种具有广泛应用前景的技术,尤其是难加工材料的加工领域和超精密零件的制造领域。
随着技术的不断发展,高速强力磨削技术在未来有望成为机械加工领域的主流加工方式之一。
叙述高速磨削对砂轮的要求。
《叙述高速磨削对砂轮的要求》1.高速磨削,那砂轮得特别硬。
这就像战士上战场得有好武器,砂轮不硬可不行。
比如磨那些超硬的材料,要是砂轮不硬,一下子就磨坏了。
2.砂轮得很平衡。
这就像车的轮子得平衡,不然跑起来会晃。
要是砂轮不平衡,高速转动的时候那得多吓人。
比如会引起很大的震动,甚至可能会飞出去。
3.要有好的耐热性。
这就像夏天得耐热的人才能受得了,砂轮耐热性不好可不行。
比如高速磨削会产生很多热量,要是不耐热,很快就坏了。
4.砂轮的粒度得合适。
这就像做菜放盐得适量,粒度不合适可不行。
比如太粗了磨得不好看,太细了又磨不动。
5.强度得高。
这就像建房子得用结实的材料,砂轮强度不高可不行。
比如高速转动的时候要是强度不够,很容易就碎了。
6.形状得保持好。
这就像人的身材得保持好,砂轮形状不好可不行。
比如要是变形了,磨出来的东西就不标准了。
7.结合剂得好。
这就像胶水得粘得牢,结合剂不好可不行。
比如要是结合剂不牢固,砂轮上的磨粒很容易掉下来。
8.表面得光滑。
这就像人的脸得光滑才好看,砂轮表面不光滑可不行。
比如会影响磨削效果,还可能会刮伤工件。
9.精度得高。
这就像做手表得精度高,砂轮精度不高可不行。
比如要磨出很精确的尺寸,就得有高精度的砂轮。
10.耐用性得好。
这就像买个耐用的东西才划算,砂轮不耐用可不行。
比如要是用几下就坏了,那得多浪费啊。
结论:高速磨削对砂轮要求可不少,得选好砂轮才能磨出好工件。
超高速磨削技术特点
超高速磨削技术特点
超高速磨削技术具有以下特点:
1.生产效率高:超高速磨削的切削速度极快,能够快速地去除材料,因此可以大幅提高生产效率。
2.加工精度高:超高速磨削的切削力小,可以减少工件的受力变形,有利于保证加工精度。
3.磨削温度低:超高速磨削的磨削速度高,产生的热量多被磨屑带走,因此可以降低磨削温度,防止工件受热变形。
4.难磨材料磨削性能改善:超高速磨削时变形区材料在近乎绝热剪切条件下完成切削,使难磨材料的磨削性能改善,可以实现对硬脆材料的延性域磨削。
5.延长砂轮使用寿命:超高速磨削的切削力小,砂轮磨损小,因此可以延长砂轮的使用寿命。
6.降低加工成本:超高速磨削可以提高生产效率,降低工件加工成本。
7.环保:超高速磨削的切削液使用量减少,有利于环保。
超高速加工技术
(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
• Bremen大学在高效深磨的研究方面取得了世界公 认的高水平成果,并积极在铝合金、钛合金、铬镍 合金等难加工材料方面进行高效深磨的研究。
近年来,我国在高速、超高速加工的各关键领域 (如大功率高速主轴单元、高加减速直线进给电机、 陶瓷滚动轴承等方面)也进行了较多的研究并有相应 的研究成果。
高速磨削相关技术探究
熙塑笠凰.高速磨削相关技术探究谈正秋(苏州工业职业技术学院机电机系,江苏苏州215104)脯羁高速磨削技术将继续克服当前存在的某些技术障碍,得到更快的发展,随著科学技术的不断进步和发展,对零件的加工精度和生产率提出了更高的要求,高速磨《4技术吏加显示出它的重安挂。
本文理论联系实际,对高速磨削相关技术进行了捐}讨。
联薹建词高速磨削技术;发展;趋势由于对高速磨削极限的研究取得突破性进展,高速磁悬浮轴承开始进入实用阶段,高回转强度的超硬磨科磨具日益普及,主轴系统在先平衡技术不断完善,使高速磨削加工技术必将迈匕—个新台阶,从磨削速度E看,这是—个人们一直追求的目标。
1国内高速磨肖q技术的发展我国高速磨削技术的研究起步较晚,与国外有较大的差距。
自1958年开始推广高速磨削技术,当时第一汽车厂、第一砂轮厂等相继试验成功50m,s高速砂轮,并进行磨削试验。
1964年,郑州磨料磨具磨削研究/i f r,Te洛阳拖拉机厂合作进行50m/s高速磨削试验,在机床改装和工艺等方面获得一定效果。
1975年,河南省南阳机床厂试制成功了M Sl332型80m,s高速外圆磨床,至1977年,全国已有17个省市770台磨床采用50m,s高速磨削技术,湖南大学已在实验室内成功地对100m/s和120m/s高速磨削进行试验。
目前,实验室磨削速度已达150m/s左右。
在高速磨削机床方面,我国与国外的主要差距在于机床的关键功能部件的研究开发落后于市场需求,如转速2000r/m i n以上的大功率刚性主轴,无刷环形扭矩电机,大行程直线电机、快速响应数控系统等技术尚未完全掌握。
在高速磨削砂轮材料方面我国已取得了很大的发展,特别是人造金刚石、立方氮化硼砂轮在磨削中的推广应用,使得高速磨削技术有了新的发展,并逐步和其它高效磨削技术相结合于—体。
2高速磨肖B技术的发展趋势1)在高速机床领域具有小质量、大功率的高转速主轴,与其配套的高速轴承技术、高速电机技术、高速主轴的润滑系统,及监控技术等将随之快速发展。
高速磨削
一般是把磨削方法、磨削工序或是磨削技术与其
他技术进行复合,进而实现加工的高精度和高效 率的目的
关键技术与应用
1、砂带磨削 利用在砂带磨床上的高速运转的环形砂带加工 工件表面的磨削。
2、电解磨削(ECG磨削)
电解加工与机械磨削结合的特种加工,又称电化
学磨削。与电解加工相比有较好的加工精度和表
面粗糙度,与机械磨削相比有较高的生产率。
现代磨削与光整加工
高速磨削
复合磨削
超精密磨削
光整加工
高速磨削定义
高速磨削是通过提高砂轮线速度来达到提高磨削去除率和磨削质
量的工艺方法。一般砂轮线速度高于45m/s时就属于高速磨削。
高速磨削技术是磨削工艺本身的革命性跃变,日本先端技术研究 会把高速加工列为五大现代制造技术之一。国际生产工程学会
( CIRA)将高速磨削技术确定为面向21世纪的中心研究方向之一。
高速磨削机理
在高速超高速磨削加工过程中,在保持其它参数
不变的条件下,随着砂轮速度的大幅度提高,单 位时间内磨削区的磨粒数增加,每个磨粒切下的 磨屑厚度变小,则高速超高速磨削时每颗磨粒切 削厚度变薄总磨削力也大大降低。
动。
超精加工
用装有细磨粒、低硬度油石的磨头,在一定的
压力(0.05~0.3MPa)对工件表面进行光整加工的 方法。细磨粒油石压在作低速旋转运动的工件上, 同时作往复运动,对工件表面进行微量切削。
抛光
抛光是在高速旋转的布轮、布盘或砂带等软的
抛光器或抛光轮上涂以磨膏(磨料、油酸、软
脂),对工件表面进行光整加工的方法。
采用高速精密磨床,并通过精密修整微细磨料磨具,采 用亚微米级切深和洁净加工环境获得亚微米级以下的尺 寸精度。
机械制造工艺之磨削概述
通过调整砂轮转速、切削深度和进给速度等参数,优化磨削力的 大小和方向,提高加工质量和效率。
砂轮磨损与再生
1 2 3
砂轮磨损
在磨削过程中,砂轮与工件之间的摩擦会导致砂 轮磨损,影响磨削效果和加工精度。
再生技术
为了减少砂轮磨损,采用金刚石或立方氮化硼等 超硬材料对砂轮进行修整和再生,恢复砂轮的磨 削性能。
热影响
冷却技术
为了控制磨削热,采用切削液、喷雾 冷却和油雾冷却等技术,降低工件表 面温度,减少热影响。
磨削热会导致工件表面烧伤、裂纹和 变形等问题,影响工件质量和精度。
磨削力影响及优化
磨削力产生
在磨削过程中,砂轮与工件之间的相互作用力产生磨削力。
磨削力影响
磨削力的大小和方向对工件表面质量、加工精度和砂轮磨损有重 要影响。
磨削的应用领域
01
02
03
机械制造
磨削广泛应用于机械制造 领域,如汽车、航空、能 源、轨道交通等。
精密加工
由于磨削加工精度高,因 此也广泛应用于精密加工 领域,如光学、钟表、医 疗器械等。
难加工材料
对于硬脆、高强度、高精 度要求的难加工材料,磨 削是一种有效的加工方法 。
02
磨削工艺流程
磨料与磨具选择
再生方法
包括在线修整、离线修整和超声波振动修整等方 法,根据不同的加工需求选择合适的再生方法。
06
案例分析
航空发动机叶片磨削工艺
总结词
高精度、高效率
详细描述
航空发动机叶片磨削工艺是机械制造中的重 要环节,要求高精度和高效率。采用先进的 磨削设备和工艺技术,确保叶片的几何形状 、尺寸和表面质量达到设计要求,同时提高 生产效率,降低制造成本。
磨削实习报告(多篇)
磨削实习报告(多篇)1 高速磨削概述高速磨削是通过提高砂轮线速度来达到提高磨削效率和磨削质量的工艺方法。
它与普通磨削的区别在于很高的磨削速度和进给速度,而高速磨削的定义随时间的不同在不断推进。
20 世纪60年代以前,磨削速度在50 m/ s 时。
即被称为高速磨削;而20世纪90 年代磨削速度最高已达500 m/s。
在实际应用中,磨削速度在100 m/ s 以上即被称为高速磨削。
高速磨削可大幅度提高磨削生产效率、延长砂轮使用寿命、降低磨削表面粗糙度值、减小磨削力和工件受力变形、提高工件加工精度、降低磨削温度,能实现对难磨材料的高性能加工。
随着砂轮速度的提高,目前比磨削去除率已猛增到了3 000 mm3/mm·s 以上,可达到与车、铣、刨等切削加工相媲美的金属磨除率。
近年来各种新兴硬脆材料(如陶瓷、光学玻璃、光学晶体、单晶硅等)的广泛应用,更推动了高速磨削技术的迅猛发展。
高速磨削技术是适应现代高科技需要而发展起来的一项新兴综合技术,集现代机械、电子、光学、计算机、液压、计量及材料等先进技术于一体。
日本先进技术研究会把高速加工列为五大现代制造技术之一。
国际生产工程学会(CIRP)将高速磨削技术确定为面向21 世纪的中心研究技术之一。
2 高速磨削加工工艺高速磨削的加工工艺涉及磨削用量、磨削液及砂轮修整等方面,下面将分别进行阐述。
2.1 磨削用量选择在应用高速磨削工艺时,磨削用量的选择对磨削效率、工件表面质量以及避免磨削烧伤和裂纹十分重要。
表1 给出了磨削用量与砂轮速度的关系。
除了砂轮速度以外,决定磨削用量的因素还有很多,因此应用中需综合考虑加工条件、工件材料、砂轮材料、冷却方式等因素,以选择最优的磨削用量。
2.2 磨削液在高速磨削过程中,所采用的冷却系统的优劣常常能决定整个磨削过程的成败。
冷却润滑液的功能是提高磨削的材料去除率,延长砂轮的使用寿命,降低工件表面粗糙度值。
它在磨削过程中必须完成润滑、冷却、清洗砂轮和传送切削屑四大任务,与普通磨削液要求类似。
磨削加工的方法
用砂轮或涂覆磨具以较高的线速度对工件表面进行加工的方法称为磨削加工。
一般在磨床上进行。
磨削加工可分为普通磨削、无心磨削、高效磨削、低粗糙度磨削和砂带磨削等。
一、普通磨削(1)机床:普通磨床(2)加工范围:外圆、内圆、锥面、平面(3)按照砂轮粒度号和切削用量的不同,普通磨削可分为粗磨和精磨。
粗磨的尺寸公差等级为IT8~IT7,表面粗糙度Ra值为0.8~0.4μm;精磨的尺寸公差等级为IT6~IT5,表面粗糙度Ra值为0.4~0.2μm。
1.磨外圆(1)机床:普通外圆磨床、万能外圆磨床(2)磨削方法:纵磨法和横磨法纵磨法:加工精度高,Ra值较小,生产率低,广泛用于各种类型的生产中;横磨法:加工精度低,Ra值较大,生产率高,只适用于大批量生产中磨削刚度较好、精度较低、长度较短的轴类零件上的外圆表面和成形面。
2.磨内圆(包括内锥面)(1)机床:内圆磨床、万能外圆磨床(2)特点:①由于磨内圆砂轮受孔径限制,切削速度难以达到磨外圆的速度;②砂轮轴直径小,悬伸长,刚度差,易弯曲变形和振动,且只能采用较小的背吃刀量;③砂轮与工件成内切圆接触,接触面积大,磨削热多,散热条件差,表面易烧伤;④磨内圆比磨外圆生产率低,加工精度和表面质量难以控制。
3.磨平面(1)机床:平面磨床(2)加工方法:周磨法、端磨法①周磨法:加工精度高,表面粗糙度Ra值小,但生产率较低,多用于单件小批生产中,大批大量生产中亦可使用。
②端磨法:生产率较高,但加工质量略差于周磨法,多用于大批大量生产中磨削精度要求不太高的平面。
(1)机床:无心磨床(2)加工方法:纵磨法、横磨法1.无心纵磨法大轮为工作砂轮,起切削作用。
小轮为导轮,无切削能力。
两轮与托板构成V形定位面托住工件。
由于导轮的轴线与砂轮轴线倾斜β角(β=1°~6°),v导分解成v工和v 进。
v工带动工件旋转,v进带动工件轴向移动。
为使导轮与工件直线接触,把导轮圆周表面的母线修整成双曲线。
超高速磨床的发展与展望
超高速磨床的发展与展望摘要:随着超高速磨削研究的不断的深入与工业实用化,超高速磨床已经成为各国先进制造技术发展的重点。
本文综述了国内外超高速磨床的发展现状,简述了超高速磨床目前的发展趋势。
关键词:磨削磨床超高速中图分类号:tg582 文献标识码:a 文章编号:1674-098x (2012)08(c)-0033-011 超高速磨削超高速磨削通常是指速度为普通磨削速度5倍以上(即vs≥150m/s)的高速磨削,是由德国萨洛蒙carl salomon于l931年提出的,其英文名称为super-high speed grinding或ultra-high speed grinding。
超高速磨削主要有以下特点:(1)磨削效率高,磨削速度的提高使得进给速度也相应的提高,从而使磨削效率显著提高。
(2)加工质量高,超高速磨削比普通磨削的加工精度高、磨削表面粗糙度低、加工表面完整性好。
(3)材料消耗低,它能延长砂轮使用寿命、减少冷却液消耗。
(4)扩展磨削工艺的应用范围,对硬脆材料、高塑性和难磨材料获得良好的磨削效果。
这些特点使得超高速磨削成为了磨削加工中发展的重中之重。
[1]2 国内超高速磨床的发展我国的超高速磨削研究起步较晚,1995年,汉江机床厂使用陶瓷cbn砂轮,进行了200m/s的超高速磨削试验。
2003年,东北大学首先研制成功了我国第一台圆周速度200m/s、额定功率55kw、最高砂轮线速度达250m/s的超高速试验磨床。
从2002年开始,湖南大学开始针对一台250m/s超高速磨床主轴系统进行高速超高速研究,并在国内首次进行了磁浮轴承设计,在2009年开发出适用于航天航空、国防军工等行业中的特定材料零件的加工的mkg1320超高速数控外圆磨床,该设备采用直径为500mm砂轮,线速度达到150m/s,通过集成超高速磨削关键技术和创新开发超高速砂轮恒压预紧补偿技术、高阻尼无腔铸石床身设计、高刚性圆柱内节流液体静压直线导轨技术等多项先进技术,可以解决工程陶瓷、微晶玻璃、硬质合金、人造宝石晶体等超硬材料、钛合金、不锈钢、镍基铁氧体材料等耐热合金材料以及复合涂层材料等难加工材料轴类零件的精密加工问题。
高速强力磨削在机械加工中的发展与应用
高速强力磨削在机械加工中的发展与应用摘要:就目前的零件加工制造业来说,既保证零件的质量又有着高效的生产率是企业者所一直追求的目标。
现代技术下零件加工工艺不断的进步,近些年发展起来的高速强力磨削工艺就是其中之一。
其不但大大满足了零件加工的高效高质要求并且成本也低,因此越来越多的机械加工企业选择了高速强力磨削技术作为发展方向。
关键词:高速强力磨削;机械加工;零件质量;磨削效率时间是就是金钱,高效率一直都是各行各业所追求的生产目标。
机械加工也不例外,国际上普遍认可的提高机械加工效率的方法是提高速度和增大进给数量。
对于速度方面,目前世界上可以达到的最高的磨削速度是300m/s,当然,这是针对某些特定的零件而言的。
应用最广泛的生产速度大约是在五十米到八十米每秒,在这个速度下的生产效率是目前磨削程序中经济可行的。
而实验室中的速度已经可以达到二百一十米到二百五十米每秒的速度,这正是现实生产中生产者所追求的目标。
1 高速磨削高速磨削是对磨削效率提高的有效办法之一,这就注定了磨削速度是重要基础。
高速磨削对于砂轮的速度要求起码在四十五米每秒以上。
1.1 特点:相较于普通磨削工艺,高速磨削技艺对于砂轮的耗损也下降一倍,但是对于零件的生产效率会提高一到三倍,加工精度也因为磨削力下降了四成左右而相应有所提高。
这是因为,速度的提高使得对于工件磨削表面磨耕后的隆起减少,也就是说工件表面质量有所提高。
1.2 必要措施:因为高速磨削工艺的特殊性,就注定了高速磨削需要使用特定的工具。
高速砂轮的使用,高速磨床的应用,以及减小辅助的时间,比如自动上料和检测。
1.3 发展和应用目前,高速磨削技艺在世界范围内推广开来,目前国内外存在的磨床品种多种多样,已经推广和采用的有外圆、曲轴、凸轮、轴承、平面、内圆等等,目前国内使用的是五十到八十米每秒,世界上最高已经达到了一百五十米。
目前国外高速磨削采用较多的是轴承行业磨削轴承环内外沟,在发动机行业高速磨削也得到广泛应用,甚至有些国家会使用多个砂轮进行高速磨削以提高磨削效率。
2014 - 13 - 高速超高速磨削
D 超高速磨削相关技术--超高速磨削液选择
油基磨削液(矿物油)的润滑作用比水基磨削液优越。 (1)可以防止CBN磨粒切刃的磨耗,抑制CBN磨粒的水解反应,提 高砂轮耐用度。 (2)降低磨削功率,提高工件的表面完整性。 油基磨削液中加入硫系及氯系挤压添加剂可以获得更为优越的效果。
高速回转的砂轮表面存在各种回转气流,速度越高,空气层越厚。 空气层的存在使磨削液难以进入磨削区。 一般采用高压(几个甚至几 十个MPa)冷却液体。 超高速磨削中,以实现无磨削液为目标。日本开发出采用低温压缩 空气冷却法,环保、清洁、安全舒适。
D 超高速磨削机理
(3)表面粗糙度
普通磨削中,砂轮磨损的主要原因是磨粒磨耗磨损和磨粒的破损
与脱落。
高速磨削中,未变形磨削层厚度较小,磨粒不易破损和脱落,砂
轮耐用度增加,磨削力下降。 一定金属切除率条件下,砂轮速度增加,砂轮径向磨损量降低, 表面粗糙度得到改善。 线速度增加,切屑变薄,工件表面的磨痕深度变浅,表面残留凸 峰变小,表面粗糙度得到改善。
C
超高速磨削加工的应用
P 17
C 超高速磨削技术的应用
超高速磨削技术最先在德国发展,其中德国 Guehring Automation 公司较为著名。
80年代最先推出超高速磨床,与阿亨大学开展500m/s磨削研究制造
了设备。 FD613超高速平面磨床上磨削宽1-3mm,深30mm的转子槽 时,进给速度可达到3000mm/min(CBN砂轮,150m/s)。 轴齿轮齿槽、扳手开口槽、蜗杆螺旋齿槽等的一次性高效磨削加工 是Guehring公司超高速磨床的主要工艺。 欧洲还有许多公司推出了自己超高速磨床,反映出欧洲超高速磨削 技术实用化的地位。
超高速磨削通常指砂轮速度大于150ms的磨削超高速磨削.
超高速磨削通常指砂轮速度大于150m/s的磨削。
超高速磨削在欧洲、日本和美国等发达国家发展很快,被誉为“现代磨削技术的最高峰”。
国际生产工程学会(CIRP)将其确定为面向21世纪的中心研究方向,并进行了一些著名的合作研究。
超高速磨削可以对硬脆材料实现延性域磨削加工,对高塑性等难磨材料也有良好的磨削表现。
与普通磨削相比,超高速磨削显示出极大的优越性: 大幅度提高磨削效率,减少设备使用台数。
如采用电镀CBN砂轮以123m/s的高速磨削割草机曲轴,原来需要6个车削和3个磨削工序,现在只需要3个磨削工序,生产时间减少65%,每小时可以加工180件。
再如人们以125m/s的速度应用普通砂轮高效磨削淬硬低碳钢42CrMo4,切除率达167mm³/mms,比缓进给磨削大11倍。
磨削力小,零件加工精度高。
速度360m/s以下的试验表明,在一个较窄的速度范围(180-200 m/s)内,摩擦状态由固态向液态急剧变化,并伴随着磨削力的急剧下降。
笔者在单颗磨粒高速磨削45钢和20Cr钢试验中发现,摩擦系数在临界速度以下,随速度的增大而大幅度减少;超过临界速度后,摩擦系数却随速度的增大而略有增加。
降低加工工件表面粗糙度。
在其它条件相同时,33m/s,100m/s,和200m/s的速度磨削时,表面粗糙度值分别为Ra2.0,Ra1.4和Ra1.1µm。
砂轮寿命延长。
在金属切除率相同的条件下,砂轮速度由80m/s提高到200m/s,砂轮寿命提高8.5倍。
在200m/s的速度磨削时,以2.5倍于80m/s时的磨除率,寿命仍然提高1倍。
1 超高速磨削的发展欧洲欧洲,高速磨削技术的发展起步早。
最初高速磨削基础研究是在60年代末期,实验室磨削速度已达210-230m/s。
70年代末期,高速磨削采用CBN砂轮。
意大利的法米尔(Famir)公司在1973年9月西德汉诺威国际机床展览会上,展出了砂轮圆周速度120m/s的RFT-C120/50R 型磨轴承内套圈外沟的高速适用化磨床。
超高速磨削技术及其在机械制造领域中的应用
关键 词
超 高速 磨 削技术 ; 机械 制 造业 ; 应 用 分析 文献 标识码 : A 文章 编号 :1 6 7 卜7 5 9 7( 2 0 1 3 )2 0 - 0 0 1 8 - 0 2 磨 削速 度 越快 , 部 件 的表 面 粗 糙 的程度 越 小 , 其 表 面的 光洁 程
3 超高 速磨 削技术 在机械 制 造领域 的应 用
超 高 速磨 削技 术 在 机械 制 造 领域 的应 用 是 多方 向的 , 主 要 有 四种分 项 技 术 的应用 , 分 别为 : 超 高速 精 密 磨 削技 术 、高 效 率 深 磨技 术 、超 高速 磨 削技 术 ( 专用 于难 磨 材料 ) 以及 高 速 绿
度 就会越 大 。
中 图分类 号 : T G 5 8 0
通常 , 我 们将砂 轮 线速度 小 于 4 5 m / s 的磨 削成为 传统 磨 削 ,
大于 4 5 mБайду номын сангаас/ s 小于 1 5 0 m / s 的磨 削成 为 高速 磨削 , 而将 高于 1 5 0
m / s 的 磨 削成 为 超 高速 磨 削 。但 是 , 在 当前 的机 械 制 造领 域 应 用中 , 磨 削速 度普遍 处 于 4 5 m / s以下水平 , 高速 和超 高速 磨 削
色 磨 削技术 。
1 超高速 磨 削技术 的原 理分析
超 高速 磨 削 技术 在 机械 制 造领 域 中的 工作 原理 如 下 : 首 先 固定 超 高速 磨 削技 术 中 的各 项参 数数 值 , 在 磨 削砂 轮 的转 速 不 断提 高达 到 非常 快速 的状 态 时 , 在某 一特 定的 固定 时 间段 内的 磨 削区域 内磨 削粒 的 数量 会 逐渐 增加 , 促使 砂轮 磨 粒在 转 动 时 可进 行 厚度 各异 磨 屑 的切 割 , 而 且超 高 速 磨削 技术 还 可将 与 机 械 制 造 部件 分离 的磨 屑变 薄 , 降 低每 一 颗 磨粒 分摊 的 磨 削力 度 从而 降低磨 削力 , 所 以砂轮 整体 的磨 削力 也会 随之 降低 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速磨削高速磨削是国内外正在大力研究并逐步推广的一种先进的机械加工方法 , 它是近代磨削加工技术发展的一种新工艺 , 与普通磨削相比 , 其优点是能够大大提高被加工工件的精度 , 降低零件表面粗糙度。
随着科学技术的不断进步和发展 , 对零件的加工精度和生产率提出了更高的要求 , 高速磨削技术更加显示出它的重要性。
1 国外高速磨削技术的现状与发展趋势早在上世纪 50年代 , 国外就已经开始研究高速磨削 , 到 60年代 , 许多国家在高速磨削方面的研究更加得到普遍重视 , 并取得了许多成功经验 , 如日本京都大学工学部冈村健二郎教授首先提出了高效磨削理论 , 当时在日本也是盛行一时。
德国阿亨大学Optiz教授系统地发表了 60m /s高速磨削的实验结果。
在 70年代 , 高速磨削在许多工业国家迅速发展 , 60m /s以上高速磨床品种超过 50种 , 少数磨床磨削速度达到 125m /s, 到了 80年代 , 许多国家继续在提高磨削速度上进行努力 , 但是高速磨削并未按原先预料的情况发展 , 它受到许多条件的制约 , 如受到机床结构、动态特性、砂轮速度及磨料耐磨性等的限制 , 实际上在这个时期磨削速度的提高也受到了一定的限制。
近年来 , 高速磨削加工技术又有了很大发展 , 主要表现在以下几个方面 :(1)高速磨削机理方面。
在越过能产生磨削热损伤的国限带之后 , 磨削用量进一步加大不仅不会使热损伤加剧 , 反而会使其不再发生。
这一发现 , 开拓出一个广阔的高速磨削参数领域 , 为实现超高速的磨削提供了理论基础 , 加上人造金刚石和立方氮化硼在砂轮制造中的大量应用 , 高速磨削得以再度兴起 , 并实现了线速度高于普通磨削 5 - 6倍甚至更高的超高速磨削。
(2)高速磨削的有利环节。
继喷雾润滑轴承和空气润滑轴承之后 , 利用磁力承受负荷的磁悬浮轴承已进入实用阶段 , 它的转速可以在主轴强度所能承受的限度内任意提高。
砂轮自动平衡技术得到进一步发展 , 现已研制出全自动砂轮平衡系统。
在高压冷却系统方面 , 国外不少厂家生产的高速磨床都装有高压冷却喷嘴和高压清洗喷嘴、油雾分离装置、油温冷却装置等。
90年代 , 市场上已出现了磨削速度为 80 ~ 140m /s的磨床 , 实验室磨削速度已经达到250m /s。
(3)磨削速度。
今年以来 ,由于应用了可承受高回转速度的钢合金基体单层电镀 CBN 砂轮和磁悬浮主轴轴承,使得磨削速度有了很大的提高。
在德国高速磨削技术发展迅速,其研究成果将高速磨削技术推向一个高水平。
同时 , 美国、日本和欧洲的一些国家也在大力发展高速磨削技术。
德国 DAPP公司生产出的高速缓进给磨床主轴转速达 6 ×104r /m in砂轮线速度 250m /s;德国阿亨大学正在积极开展研究 500m /s超高速磨削。
2 国内高速磨削技术的发展我国高速磨削技术的研究起步较晚 , 与国外有较大的差距。
自1958年开始推广高速磨削技术 , 当时第一汽车厂、第一砂轮厂等相继试验成功 50m /s 高速砂轮 , 并进行磨削试验。
1964年 , 郑州磨料磨具磨削研究所和洛阳拖拉机厂合作进行 50m /s高速磨削试验 , 在机床改装和工艺等方面获得一定效果。
1975年 ,河南省南阳机床厂试制成功MS1332型80m/s高速外圆磨床 , 至1977年 , 全国已有 17个省市 770台磨床采用 50m /s高速磨削技术,湖南大学已在实验室内成功地对 100m /s和 120m /s高速磨削进行试验。
目前 , 实验室磨削速度已达 150m /s左右。
在高速磨削机床方面 , 我国与国外的主要差距在于机床的关键功能部件的研究开发落后于市场需求 ,如转速 2000 r /m in以上的大功率刚性主轴 , 无刷环形扭矩电机 , 大行程直线电机、快速响应数控系统等技术尚未完全掌握。
在高速磨削砂轮材料方面我国已取得了很大的发展 , 特别是人造金刚石、立方氮化硼砂轮在磨削中的推广应用 , 使得高速磨削技术有了新的发展 , 并逐步和其它高效磨削技术相结合于一体。
3 高速磨削技术的发展趋势由于对高速磨削极限的研究取得突破性进展 , 高速磁悬浮轴承开始进入实用阶段 , 高回转强度的超硬磨料磨具日益普及,主轴系统在先平衡技术不断完善,使高速磨削加工技术必将迈上一个新台阶 ,从磨削速度上看,这是一个人们一直追求的目标。
可以相信,亚音速乃至超音速磨削已经不会太遥远了。
同时高速磨削也必将与其它各种磨削技术相结合。
作为先进制造技术的一项全新实用技术,高速磨削技术将继续克服当前存在的某些技术障碍 ,得到更快的发展,体现在以下几个主要方面 :(1)在高速机床领域具有小质量、大功率的高转速主轴 ,与其配套的高速轴承技术、高速电机技术、高速主轴的润滑系统 ,及监控技术等将随之快速发展。
(2)磨削砂轮方面也将随着高速磨削技术发展的需要得到新的发展。
(3)高速磨削机理的理论研究、仿真研究和虚拟研究等工作将得到进一步深入开展,高速磨削过程的物理本质与变化规律将被进一步弄清。
4高速磨削相关技术分析我国的高速磨削技术与国外相比尚有较大距,其主要原因是我国高速磨削相关技术不能满足更高线速度的要求。
4.1高速主轴系统高速主轴系统是高速磨削技术最重要的关键技术之一,目前主轴转速在15000~30000r/min的加工中心越来越普及,更高的超高速主轴系统也正在研制开发中。
高速主轴由于转速极高,主轴零件在离心力的作用下产生振动和变形,高速运转磨擦热和大功率内装电机产生的热会产生高温和热变形。
因此对主轴的结构重量、刚性、热稳定性及主轴监测系统等方面提出了更高的要求。
高速主轴系统的核心是高速精密轴承。
因滚动轴承有很多优点,故目前国外大多数高速磨床采用的是滚动轴承。
为了提高极限转速,主要采取如下措施:第一,提高制造精度等级,但这样会使轴承价格成倍增长。
第二,合理选择材料,如利用陶瓷材料作滚动体,但缺点是制造难度大、成本高、热膨胀系数小,对拉伸应力和缺口应力较感。
第三,改进轴承结构,德国FAG轴承公司开发了HS70和HS719系列的新型高速主轴轴承,它将现有的球直径约缩小至70%,增加了球数,从而提高了轴承结构的刚性,若润滑合理,其连续工作dn值可达250万。
采用空心滚动体可减少滚动体质量,从而减少离心力和陀螺力矩。
为减少外圈所受的应力,还可以使用拱形球轴承,高速旋转时,球与外圈两点接触。
由于应力分散,轴承寿命可大大提高。
高速磨削机床的主轴设计采用了先进的主轴轴承。
润滑和散热等新技术,目前高速主轴主要采用陶瓷轴承、磁悬浮轴承,空气轴承和液体动静压轴承等,主轴轴承的润滑对主轴转速的提高起着重要作用,高速主轴一般采用油、空气润滑或喷油润滑。
近年来 , 随着液体动静压混合轴承的出现与发展 , 它在高速精密磨床中的应用也受到人们关注。
若合理选择有关参数可使轴承在零速到最大转速 , 以及在最小到最大偏心范围内 ,都有较大的承载能力,这是其它轴承所不能比拟的。
4. 2 磨料磨具应用方面作为高速磨削用砂轮,应具有高强度、高抗冲击强度、耐热性、微破碎性、杂质含量低等优点。
金刚石和立方氮化硼 (CBN )磨料因其独特的优异性能被制成各种磨具和切削工具 ,在各种材料的加工中得到了广泛的应用。
同时超硬磨料磨具以耐用度高和性能保持好等优点 , 而成为CNC 磨床和磨削加工中心的必备工具。
在钢基轮盘上镀附单层超硬磨料的砂轮不仅是适应高速磨削的唯一磨具 , 还是解决高精度复杂形状成型磨削的有效途径。
金刚石和 CBN 等超硬磨料的使用大大推进了高速磨削技术的发展。
因此 , 从世界磨床发展趋势看 , 金刚石砂轮和立方氮化硼砂轮在磨削中占有越来越大的比重。
上世纪 90年代 , 陶瓷或树脂结合剂 CBN 砂轮、金刚石砂轮线速度可达 125m /s, 有的可达 150 m /s, 而单层电镀 CBN砂轮的线速度可达 250 m /s左右 , 因此它是很有发展前途的。
金刚石除被用于制造磨具而在硬脆材料的高效磨削加工中得到了普遍的应用外,金刚石修整滚轮的发展应用,也对高效磨削技术进步起了极大的推动作用。
在高速磨削技术中金刚石滚轮的应用正稳步增长。
当前 CBN 砂轮的应用在某些工业化国家中已进入普及阶段 , 即已从工具行业推广到其它金属加工行业 ;从一般磨削发展到缓进给磨削、高精度磨削和高速磨削。
目前 , 日本汽车行业的曲轴和曲轴销已全部采用CBN 砂轮加工 , 在日本工具制造厂的磨削加工车间已很难见到普通磨料的使用。
4. 3 润滑冷却技术润滑冷却技术也是高速磨削的另一个关键技术,针对滚动轴承而言,润滑方法包括油脂润滑、油气润滑、喷注润滑和环下润滑。
冷却液多采用非水溶性油剂,对于因高速磨削造成的油雾应加以分离,混杂在磨削中的磨屑要可靠过滤,磨削液还要经过冷却处理。
为改善主轴系统的热特性,一般采用轴承水冷与轴心水冷的“双水冷却”方法。
试验表明,工作端的热位移比无冷却状态降低70%以上。
4.4高速磨削的安全防护与实时监控系统从总体上看,高速磨削加工的安全保障包括以下几方面:(1)机床操作者及机床周围现场人员的安全保障。
(2)避免机床、刀具、砂轮和工件有关设施的损伤。
(3)识别和避免可能引起重大事故的工况。
机床及磨削过程的监测包括:磨削力监测以控制砂轮磨损;机床功率监测可间接获得砂轮磨损信息;主轴转轴监测;砂轮破损监测;主轴轴承状况监测等。
高效磨削时磨削热问题的研究*1为使产生的磨削热最小 ,应力求磨削比能最小。
因此高效磨削只着眼于利用砂轮在高速下的动态锋利效应来降低磨削比显然是不够的。
因为除了速度因素以外 ,诸如砂轮结构 (开槽与否 )、工作面地貌以及用量组合条件等都可对磨削比能产生显著影响。
根据不同加工要求优化磨具工作面地貌以及根据优化后的地貌进一步优化用量的组合条件 ,可以明显提高磨具的锋利度 ,大幅度降低磨削比能。
国外静电植砂的高效砂带磨被公认是实施这一对策取得成功的范例 ,但在高效砂轮磨削中却见不到运用这一对策的研究报告。
因此,研制单层钎焊超硬磨料砂轮就成为一个重要的发展方向。
目前国内使用的单层超硬磨料砂轮无一例外都是电镀而成 ,有关单层高温钎焊超硬磨料砂轮的设计和研制至今仍是空白。
电镀砂轮上的镀层金属并不是磨具行业严格意义上的结合剂 ,在镀层金属与基体和磨料的界面上由于不存在牢固的冶金化学结合 ,磨料实际上只是被机械包埋镶嵌在镀层金属中,因而把持力不大 ,在负荷较重的高效磨削作业中 ,砂轮容易因磨粒脱落或镀层成片剥落而导致整体失效。
另外也正因为不存在牢固的冶金化学结合 ,为了增加把持力,就必须增加镀层厚度 ,减少磨粒的出露高度 ,这又带来容屑空间变小、砂轮容易发生堵塞的弊端。