电力工程课程设计说明书

电力工程课程设计说明书
电力工程课程设计说明书

河南科技大学

课程设计说明书

课程名称电力工程课程设计

题目 XXX冶金配件生产厂变电所供配电设计

学院

班级

学生姓名

指导教师

日期 2014年3月10日

1

电力工程课程设计任务书

班级:姓名:学号:

设计题目:XXX冶金配件生产厂变电所供配电设计

一、设计目的

熟悉电力设计的相关规程、规定,树立可靠供电的观点,了解电力系统,电网设计的基本方法和基本内容,熟悉相关电力计算的内容,巩固已学习的课程内容,学习撰写工程设计说明书,对变电所区域设计有初步的认识。

二、设计要求

(1)通过对相应文献的收集、分析以及总结,给出相应项目分析,需求预测说明。

(2)通过课题设计,掌握电力系统设计的方法和设计步骤。

(3)学习按要求编写课程设计报告书,能正确阐述设计方法和计算结果。

(4)学生应抱着严谨认真的态度积极投入到课程设计过程中,认真查阅相应文献以及实现,给出个人分析、设计以及实现。

三、设计任务

(一)设计内容

1.总降压变电站设计

(1)负荷计算

(2)主结线设计:选主变压器及高压开关等设备,确定最优方案。

(3)短路电流计算:计算三相短路电流,计算结果列出汇总表。

(4)主要电气设备选择:主要电气设备选择及校验。选用型号、数量、汇成设备一览表。(5)主要设备继电保护设计:元件的保护方式选择和整定计算。

(6)配电装置设计:包括配电装置布置型式的选择、设备布置图。

(7)防雷、接地设计:包括直击雷保护、进行波保护和接地网设计。

2.车间变电所设计

根据车间负荷情况,选择车间变压器的台数、容量,以及变电所位置的原则考虑。3.厂区配电系统设计

根据所给资料,列出配电系统结线方案,经过详细计算和分析比较,确定最优方案。(二)设计任务

1.设计说明书,包括全部设计内容,负荷计算,短路计算及设备选择(要求列表);

2.电气主接线图。

四、设计时间安排

查找相关资料(1天)、总降压变电站设计(3天)、车间变电所设计(2天)、

厂区配电系统设计(1天)、撰写设计报告(2天)和答辩(1天)。

五、主要参考文献

[1] 电力工程基础

[2] 工厂供电

[3] 继电保护.

[4] 电力系统分析

[5]电气工程设计手册等资料

指导教师签字:年月日

I

II

一.原始资料

1.工厂的总平面布置图

铆焊车间

1号水泵房

No.3

机修车间空压站

No.4

铸造车间

综合楼

铸钢车间

No.1

No.1

铸铁车间

No.2

木型车间 木型库

制材场

水塔2号水泵房锅炉房

No.5砂库砂库

仓库

仓库

污水

提升

站N

注:车间变电所

图1 工厂总平面布置图

2.工厂的生产任务、规模及产品规格:本厂主要承担全国冶金工业系统矿山、冶炼和轧钢设备的配件生产,即以生产铸造、锻压、铆焊、毛坯件为主体。年生产规模为铸钢件11000t ,铸铁件3000t ,锻件1000t ,铆焊件2500t 。

3.工厂各车间的负荷情况及变电所的容量:如表1和表2. 表1 各车间380V 负荷计算表

序号

车间(单位) 名称

设备 容量 /kW

K d

?cos ?tan 计算负荷

车间 变电所 代号 变压器台数及容量/kVA P 30 /kW Q 30 /kvar S 30 /kVA I 30

/A

1 铸钢车间 2250 0.4 0.65 No.1车变 2× 2

铸铁车间 1050 0.4 0.75 No.2车变

砂库 120 0.7 0.60 小计(K Σ=0.9)

3 铆焊车间 1300 0.3 0.45

No.3车变

1号水泵房

27

0.75 0.8

4.供用电协议:

(1)工厂电源从电力系统的某220/35KV变电站以35KV双回路架空线引入工厂,其中一路作为工作电源,另一路作为备用电源,两个电源不并列运行。系统变电站距工厂东侧8km。

(2)系统的短路数据,如表3所示。其供电系统图,如图2所示。

表3 区域变电站35KV母线短路数据

III

图2 供电系统图

(3)供电部门对工厂提出的技术要求:○1系统变电站35KV馈电线路定时限过电流保护的整定时间t op=2s,工厂总降压变电所保护的动作时间不得大于1.5s;○2工厂在总降压变电所35KV电源侧进行电能计量;○3工厂最大负荷时功率因数不得低于0.9.

(4)供电贴费和每月电费制:每月基本电费按主变压器容量计为18元/kV A,电费为0.5元/kW·h。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10kV为800元/kV A。

5.工厂负荷性质:本厂为三班工作制,年最大负荷利用小时数为6000h,属二级负荷。6.工厂自然条件:

(1)气象资料:本厂所在地区的年最高气温为38o C,年平均气温为23 o C,年最低气温为-8 o C,年最热月平均最高气温为33 o C,年最热月平均气温为26 o C,年最热月地下

0.8m处平均温度为25 o C。当地主导风向为东北风,年雷暴日数为20。

(2)地质水文资料:本厂地区海拔60m,底层以砂粘土为主,地下水位为2m。

IV

XXX冶金配件生产厂变电所供配电设计

摘要

本文主要以电力工程基础、工厂供电、电力系统分析和继电保护等专业知识为理论依据,对冶金配件生产厂总降压变电站、车间变电所和厂区配电系统进行设计。根据原始资料进行负荷计算、短路电流计算和主要电气设备的选择。另外,对总降压变电站设计需要进行主要设备继电保护设计、配电装置设计和防雷、接地设计,并绘制电气主接线图;对车间变电所根据车间负荷情况,选择车间变压器的台数、容量,以及变电所位置的原则考虑;对厂区配电系统的设计根据所给资料,列出配电系统结线方案,经过详细计算和分析比较,确定最优方案。通过本次课程设计的实贱,巩固所学理论知识,并锻炼个人的动手能力和查找质料分析质料的能力。同时,初步接触电气设计,了解电气设计的大致流程和体验电气设计的过程,获得理论学习所不能获得的经验和体会。

关键词:变电所设计,负荷计算,短路电流,继电保护等

V

目录

第一章负荷计算 (1)

§1.1计算负荷方法 (1)

§1.2 负荷计算结果 (2)

第二章主变压器的选择与主接线方案的设计 (6)

§2.1总降变电所变压器容量选择 (6)

§2.2总降变电所位置选择 (7)

§2.3 总降压变电所电气主接线设计 (8)

第三章短路电流计算 (10)

§3.1 短路电流计算 (10)

第四章主要电气设备选择 (15)

§4.1主变压器35kV侧设备 (15)

§4.2主变压器6kV侧设备 (15)

§4.3 6kV馈线电路设备 (15)

第五章母线及厂区高压配电线路选择 (15)

§5.1主变压器35kV侧引出线 (15)

§5.2 6kV汇流母线与6kV侧引出线 (15)

§5.3 6kV配线电路 (15)

第六章继电保护配置与整定 (15)

§6.1主变压器保护 (15)

VI

§6.2 6kV变压器保护 (15)

§6.3 6kV母线保护 (15)

§6.4 6kV出线保护 (15)

第七章总结 (15)

参考文献 (15)

VII

第一章负荷计算

§1.1计算负荷方法

计算负荷是用来按发热条件选择供电系统中各元件的负荷值。由于载流导体一般通电半小时后即可达到稳定的温升值,因此通常取“半小时最大负荷”作为发热条件选择电器元件的计算负荷。有功负荷表示为P30,无功计算负荷表示为Q30,计算电流表示为I30。

用电设备组计算负荷的确定,在工程中常用的有需要系数法和二项式法。需要系数法是世界各个普遍应用的确定计算负荷的基本方法,而二项式法应用的局限性较大,主要应用于机械加工企业。关于以概率论为理论基础而提出的用以取代二项式发达利用系数法,由于其计算比较繁复而未能得到普遍应用,所以只介绍需要系数法与二项式法。

当用电设备台数多、各台设备容量相差不甚悬殊时,宜采用需要系数法来计算。当用电设备台数少而容量又相差悬殊时,则宜采用二项式法计算。

根据原始资料,用电设备台数较多且各台容量相差不远,所以选择需要系数法来进行负荷计算。

需要系数法单组用电设备的计算负荷可按下式计算:

P30=K d P e

Q30=P30tanφ

?

S30=P30cosφ

?

I30=S30√3U N

式中,P30、Q30、S30分别为该用电设备组的有功计算负荷(kW)、无功计算负荷(kvar)和视在计算负荷(kV.A);P e为该用电设备组的设备容量,是指用电设备组所有设备(不包括备用设备)的设备容量总和(kW);tanφ

1

2 为该用电设备组平均功率因数的正切值;U N 为该用电设备组的额定电压(kV );I 30为该用电设备组的计算电流(A )。

按需要系数法确定计算负荷,根据原始资料分析,本论文负荷是多组用电设备计算,所以,要根据多组用电设备计算负荷的计算公式来计算。

需要系数法多组用电设备的计算负荷可按下式计算:

P 30=K ∑∑P 30.i Q 30=K ∑∑Q 30.i

S 30=√P 302

+Q 302

I 30=S 30√3U N ?

式中,30i P ∑—所有设备组有功计算负荷P30之和;

p

K ∑—有功符合同时系数,本文资料有提供为0.9

§1.2 负荷计算结果

由以上公式可得6KV 计算负荷及各车间380V 计算负荷如表1及表2所示:

序号车间(单

位)

名称

设备

容量

/kW

K d ?

cos?

tan

计算负荷

车间

变电

代号

变压

器台

数及

容量

P30

/kW

Q30

/kvar

S30

/kVA

I30

/A

1 铸钢车间2250 0.4 0.65 1.17 900 1053 1385 2104 No.1

车变

2×1600

2 铸铁车间1050 0.4 0.75 0.88 420 370 560 851 No.2

车变2×800

砂库120 0.7 0.60 1.33 84 112 140 213 小计(KΣ

=0.9)

454 434 628 954

3 铆焊车间1300 0.3 0.45 1.98 390 197 867 1317 No.3

车变1×500

1号水泵

27 0.75 0.8 0.75 20 15 25 38 小计(KΣ

=0.9)

369 191 416 632

4 空压站390 0.8

5 0.75 0.88 332 292 443 673 No.4

车变1×800

机修车间150 0.25 0.65 1.17 38 44 58 88 锻造车间220 0.3 0.55 1.52 66 100 120 182 木型车间186 0.35 0.60 1.33 65 86 108 164 制材场20 0.28 0.60 1.33 6 8 10 15 综合楼20 0.9 1 0 18 0 18 27 小计(KΣ

=0.9)

473 477 672 1021

5 锅炉房300 0.75 0.80 0.75 225 169 281 427 No.5

车变1×400

2号水泵

28 0.75 0.80 0.75 21 16 26 40

仓库(1、

2)

88 0.3 0.65 1.17 26 30 40 61 污水提升

14 0.65 0.80 0.75 9 7 11 17

小计(KΣ

=0.9)

253 200 323 491

3

序号

车间

(单

位)名

设备

容量

/KW

K d?

cos?

tan

计算负荷

P30/kW Q30/kvar S30/kVA I30/A

1 铸钢车

间电

1250

0.92 0.87 0.75 2300 1311 2644 254

2 铸铁车

间工

200

0.8 0.9 0.48 320 154 356 34

3 空压站空

机2×

250

0.85 0.85 0.62 425 264 500 48

小计3045 1729 3500 336 以NO.1号车变负荷为例进行负荷计算:

由表1知NO.1号车变负荷的视在计算负荷为

S30=1385kV.A

查附表A-1,选择型号S9-1600/6型、电压为6/0.4kV、Yyn0联结的变压器,其技术数据如下:ΔP0=2.4kW,ΔP k=14.5kW,I0%=0.6,U k%=4.5,变压器的负荷率β=13851600

?=0.866,则变压器的功率损耗为

ΔP T=ΔP0+β2ΔP k=2.4kW+0.8662×14.5kW=13.3kW

?Q T=S N

100

(I0%+β2U k%)=

1600

100

(0.6+0.8662×4.5)kvar=63.6kvar

以此类推,将工厂各车变负荷380V计算负荷的结果汇总于表3。

4

表3 工厂各车变负荷380V计算负荷汇总

车间变电所序号

380V侧计算负荷变压

器容

/kV.A

变压器功率

损耗

6kV侧计算负荷

有功负

荷/kW

无功

负荷

/kvar

视在

负荷

/Kv.A

有功

损耗

/kW

无功

损耗

/kvar

有功负荷

/kW

无功负荷

/kvar

视在负荷

/kV.A

NO.1 900 1053 1385 1600 13.3 63.3 913.3 1116.6 1442.5 NO.2 454 434 628 800 6.0 28.6 460.0 426.6 657.4 NO.3 369 191 416 500 4.5 18.8 373.5 209.8 428.4 NO.4 473 477 672 800 6.7 31.8 479.7 508.8 699.3 NO.5 253 200 323 400 3.6 14.4 256.6 214.4 234.4 总计2483.1 2512.2 3532.3

5

6 第二章 主变压器的选择与主接线方案的设计

§2.1总降变电所变压器容量选择

由于工厂厂区范围不大,高压配电线路上的功率损耗可忽略不计,因此表3所示各车变高压侧的计算负荷加上表2中各车间6KV 高压计算负荷可认为就是总降压变电所出线上的计算负荷。取K ∑=0.95,则总降压变电所低压母线上的计算负荷为

P 30(2)=0.95×(2483.1+3045)=5251.2kW Q 30(2)=0.95×(2512.2+1729)=4029.1kvar S 30(2)=√5251.22+4029.12=6618.8kV.A

因为该工厂为二级负荷,故总降压变电所可装设两台容量为6300kV .A 的变压器。

总降压变电所低压侧的功率因数为

cos φ(2)

=P 30(2)S 30(2)=5251.26618.8

=0.793<0.9 考虑到变压器的无功功率损耗?Q T 远大于有功功率损耗ΔP T ,由此可判断工厂进线处的功率因数必然小于0.793。为使工厂的功率因数提高到0.9总降压变电所低压侧10kV 母线上装设并联电容进行补偿,取低压侧补偿后的功率因数为0.92,则需装设的电容器补偿容量为

Q C =5251.2×[tan (cos ?10.793)?tan (cos ?10.92)]kvar

=1797.2kvar

选择BWF6.3-50-1W 型电容器,所需电容器个数为n =Q C q C =1797.250??=35.9,取n =36,则实际补偿容量为Q C =50×36kvar =1800kvar 。

补偿后变电所低压侧视在计算负荷为

7 S 30(2)

,=√5251.22+(4029.1?1800)2kV.A =5704.7kV.A 查附表A -2,选择S9-6300/35型、35/6.3的变压器,其技术数据如下?P 0=6.56kW ,?P k =36.90kW ,I 0%=0.60,U k %=7.5。变压器的负荷率为β=5704.76300=0.91?,则变压器的功率损耗为

ΔP T =ΔP 0+β2ΔP k =6.56kW +0.912×36.90kW =37.1kW ?Q T =S N 100(I 0%+β2U k %)=6300100(0.60+0.912×7.5)kvar =429.1kvar 变压器高压侧计算负荷为

P 30(1)=P 30(2)+ΔP T =5251.2kW +37.1kW =5288.3kW

Q 30(1)=Q 30(2),+?Q T =(4029.1?1800)kvar +429.1kvar =2658.2kvar

S 30(1)=√P 30(1)2+Q 30(1)2=√5288.3+2658.2kV.A =5918.8kV.A

则工厂进线处的功率因数为

cos φ(1)=

P 30(1)S 30(1)=5288.3

5918.8

=0.9≥0.9 满足电业部门的要求。

§2.2总降变电所位置选择

根据供电电源的情况,考虑尽量将总降变电所设置在靠近负荷中心且远离人员集中区域,结合厂区供电平面图,拟将总降压变电所设置在厂区西南部,如图2.1示。

图2.1 厂区供电平面图

§2.3 总降压变电所电气主接线设计

本工厂要求工厂电源从电力系统的某200/35kV变电站以35kV双回架空线引入工厂,其中一路作为工作电源,另一路作为备用电源,两个电源不并列运行。一、二次侧均采用单母线分段的接线方式,为便于检修、运行、控制和管理,在变压器高压侧进线处设置高压断路器。由于备用电源线路平时不允许投入,因此备用电源进线断路器在正常工作时必须断开。

变压器二次侧(6kV)设置少油断路器,与备用电源进线断路器组成备用电源自动投入装置(APD),当电源失去电压时,备用电源立即自动投入。总降压变电所电气主接线如图2.2示。

8

图2.2 总降压变电所电气主接线图

9

10 第三章 短路电流计算

§3.1 短路电流计算

为了选择高压电气设备,整定继电保护,必须进行短路电流计算。短路电流按系统正常运行方式进行计算。短路电流计算及短路点的设置如图 3.1所示(以NO.3号为例)。相关参数:无穷大系统:S k.max (3)

=S oc.max =200MV.A ,S k.min (3)

=S oc.min =175MV.A ;变压器T1:容量为6300kV .A ,35/6.3kV ,U k %=7.5;变压器T2:容量为500kV .A ,6/0.4kV ,U k %=4.0。

图2.1 短路电流计算电路及短路点的设置

因工厂厂区面积不大,总降压变电所到各车间的距离不过数百米,因而总降压变电所6kV 母线(k 2点)与厂区高压配电线路末端处(k 4点)的短路电流值差别不大,故只计算主变压器两侧k 1、k 2和车间变压器低压侧k 3点的短路电流。

根据计算电路图作出计算短路电流的等效电路如图3.2所示。

11 图2.2 等效图

求各元件电抗标幺值

设S d =100MV.A ,U d1=37kV ,U d2=6.3kV ,U d3=0.4kV ,则

I d1=

S d √3U d1=

100√3×37kA =1.56kA

I d2=

S d √3U d2=100√3×6.3kA =9.16kA

I d3=

S d √3U d3

=100√3×0.4

kA =144.3kA

电力系统

当S k.max (3)

=200MV.A 时,

X 1.min

?

=

S d S k.max

(3)

=100200

=0.5 当S k.min (3)

=175MV.A 时,

X 1.max

?

=

S d S k.min

(3)

=100175

=0.6 架空线路WL

X 2

?=0.4×8×100

37

2=0.234

主变压器T1

X 3?=

7.5100×100

6.3

=1.19 车间变压器T2

X 4

?=4100×1000.5

=8 系统最大运行方式下三相短路电流及短路容量计算

12 k 1点短路 总电抗标幺值为

X ∑1?=X 1.min ?+X 2?=0.5+0.234=0.734

因此,k 1点短路时的三相短路电流及短路容量分别为

I k1

=I d1X ∑1?=1.56

0.734

kA =2.13kA i sh1=2.55I k1=2.55×2.13kA =5.43kA I sh1=1.51I k1=1.51×2.13kA =3.22kA S k1

=S d ∑1?=100MV.A =136.24MV.A k 2点短路 总电抗标幺值为

X ∑2?=X 1.min ?+X 2?+X 3?=0.5+0.234+1.19=1.924

因此,k 2点短路时的三相短路电流及短路容量分别为

I k2=

I d2X ∑2

?=9.16

1.924kA =4.76kA i sh2=

2.55I k2=2.55×4.76kA =12.14kA I sh2=1.51I k2=1.51×4.76kA =7.19kA S k2=

S d X ∑2

?=1001.924MV.A =51.98MV.A (3)k 3点短路 总电抗标幺值为

X ∑3?=X 1.min ?+X 2?+X 3?+X 4?

=0.5+0.234+1.19+8=9.924

因此,k 3点短路时的三相短路电流及短路容量分别为

I k3

=I d3∑3?=144.3

kA =14.54kA i sh3=1.84I k3=1.84×14.54kA =26.75kA

发电厂课程设计(DOC)

长沙理工大学城南学院 教师批阅发电厂电气主系统 课程设计(论文)任务书 城南学院(系)电气工程及其自动化专业1104 班 题目3×200MW大型火电厂电气主接线设计 任务起止日期;2014 年06月16 日~ 2013年06 月27 日 学生姓名学号 指导教师

教师批阅 一绪论 电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源 形式。提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨 进高科技时代又出现了太阳能发电,磁流体发电等。但对于大多数发展中国 家来说,火力发电仍是今后很长一段时期内的必行之路。 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的 环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不 可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力 的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电 技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国 家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年 审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8 月份,审批项目213个,装机容量168546MW,同比增长420%。如果这些火 电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长 145%。 2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。当 月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1 个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环 比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长 10.9%。2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长 15.8%,增速高于2005年同期3.3个百分点。 随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加 大力度调整火力发电行业的结构。

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

电力工程基础课程设计

1引言 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。(2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 2负荷计算和无功功率计算及补偿 2.1 负荷计算和无功功率计算

工厂供电课程设计示例(完整资料).doc

【最新整理,下载后即可编辑】 工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 厂 房编号厂房 名称 负 荷 类 别 设备 容量 (KW) 需要 系数 Kd 功率 因数 cosφ P30 (KW) Q30 (Kvar) S30 (KVA) I30 (A) 1 铸造 车间 动 力 300 0.3 0.7 照 6 0.8 1.0

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为

2016哈工大发电厂课程设计任务书-2016-1

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:发电厂电气部分课程设计 设计题目:600MW热电厂电气部分 院系:电气工程及其自动化学院 班级:1306141 设计者: 学号: 指导教师:胡林献 设计时间:2017.01.03-2017.01.07 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

学号尾数为1、6的同学做此题!

课程设计说明书 1 原始资料分析 1.1 发电厂类型 根据课程设计任务书的要求,这次设计的是一个热电厂的电气部分。 1.2发电厂设计规模 根据课程设计任务书的要求,该发电厂装设2台50 MW汽轮发电机组,2台100 MW汽轮发电机组,2台200 MW汽轮发电机组,汽轮机组总台数为5台,总容量为700 MW。 1.3 发电厂在系统中的地位 由课程设计任务书可知,总装机容量为700 MW,算不上一个大型电厂,它所接入的系统,220 KV系统是一个无穷大系统,110 KV系统总容量500 MW,由此可以看出,该发电厂在整个系统中所占的比重并不是很大,所以可以确定该发电厂只是一个地方性的电厂。 1.4 电压等级 由课程设计任务书可知,在本系统中,总共涉及到5个电压等级:高压厂用电电压,10.5 KV(QFQ-50-2及TQN-100-2型发电机出口电压),15.75 kV(QFQS-200-2型发电机出口电压),110 KV(系统C2电压),220 KV(系统C1电压)。 1.5 负荷情况 根据电力负荷的分类标准可以知道,该地区附近的负荷主要属于三类负荷,例如轻工业,但也包含二类负荷,比如一些重工业。110 KV和220 KV都是比较重要的线路,应保证供电的可靠性。所以,总体上来说,为了保证人民生命财产安全,为了不影响企业运转,还是应该采用可靠性较高的接线方式。 2 主接线方案拟定 2.1 机组台数分配 由课程设计任务书可知,10.5 KV负荷最大为75 MW,最小为50 MW,初期为52MW,以后每年增加5 MW。110 KV负荷最大为162 MW,最小为115MW,初期为67MW,以后每年增加20MW。 根据负荷和发电机组的情况,我们可以得到以下两条结论:(1)从开始建发电厂,一直到发电厂建设完成,接到10.5 KV母线上的机组总容量应一直为100 MW,这100

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

课程设计7模型

一、ISD模型 ISD(Instructional System Design)即教学系统设计,ISD模型即教学系统设计模型,它是以传播理论、学习理论、教学理论为基础,运用系统理论的观点和知识,分析教学中的问题和需求并从中找出最佳答案的一种理论和方法。 问题的提出从心理学角度看,教学是促进学习的有目的行为,它可能在学习过程中设计出来或是在学习前预先设计出来。为此,罗兰德(G o r d o n R o w l a n d)提出教学设计(instructional design)这个概念,即将学与教的原理转化为具体的教学材料与教学活动。具体来说,是用系统的方法对有效的教学计划、设计、创建、执行和评价。随着学习心理学和认识论与教学设计的整合,教学设计理论已经和现代教育技术、学习理论最新进展紧密地联系在一起。经过30多年的发展历程,教学设计理论得到了检验、修正和优化,并形成当今在教学系统设计领域盛行的迪克——凯瑞模型(Dick and Carey model)。最终形成并完善了集系统工程学、传播学、学习心理学与技术为一体的ISD理论与ADDIE模型[。该模型包括分析(Analysis),设计(Design),3]开发(Development),执行(Implementation)与评估(Evaluation)几个环节。教学设计理论已经在世界各国的教育教学改革中广泛应用。 操作步骤 模型示意图

二、HTP模型 HPT模型是以一种结构化(而不是线性的文字描述或列表)的形式,为提高人类绩效提供指南。绩效技术模型在于揭示工作环境的复杂性和所有要素之间的相互影响,从而为绩效技术从业人员说明如何在工作中提高绩效的操作步骤。绩效技术模型的构成要素:系统方法和绩效问题。 HPT模型的操作步骤包括以下五个方面 HPT模型的工作流程为

发电厂变电所课程设计任务书

《发电厂变电所课程设计》任务书(4) 设计题目:220kV变电所电气一次部分初步设计 设计内容:根据所给定的设计资料,设计一个220kV变电所的电气一次部分,包括: 1.确定电气主接线; 2.确定主变压器的台数、容量和型式; 3.确定所用电接线、所用变压器的台数、容量和型式; 4.确定各电压级的配电装置型式; 5.确定电压互感器和电流互感器的配置; 6.选择各电压级各主要电气设备。 设计要求: 1.编写技术设计说明书,包括: a)主接线和所用电接线设计; b)负荷计算说明及主变压器和所用变压器的台数、容量和型式的确定; c)各回路最大持续工作电流及有关短路电流计算说明和计算结果表; d)主要电气设备选择说明及结果表。 2.编写技术设计计算书,包括: a)负荷计算及变压器容量选择; b)短路电流计算书; c)主要电气设备选择计算书。 3.绘制图纸,包括: 电气主接线简图 参考资料: 1.《发电厂电气部分》熊信银 2.《发电厂变电所课程设计指导书》 3.《发电厂变电所电气接线和布置》 4.《电力工程设计手册》(1、3册) 5.《电力工程电气设计手册》(电气一次部分) 6.《电力工程电气设备手册》(电气一次部分)

附:《发电厂电气主系统》课程设计指导书 一、设计题目:220KV变电所电气一次部分初步设计 二、设计资料: 1)建所目的 由于某地区电力系统的发展和负荷增长,拟建一座220kV变电所,向该地区用110kV 和10kV两个电压等级供电。 3)地区自然条件 年最高气温 40 ℃年最低气温-5 ℃ 年平均气温 18 ℃ 4)出线方向 220kV 向北 110kV 向西 10kV 向东南 三、负荷资料 1)220kV线路 3 回,另预留 1 回备用。架空线路型号选用LGJQ-300。 2)110kV线路8回,其中2回留作备用。架空。 3)10kV线路12回,另有2回备用。架空。

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

TRIZ创新方法课程设计报告

TRIZ创新方法课程设计报告创新案例——自动吸尘器

1.1TRIZ概述 TRIZ就是“发明问题解决理论”的俄语缩写,是由前苏联发明家阿奇舒勒在1946年创立的,因而阿奇舒勒被尊称为TRIZ理论之父。TRIZ理论被公认为是使人聪明的理论。 TRIZ有9大组成部分,核心是技术进化原理。按这一原理,技术系统一直处于进化之中,解决矛盾是其进化的推动力。TRIZ理论也可大致分为3个组成部分:TRIZ的理论基础、分析工具和知识数据库。其中,TRIZ的理论基础对于产品的创新具有重要的指导作用;分析工具是TRIZ用来解决矛盾的具体方法或模式,它们使TRIZ理论能够得以在实际中应用,其中包括矛盾矩阵、物-场分析、ARIZ发明问题解决算法等;而知识数据库则是TRIZ理论解决矛盾的精髓,其中包括矛盾矩阵(39个工程参数和40条发明原理)、76个标准解决方法等等。 学习、研究、应用、推广TRIZ理论可以大大缩短发明创造的进程,提升产品的创新水平。经过半个多世纪的发展,尤其是进入21世纪,TRIZ理论已经成为一套解决新产品开发实际问题的成熟的理论和方法体系。 1.2问题领域以及现状 优雅完美的居室,必须悉心打理,才可保持舒适整洁,有条不紊。吸尘器理想的设计与卓越的科技,令家居清洁工作倍添轻松、快捷,并满足您对每一项清洁要求。它以先进的吸尘鸽、多用途的附件、超强劲的吸力,吸尽每一角落的尘埃,清理难接触的墙角落、天花板、沙发底下到橱柜之间的缝隙,无微不至,令全屋显得干净无暇。在当今科学技术飞速发展的形式下,人们对生活有了更新的追求。随着我国城市化的加剧,人们生活节奏的加快,因此,越来越多的新产品进入到人们的日常生活,取代了越来越多的人力劳动。吸尘器将要成为我国每一个家庭的必需品,它给许多忙碌的人们带来了无穷的便利。吸尘器是一种利用风机和电动机的装置清除室内灰尘的一种家用电器。长期以来,吸尘器都跳不出需要人为管理和充电的使用模式,所以要找准设计定位,自主创新,运用TRIZ(Theory of lnventive Problem solving)理论指导吸尘器的创新设计,设计出符合消费者需求并具有市场竞争力的吸尘器产品。 2.1初始问题情境描述 对于大部分消费者来说,功能多样、自动吸尘、自动获取能量、无需管理、造型简约、美观、具有装饰效果的吸尘器比较容易受到消费者的亲睐。功能多样、造型简约、美观、具有装饰效果比较容易做到,问题是如何做到自动吸尘、自动获取能量、无需管理。因此可以推出概念化如机器人一样获取太阳能或电磁场能周期性自动吸尘器。

发电厂专业课程设计

发电厂专业课程设计

发电厂电气部分课程设计 学院:电气与信息工程学院 专业班级:电气工程及其自动化班12-5班 组号:第一组 指导老师:齐辉 时间:2015.7

摘要 本设计是电厂主接线设计。该火电厂总装机容量为2×50+2×600=1300MW。厂用电率6.5%,机组年利用小时T=6500h。根据所给出的原始资料拟定两种电气主接m ax 线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置。

目录 1设计任务书 (3) 1.1设计的原始资料 (3) 1.2设计的任务与要求 (3) 2电气主接线 (5) 2.1系统与负荷资料分析 (5) 2.2主接线方案的选择 (5) 2.2.1方案拟定的依据 (5) 2.2.2主接线方案的拟定 (7) 2.3 主变压器的选择与计算 (8) 2.3.1变压器容量、台数和型式的确定原则 (8) 2.3.2变压器的选择与计算 (9) 3短路计算 (10) 3.1短路计算的一般规则 (10) 3.2短路电流的计算 (10) 3.2.1各元件电抗的计算 (10) 3.2.2 等值网络的化简 (11) 4电气设备的选择 (16) 4.1电气设备选择的一般原则 (16) 4.2电气设备的选择条件 (16) 4.2.1按正常工作条件选择电气设备 (16) 4.2.2按短路情况校验 (17) 4.2.3 断路器和隔离开关的选择 (19) 4.2.4 电流互感器的选择 (20) 5结束语 (21) 6参考文献 (22)

水电站厂房课程设计任务说明书

水电站厂房课程设计说明书 张文奇 1.蜗壳的型式 电站设计水头H p=95.5m>40m (且>80m ),根据《水力机械》第二版第96页的蜗壳型式选择金属蜗壳。 2.蜗壳的主要参数 2.1金属蜗壳的断面形状为圆形。 2.2对于圆形断面金属蜗壳为了获得良好的水力性能一般采用蜗壳的包角为 0?=345°。 2.3根据《水力机械》第二版第99页图4-30查得,当设计水头为95.5m 时,蜗壳的进口断面的平均流速c V =7.5m/s ; 2.4己知水轮机的型号HL200-LJ-275,根据《水力机械》第二版附表5查得:1D =2750mm ,H=95.5m 时,蜗壳的座环内径b D =3650mm ,外径a D = 4550 mm ,所以蜗壳座环的内、外半径分别: 3. 金属蜗壳的水力计算 电站设计水头H P =95.5m ,进口平均流速c V =7.5m/s ,包角为0?=345°,每台机组过水能力:max Q =62.69m 3/s 。 3650 182522b b D r mm = ==4550 227522a a D r mm = = =

3.1对于蜗壳进口断面: 断面的面积: 断面的半径: 从轴中心线到蜗壳外缘的半径: 3.2对于中间任一断面: 设为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处的 其中max Q =62.69m 3/s 。,c V =7.5m/s ,a r =2.275m 计算成果见表1: 2max 062.69345==8m 3603607.5C C C C Q Q F V V ???= =???max 1.6m ρ= ==max a max 2 2.2752 1.6 5.475R r m ρ=+=+?=i ?max 360i i Q Q ?= ? i ρ= a 2i i R r ρ=+

电力工程基础课程设计指导书

《电力工程基础》课程设计 指导书 福建工程学院电子信息与电气工程系 电气工程教研室

第一节概述 供配电设计应包括负荷的分析计算、确定配电方案、选择高低压电气设备及成套设备、确定变压器的台数、容量及变电所主结线方案、进行短路计算对电气设备进行校验、考虑电气设备的布臵方案,还可以包括继电保护、二次回路、防雷与接地以及电气照明设计内容。 一、供配电设计必须遵循的一般原则 供配电设计必须遵循以下原则: 1)必须遵循国家的有关法令、标准和规范,执行国家的有关方针、政策。包括节约能源、节约有色金属等技术经济政策。 2)应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,设计中应采用符合国家现行有关标准的效率高、耗能低、性能先进的电气。 3)必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案。 4)应根据工程特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,以近期为主,适当考虑扩建的可能性。 二、供配电设计的基本内容 供配电设计主要包括变配电所设计、高压配电线路设计、低压配电线路设计和电气照明设计等。 (一)变配电所设计 变配电所设计包括以下基本内容: 1)负荷计算及无功功率补尝计算。 2)变配电所所址和型式的选择。 3)变电所主要电器台数、容量及类型的选择(配电所设计不含此项内容)。 4)变配电所主接线路的设计。 5)短路电流的计算。 6)变配电所一次设备的选择。 7)变配电所二次回路方案的选择及继电保护装臵的选择与装定。 8)变配电所防雷保护和接地装臵的设计。 9)编写设计说明书及主要设备材料单。 10)绘制变配电所主结线图、平面图和必要的剖面图、二次回路图及其他施工图。 (二)低压配电线路设计 低压配电线路设计包括以下基本内容: 1)低压配电线路系统方案的确定。 2)低压配电线路的负荷计算。 3)低压配电线路的导线和电缆的选择。 4)低压配电设备和保护设备的选择。

发电厂电气主系统课程设计1任务书

<<发电厂电气主系统>>课程设计原始资料 题目:大型骨干电厂电气主接线 : 1. 发电厂(变电厂)的建设规模 (1) 类型:大型骨干凝汽电厂 (2) 最终容量和台数: MW 3004?+MW 6002? 型号( QFSN-300-2)+ (QFSN-600-2) KV U N 20= 85.0cos =? %6.186=d X %2.19'=d X %3.14"=d X (3) 最大负荷利用小时数:5500小时/年 2. 接入系统及电力负荷情况 (1)220KV 出线 6回 最大负荷: 600MW 最小负荷: 300MW 不允许检修断路器时线路停电。 85.0=?COS a h T MAX /5500= (2)500KV 电压等级: 出线 4回,备用出线2回,接受该厂的剩 余功率. 电力系统装机容量:4500MW,当取基准容量为100MVA 时,系统归算到500KV 母线上的020.0*=s x 85.0=?COS a h T MAX /5500= (3)发电机出口处主保护动作时间s t pr 1.01=,后备保护时间 s t pr 2.12= (4)厂用电率 取6%, 厂用电负荷平均功率因数 取85.0cos =? 3.环境条件:海拔小于1000米,环境温度025c ,母线运行温度080c

世界很大,风景很美;人生苦短,不要让自己在阴影里蜷缩和爬行。应该淡然镇定,用心灵的阳光驱散迷雾,走出阴影,微笑而行,勇敢地走出自己人生的风景! 人们在成长与成功的路途中,往往由于心理的阴影,导致两种不同的结果:有些人可能会因生活的不顺畅怨天尤人,烦恼重重,精神萎靡不振,人生黯淡无光;有人可能会在逆境中顽强的拼搏和成长,历练出若谷的胸怀,搏取到骄人的成就。只有在磨难中成长和成功的人们,才更懂得生活,才更能体味出世态的炎凉甘苦,才更能闯出精彩的人生。 阴影是人生的一部分。在人生的阳光背后,有阴影不一定都是坏事。我们应该感激伤害过自己的人,是他们让你的人生与众不同;感激为难你的人,是他们磨炼了你的心志;感激绊倒你的人,是他们强化了你的双腿;感激欺骗你的人,是他们增强了你的智慧;感激蔑视你的人,是他们警醒了你的自尊;感激遗弃你的人,是他们教会了你该独立。 人生若要走向成功,有好多的阴影需要消除。

房屋建筑学课程设计教学模式的优化与创新

房屋建筑学课程设计教学模式的优化与创 新 摘要:改革开放几十年来,随着国民经济的飞速增长,我国的城市建设已日新月异。作为培养建筑专业人才的专业学校,土木工程是其中重点专业之一,房屋建筑学课程设计又是土木工程各专业中非常重要的基础课程,这是一门实践性很强的课程,在学习的过程中可以培养发散性思维,因此研究房屋建筑学课程设计教学模式的优化和创新是非常有必要的,本文围绕这个主题进行了粗浅的探讨。 关键词:房屋建筑学;课程设计;教学模式;优化与创新 【中图分类号】TU-4 前言: 大力发展教育事业一直是我国的重大国策,只有发展好了教育,才有源源不断的人才来支援国家的建设,土木工程专业是建筑类专业学校非常重要的基础专业之一,为我国培养了大量从事土木工作的人才,虽然取得了一些成就,但是在教学模式上还是存在着一些不足,实际教学中仍多采用老师教学生被动接受的传统模式,这就在一定程度上限制了学生的发散性思维,因此很有必要在房屋建筑学课程设计上

进行一些改革和创新。 1.在课程设计中要以学生为主体 现阶段我国高度重视教育体制的改革,提倡使用现代化、科学的教育体制来教导学生,在新的体制下,学生的主体地位应该得到重视,所有的工作都应该以学生为中心来展开,因此各个学校当前的目标就是如何更加了解学生、如何更好地激发出学生的潜力,围绕这些目的进行了大量的探讨,因此,建筑学校要致力于构建以学生为主体的房屋建筑学课程设计。在这个过程中,最主要的是学校领导和授课教师必须要抛弃以老师为主体的旧模式,深刻地认同把学生作为主体的这一新的教学理念,在进行房屋建筑学课程设计时把学生这个主体因素充分考虑,这样才能在课程设计时更有针对性,课程设计的效果才更好。其次,授课教师一定要在课程设计时注意理论联系实际,一定要把学生为主体这个教育理念运用到平时的教学活动中,所有的教育教学活动都要以服务学生为最终的目标,在这个目标下制定相关的教学计划和方案,从而更好地激发出学生的潜能。 2.重视房屋建筑学课程设计案例的多样化,老师要起到引导的作用 教学案例是相关教学内容的生动展现,教学案例选择的是否成功,与最终的教学质量优劣密切相关。所有教学案例的选择应该注意科学性、合理性,与教学内容的匹配性,

电力工程课程设计

电 力 工 程 基 础 课 程 设 计 学校:海南大学 学院:机电工程学院姓名:王映翰 班级:09电气一班 学号:20090304310046

第一部分 设计任务书 一, 设计题目 某工矿企业降压变电所电气设计 二,设计要求 根据本厂用电负荷,并适当考虑生产的发展,按安全可靠,技术先进,经济合理的要求,确定工厂变电所的位置与形式,通过负荷计算,确定主变压器台数及容量,进行短路电流计算,选择变电所的主接线及高、低压电气设备,选择整定继电保护装置,最后按要求写出设计计算说明书,绘出设计图纸。 三,设计资料 设计工程项目 (1) 工厂总平面图: (2) 工厂负荷数据:

(3)供电电源情况:按与供电局协议,本厂可由东南方19公里处的变电所110/38.5/11kv,50MVA变压器供电,供电电压可任选。 (4)电源的短路容量:35kv母线的出线断路器断流容量为1500MVA;10kv母线的出线断路器断流容量为350MVA。 (5)供电局要求的功率因数:当35kv供电时,要求工厂变电所高压侧cos¢>=0.9;当以10kv供电时,要求工厂变电所高压侧cos

¢>=0.95. (6) 气象资料: 四,设计任务 (一) 设计计算说明书 (二) 设计图纸 第二部分 设计计算书 一、各区域计算负荷和无功补偿 1.采选矿区 已知:P30=3000KVA Tmax=5000h cos¢0.9 Q30= P30*tan¢=3000*0.48=1440 Kvar S30=2 30 230Q P + =3327.70KVA 2.冶炼厂 已知:P30=2200KVA Tmax=4200h cos¢0.9 Q30= P30*tan¢=2200*0.48=1056 Kvar S30=230 230Q P + =2440.31KVA 3.化工厂 已知:P30=2000KVA Tmax=4200h cos¢0.9 Q30= P30*tan¢=2000*0.48=960 Kvar S30=230 230Q P + =2218.47 KVA 4.机械制造厂 已知:P30=1500KVA Tmax=2880h cos¢0.9 Q30= P30*tan¢=1500*0.48=720 Kvar S30=230 230Q P + =1163.85KVA 5.厂区和职工居住区照明 已知:P30=800KVA Tmax=1800h cos¢0.9 Q30= P30*tan¢=800*0.48=384 Kvar S30=230 230Q P + =887.39KVA 6.所用电 已知:P30=500KVA Tmax=1800h cos¢0.9 Q30= P30*tan¢=500*0.48=240 Kvar S30=230 230Q P + =554.62KVA

《电力系统继电保护》课程设计任务书

《电力系统继电保护》课程设计任务书课程设计任务书 适用专业:发电厂及电力系统(三年制) 电力系统继电爱护及自动化(三年制) 电气工程系 2008年4月

《继电爱护课程设计》任务书 目的要求: 通过本课程设计,使学生把握和应用电力系统继电爱护的设计、整定运算、资料整理查询和电气绘图等使用方法。在此过程中培养学生对各门专业课程整体观的综合能力,通过较为完整的工程实践差不多训练,为全面提升学生的综合素养及增强工作适应能力打下一定的基础。本课程要紧设计35KV (110KV )线路、变压器、发电机继电爱护的原理、配置及整定运算,给今后继电爱护的工作打下良好的基础。 设计题目: (一)双侧电源的35KV 线路继电爱护的配置及整定运算。 原始资料: 某双侧电源的35KV 线路网络接线如下: 已知:(1)、电厂为3台36000KW 、电压等级为6、3KV 的有自动电压调剂器的汽轮发电机,功率因数cos =0.8,X d ”=0.125, X2 =0.15, 升压站为2台容量各为10MV A 的变压器Ud =7.5%,各线路的长度XL —1为20KM ;XL —2为50KM ;XL —3为25KM ;XL —4为14KM ;XL —5为40KMA 发 电 机 系 统 (2)、电厂最大运行方式为3台发电机、2台变压器运行方式,最小运行方式为2台发电机、2台变压器运行方式;XL —1线路最大负荷功率为10MW ,XL —4线路最大负荷功率为6MW 。(3)、各可靠系数设为:KIrel =1.2,KIIrel =1.1,KIIIrel =1.2,XL —1线路自起动系数KMs =1.1,XL —4线路自起动系数KMs =1.2,XL —5线路过流爱护的动作时限为1.6秒, X L —3线路C 侧过流爱护的动作时限为1.0秒,爱护操作电源为直流220V 。 (4)、系统最大短路容量为135MV A ,最小短路容量为125MV A 。 设计任务 选出线路XL —1A 侧,XL —4线路电流互感器变比。

水电站课程设计

《水电站》课程设计水轮机的选型设计 专业:XXX 班级: XX 姓名:XXX 学号:XXX 指导教师:XXX

【摘要】 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 【关键词】 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【Abstract】 Curriculum project of hydro station is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of in adaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method, when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydro station, the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydro station; guarding method ; mode of thinking ; methodology; design step.

电网课程设计任务书

《电网规划课程设计》任务书 长沙理工大学电气与信息工程学院 马士英

1设计任务 本次电力系统规划设计是根据给定的发电厂、变电所原始资料完成如下设计: 1.1确定供电电压等级; 1.2初步拟定若干待选的电力网接线方案; 1.3发电厂、变电所主变压器选择; 1.4电力网接线方案的技术、经济比较; 1.5输电线路导线截面选择; 1.6调压计算。 2原始资料 2.1发电厂、变电所相对地理位置及距离 无穷大系统 2.2发电厂技术参数 装机台数、容量:4X 50 ( MW ) 额定电压(kV ): 10.5KV 额定功率因数COS e 0.8

最小运行方式为三台机运行

2.3负荷数据及有关要求 3设计要求 3.1设计中应严格遵守课程设计的规章制度,按时到设计教室进行设计,任何人不得迟到、早退和无辜缺席; 3.2同学应根据设计要求独立完成课程设计任务,同组成员之间可以商量讨论,但严禁相互抄袭; 3.3设计完成后,每个同学应提交打印的设计说明书一份,课程设计说明书编写和电路图绘制应附和规范要求; 3.4按时参加课程设计答辩。

《电网规划课程设计》任务书 长沙理工大学电气与信息工程学院 马士英

1设计任务 本次电力系统规划设计是根据给定的发电厂、变电所原始资料完成如下设计: 1.1确定供电电压等级; 1.2初步拟定若干待选的电力网接线方案; 1.3发电厂、变电所主变压器选择; 1.4电力网接线方案的技术、经济比较; 1.5输电线路导线截面选择; 1.6调压计算。 2原始资料 2.1发电厂、变电所相对地理位置及距离 发电厂最小运行方式为两台机运行

水电站 课程设计

《某水电站厂房初步设计》 课程设计 学生姓名: 学号: 专业班级:水利水电(2)班 指导教师: 二○一三年九月二十七日

目录 第一章工程概况 (1) 第二章有关设计资料 (2) 2.1 厂区地形和地质条件 (2) 2.2 水电站尾水位 (2) 2.3 对外交通 (2) 2.4 地震烈度 (2) 第三章水轮机型号及主要参数选择 (3) 3.1 水轮机型号选择 (3) 3.2 主轴及蜗壳形式选择 (3) 3.3 HL220型水轮机方案的主要参数选择 (3) 3.4 两种方案的比较分析 (6) 第四章机电设备 (7) 4.1 水轮机 (7) 4.2 调速器(自动调速器) (7) 4.3 发电机 (8) 4.4 蝶阀 (8) 4.5 桥式起重机 (9) 第五章电气主结线及电气设备布置: (10) 第六章主要控制高程的确定 (11) 6.1 水轮机的吸出高度和安装高程 (11) 6.2 水轮机层的地面高程 (11) 6.3 尾水设计及相关高程 (11) 6.4 吊车轨顶高程 (12) 6.5 厂房天花板高程和厂房顶高程 (13) 第七章主厂房的布置设计 (14) 7.1 机组的布置方式 (14) 7.2 厂房下部结构的构造和布置 (14) 7.3 主厂房的长度和宽度 (14) 7.4 安装间的布置 (16)

7.5 主厂房内机电设备布置及交通运输 (16) 第八章副厂房的布置设计 (17) 8.1 中央控制室 (17) 8.2 高压开关室 (17) 8.3 厂用设备的布置 (18) 8.4 楼梯 (18) 8.5 厂变和工具间 (18) 8.6 值班室和休息室 (18) 8.7 调度室和通讯室 (18) 8.8 卫生间 (18) 第九章水电站枢纽布置 (19) 9.1 厂房 (19) 9.2 主变压器场 (19) 9.3 引水道 (19) 9.4 压力钢管 (19) 9.5 尾水道 (19) 9.6 对外交通 (19) 第十章开挖量的计算 (20) 第十一章分析与总结 (23) 11.1 问题分析 (23) 11.2 课设感受 (24) 参考文献 (25) 附图1:水轮机机组平面示意图 (26) 附图2:水轮发电机组剖面图B-B (27) 附图3:水轮发电机组横剖面图A-A (28) 附图4:HL220型水轮机综合特性曲线图 (29)

相关文档
最新文档