SPC统计过程控制应用实例分析

合集下载

spc案例

spc案例

spc案例SPC(Statistical Process Control,也叫统计过程控制)是一种通过统计方法对产品和过程进行监控和改进的质量管理方法。

下面是一个SPC案例,用以说明其在实际生产中的应用。

某制造公司生产一种产品,经过市场调查发现,该产品存在一定的质量问题,如尺寸偏差、露粉等。

为了解决这些问题,公司决定采用SPC方法来监控和改进生产过程。

首先,公司确定一组关键工艺参数,如温度、压力、转速等,以及相关的质量指标,如尺寸、外观等。

随后,公司对每个工艺参数进行测量和记录,并将其输入到SPC软件中。

同时,公司还设置了对应的上下限值,即规定了每个工艺参数的合理变化范围。

在生产过程中,SPC软件会自动进行统计分析,并生成控制图。

控制图上有一条中心线,表示期望值,以及上下限线,表示允许的变化范围。

同时,还有一些参考线,如标准偏差线,用于判断过程稳定性。

公司的技术人员定期对控制图进行检查,观察各参数是否在规定范围内波动,是否出现异常情况。

如果发现异常,技术人员会及时采取措施,如调整机器参数、更换工具等,以及及时通知相关操作人员。

通过SPC的实施,公司逐渐发现了一些问题。

例如,当温度过高时,产品尺寸会偏大;当压力过低时,产品内部会出现空隙。

公司根据这些发现,对生产过程进行了优化,并引入了更先进的控制系統,进一步提高了产品质量。

此外,SPC还帮助公司进行了质量变化的监控和评估。

公司可以利用SPC软件生成的统计报表,进行不同时间段内产品质量的对比。

同时,公司还可以进行根因分析,找出导致质量问题的根本原因,并提出相应的改进措施。

总的来说,通过SPC的应用,该制造公司有效地改善了产品质量,减少了不合格品的数量,并提高了自身的竞争力。

SPC 方法在实际生产中具有广泛的应用前景,可以帮助企业提升质量管理水平,降低成本,提高效率。

汽车行业--统计过程控制SPC

汽车行业--统计过程控制SPC

汽车行业–统计过程控制SPC引言在汽车行业中,统计过程控制(Statistical Process Control,简称SPC)是一种管理工具,它通过统计方法分析生产过程中的变异性,以实现过程的稳定和质量的控制。

本文将介绍汽车行业中统计过程控制的概念和原理,并探讨在汽车制造过程中应用SPC的重要性和优势。

统计过程控制概述统计过程控制(SPC)是一种基于统计学原理和方法的过程管理工具,其目的是通过对过程性能进行监控和分析,以建立并维持过程的稳定性和可控性。

SPC通过收集、分析和解释数据,帮助生产企业识别过程中的问题,并采取相应的措施来确保产品和服务的质量。

SPC的原理与方法SPC的核心原理是基于统计学中的质量控制理论和方法,主要包括以下几个方面:1. 测量与变异性分析SPC首先需要对生产过程进行有效的测量和数据收集,包括产品的尺寸、重量、颜色等一系列关键指标的测量。

然后,通过统计方法对这些数据进行分析,识别出过程中的变异性,并将其分解为正常变异和特殊原因变异两部分。

2. 控制图的应用控制图是SPC的关键工具之一,它通过对数据的可视化呈现,帮助生产企业及时监控和识别过程中的变异性。

常见的控制图包括均值图、范围图和方差图等,它们可以显示出过程的中心线和控制限,从而判断过程是否处于控制状态。

3. 质量改进与过程优化SPC不仅可以帮助企业监控和控制过程中的变异性,还能够通过数据分析和质量改进方法,找出过程中的问题,并提出相应的改进措施。

它可以帮助企业定位问题和优化生产工艺,从而提高产品质量和生产效率。

汽车制造中的SPC应用在汽车制造过程中,SPC的应用至关重要。

下面将介绍几个具体的应用案例:1. 固定质量控制汽车制造过程中的每一个环节都需要严格的质量控制,以确保最终产品的质量。

通过SPC的应用,可以实时监控生产过程中的关键指标,并及时发现问题,从而避免次品的产生和不良产品的流入市场。

2. 方案改进与优化通过对SPC数据的分析,汽车制造企业可以发现生产过程中的瓶颈和问题,并针对性地提出改进方案。

SPC统计过程控制案例分析(doc 24页)

SPC统计过程控制案例分析(doc 24页)

SPC统计过程控制案例分析(doc 24页)统计过程控制(SPC)案例分析一.用途1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。

2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。

3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。

4.为评定产品质量提供依据。

二.控制图的基本格式1.标题部分X-R控制图数据表计算:X图:CL=X R图:CL=RUCL=X+RA2UCL=RD4LCL=X-RA2LCL=RD32质量特性在方格纸上作出控制图:RX 控制图X图R图CLLCLU 样本规则2 控制界限内点子的排列无异常现象。

[案例1] p控制图某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389p,作控制图对其进行控.0制.数据与p图计算表1394 0 0 0.099 1495 3 0.032 0.098 1581 0 0 0.103 1682 7 0.085 0.103 1775 3 0.040 0.106 1857 1 0.018 0.116 1991 6 0.066 0.100 2067 2 0.030 0.110 2186 3 0.035 0.101 2299 8 0.080 0.097 2376 1 0.013 0.105 3493 8 0.086 0.099 2572 5 0.069 0.107 2697 9 0.093 0.098 2799 10 0.100 0.097 2876 2 0.026 0.105 小计2315 90[解] 步骤一 :预备数据的取得,如上边表所示.步骤二: 计算样本不合格品率024.085/2/,/111====n D p n D p i i i步骤三: 计算p 图的控制线ii i i n n p p p LCL CL n n p p p UCL n D p /)0389.01(0389.030389.0/)1(30389.0/)0389.01(0389.030389.0/)1(30389.02315/90/--=--==-+=-+=====∑∑由于本例中各个样本大小i n 不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102 CL=0.0389 LCL=-0.024此处LCL 为负值,取为零.作出它的SPC 图形.UCLCLLCL[案例2]为控制某无线电元件的不合格率而设计p 图,生产过程质量要求为平均不合格率≤2%。

SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析1.SPC控制特性的定义T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。

产品实现的过程也可以用框图简单地描述为下图:上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。

输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的生产能力及控制能力的需要来决定的。

因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。

针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。

PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量;(1) 从产品特性要求判断,是否为产品关键特性;如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。

产品的关键特性在产品设计阶段己确定。

(2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得到立即的改正及预防的作用。

例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。

统计过程控制SPC案例分析

统计过程控制SPC案例分析

【案例1】 R X -控制图示例某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。

为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。

为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。

分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。

又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。

解:我们按照下列步骤建立R X -图步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。

步骤2:计算各组样本的平均数i X 。

例如,第一组样本的平均值为:0.16451621661641741541=++++=X其余参见表1中第(7)栏。

步骤3:计算各组样本的极差i R 。

例如,第一组样本的极差为:{}{}20154174min max 111=-=-=j j X X R其余参见表1中第(8)栏。

表1: 【案例1】的数据与R X -图计算表i故:272.163=X ,280.14=R 。

步骤5:计算R 图的参数。

先计算R 图的参数。

从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到: 188.30280.14114.24=⨯==R D UCL R280.14==R CL R ==R D LCL R 3—极差控制图:均值控制图:图1 【案例1】 的第一次R X -图参见图1。

可见现在R 图判稳。

故接着再建立X 图。

由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X032.155280.14577.0272.1632≈⨯-=-=R A X LCL X因为第13组X 值为155.00小于X LCL ,故过程的均值失控。

SPC案例分析

SPC案例分析

SPC案例分析在当今竞争激烈的制造业环境中,质量控制成为了企业生存和发展的关键。

统计过程控制(Statistical Process Control,简称 SPC)作为一种有效的质量控制工具,已经在众多企业中得到了广泛的应用。

本文将通过一个具体的案例,深入探讨 SPC 在实际生产中的应用和效果。

一、案例背景我们选取的案例是一家汽车零部件制造企业,该企业主要生产发动机缸体。

在过去的一段时间里,客户对产品的质量投诉不断增加,主要问题集中在缸体的尺寸精度不符合要求,导致发动机装配过程中出现故障。

为了解决这一问题,企业决定引入 SPC 方法进行质量控制。

二、SPC 方法的实施过程1、确定关键质量特性首先,企业的质量控制团队与生产部门合作,通过对产品设计要求和客户反馈的分析,确定了发动机缸体的关键质量特性,即缸体的内径尺寸和圆柱度。

2、数据采集在生产过程中,质量控制人员每隔一定时间从生产线上抽取一定数量的缸体样本,使用高精度测量仪器对关键质量特性进行测量,并记录测量数据。

3、控制图的绘制将采集到的数据输入到统计软件中,绘制均值极差控制图(XR 控制图)和均值标准差控制图(XS 控制图)。

控制图的横坐标表示样本序号,纵坐标表示测量值。

4、控制限的确定根据样本数据的分布特征和统计规律,计算出控制图的控制限。

控制限分为上控制限(UCL)、下控制限(LCL)和中心线(CL)。

中心线通常为样本数据的均值,上控制限和下控制限则根据一定的计算公式得出。

5、过程监控与分析定期对控制图进行观察和分析,判断生产过程是否处于受控状态。

如果数据点落在控制限内,且没有明显的趋势或异常模式,则认为过程处于受控状态;反之,如果数据点超出控制限,或者出现连续上升或下降的趋势,或者存在周期性的波动等异常模式,则认为过程失控,需要采取相应的措施进行改进。

三、案例结果与分析在实施 SPC 方法后的一段时间里,企业对生产过程进行了持续的监控和分析。

统计过程控制(SPC)在制造业中的应用案例分析

统计过程控制(SPC)在制造业中的应用案例分析

统计过程控制(SPC)在制造业中的应用案例分析统计过程控制(SPC)是一种常用于制造业中的质量管理方法,通过对过程中的关键参数进行监测与控制,确保产品质量稳定可靠。

本文将以一家汽车零部件制造企业的案例为例,分析SPC在制造业中的应用。

该企业是一家专业生产汽车引擎活塞的制造商,其产品质量直接关系到汽车发动机的性能和寿命。

为了保证引擎活塞的质量,在生产过程中,该企业采用了SPC方法来监控关键参数,及时调整生产过程,提高产品质量。

首先,在SPC的实施过程中,该企业明确定义了关键参数,并建立了相应的控制图。

在引擎活塞的生产过程中,关键参数包括活塞直径、活塞高度、活塞内孔直径等。

通过在生产线上设置检测装置和传感器,实时监测这些参数,并将数据输入到SPC软件中进行分析和控制。

接下来,该企业使用SPC软件对收集到的数据进行统计分析。

通过统计分析,可以了解到每个关键参数的平均值、标准差、极差等信息,以及其变化趋势。

通过对这些数据进行分析,可以判断生产过程的稳定性和一致性。

当关键参数超出了控制界限,即超出了产品质量的上下限时,SPC软件会自动发出警报,提醒相关人员进行相应的调整和控制。

此外,SPC软件还可以生成各种控制图,如X-bar控制图、R控制图和P控制图等。

这些控制图可以直观地显示出生产过程的稳定性和变异性。

通过观察和分析控制图的规律,可以判断生产过程是否受到特殊因素的影响,如材料变化、设备故障或人为误操作等。

当发现特殊因素时,及时采取纠正措施,以确保产品质量稳定。

此外,SPC软件还可以进行过程能力分析,通过分析过程能力指标(Cp、Cpk)等参数,评估生产过程的稳定性和能力。

通过这些分析,可以确定生产过程是否满足质量要求,并及时调整和优化生产过程,以提高产品质量和生产效率。

在该企业的实践中,SPC方法的应用取得了显著的效果。

通过SPC的实时监控和调整,引擎活塞的关键参数稳定在设计要求的范围内,产品质量得到了有效控制。

SPC-统计过程控制

SPC-统计过程控制

SPC-统计过程控制
SPC基本概念 SPC实施步骤 SPC工具和技术 SPC应用案例 SPC未来发展与挑战
contents
目 录
01
SPC基本概念
统计过程控制(SPC)是一种应用统计学的方法,通过对生产过程中的各个阶段进行数据收集、分析和控制,以实现过程稳定、减少变异和优化性能的管理手段。
SPC的核心在于利用统计技术对生产过程中的关键特性进行监控和预测,及时发现异常并采取相应措施,确保生产过程的稳定和产品质量的可靠。
判断标准
过程能力指数还可以作为改进生产过程的依据,帮助企业优化生产工艺和流程。
改进依据
过程能力指数
综合评估
过程性能指数是对生产过程整体性能的综合评估,考虑了生产过程中的所有影响因素。
比较分析
通过比较不同时间段或不同生产条件下的过程性能指数,可以对生产过程进行全面的比较和分析。
持续改进
过程性能指数可以作为持续改进生产过程的依据,帮助企业不断提升生产效率和产品质量。
选择适宜的控制图
确定控制界限
根据历史数据和行业标准,制定适合的控制界限,确保过程处于受控状态。
验证控制界限
在实际生产过程中验证控制界限的适用性和有效性,根据实际情况进行调整。
制定控制界限
数据的收集与处理
建立数据收集系统
确保数据收集的准确性和及时性,建立有效的数据记录和存储系统。
数据处理与分析
对收集到的数据进行处理、分析和解释,识别异常波动和趋势,为后续的决策提供依据。
SPC在持续改进中的作用
THANKS FOR
WATCHING
感谢您的观看
02
SPC实施步骤
选择对产品或服务的质量、性能等有关键影响的参数作为控制对象,确保这些参数在控制范围内。

统计过程控制案例分析

统计过程控制案例分析

统计过程控制案例分析统计过程控制案例分析在生产和管理领域,统计过程控制(SPC)是一种重要的技术,用于监控和改善过程质量。

本文通过一个实际案例分析,探讨了SPC的应用和效果。

案例背景某电子产品制造商在生产过程中遇到了质量问题,产品不合格率居高不下。

为了解决这个问题,公司决定采用SPC技术对生产过程进行监控和改进。

控制图分析首先,我们通过控制图来分析生产过程。

控制图是一个直观的图形,横轴表示时间,纵轴表示产品质量。

在SPC中,通常使用X-R图(均值-极差图)来监控过程的稳定性。

X-R图由两条曲线组成,一条表示均值(X),另一条表示极差(R)。

均值反映过程的中心趋势,极差反映过程的波动大小。

通过对X-R图的分析,我们可以发现生产过程中的波动和不稳定性。

在本案例中,我们发现产品质量存在较大的波动,且不合格率较高。

这表明生产过程存在较大的问题,需要进行改进。

原因分析和措施制定针对上述问题,我们进行了深入的原因分析。

通过对生产环节的调查和分析,我们发现问题的主要原因是原材料的质量不稳定。

为此,我们提出了以下改进措施:1、对原材料进行质量检查和控制,确保原材料的质量符合要求。

2、加强生产过程的监控和管理,确保生产过程的稳定性和一致性。

3、提高员工的技能和素质,加强质量意识培训。

实施改进措施在制定改进措施后,我们开始实施。

在实施过程中,我们采用了PDCA 循环(计划-执行-检查-处理)来确保改进措施的有效性和持续性。

在改进措施实施后,我们再次对生产过程进行了SPC监控和评估。

效果评估和总结通过SPC技术的监控和评估,我们发现生产过程的质量得到了显著改善。

不合格率得到了有效降低,产品质量更加稳定。

员工的技能和素质也得到了提高,质量意识得到了加强。

这些改进不仅提高了企业的生产效率和质量水平,也提高了客户对产品的满意度。

通过本案例的分析,我们可以看到SPC技术在生产和管理领域的重要作用。

SPC技术可以帮助我们监控和改善过程质量,提高生产效率和质量水平。

统计过程控制SPC案例分析

统计过程控制SPC案例分析

统计过程控制SPC案例分析制造公司生产汽车零件,该公司决定采用统计过程控制来监测生产过程中的变异程度,并及时采取相应的措施来保证产品质量。

首先,该公司确定了需要监控的关键过程参数,如尺寸、重量、硬度等。

然后,选取了一个代表性样本,进行了初始的统计分析。

通过对样本数据的收集和分析,可以得到该过程的中心值(mean)和过程能力指数(process capability index)。

接下来,公司制定了针对每个关键过程参数的控制限规则。

这些规则包括上控制限(Upper Control Limit,UCL)和下控制限(LowerControl Limit,LCL),一旦产品参数超出这些限制范围就会引发警报。

第三步,该公司开始在生产线上收集样本数据,并进行实时统计分析。

每隔一段时间,例如每小时或每一天,取样并测量样本的关键参数,记录数据并计算统计指标,例如平均值和标准差。

最后,根据统计分析的结果,如果数据超出了控制限范围,该公司可以立即采取纠正措施。

例如,如果平均值偏离了中心值,可以调整生产设备或工艺参数;如果数据的变异过大,可以对生产设备进行维护或调整操作程序。

通过持续的SPC监测和改进,该公司可以实现以下几方面的益处:1.提高质量:通过监测关键参数并及时纠正异常,可以减少产品的次品率和退货率,提高产品质量,满足客户需求。

2.降低成本:通过减少次品率和退货率,公司可以降低废品处理成本和退货成本;此外,通过减少变异,还可以降低废品和工时成本。

3.提高效率:通过监控关键参数,公司可以及时调整生产设备或工艺参数,减少无效生产时间和停机时间,提高生产效率和产能。

需要注意的是,SPC并非一劳永逸的解决方案,而是需要持续不断的监测和改进。

公司应该定期复评统计指标,根据实际情况调整控制限并更新纠正措施。

此外,为了提高SPC的效果,公司还可以使用一些辅助工具,如散点图、控制图和直方图等,帮助分析和解决问题。

综上所述,统计过程控制是一种有效的管理技术,可以帮助制造公司提高质量、降低成本和提高效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPC统计过程控制应用实例分析1.SPC控制特性的定义T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。

产品实现的过程也可以用框图简单地描述为下图:上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。

输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的生产能力及控制能力的需要来决定的。

因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。

针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。

PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量;(1) 从产品特性要求判断,是否为产品关键特性;如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。

产品的关键特性在产品设计阶段己确定。

(2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得到立即的改正及预防的作用。

例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。

(3) 客户的特殊要求:客户的特殊要求可以针对产品的固有特性要求,如封装外观尺寸要求,针对p8AGBdoysize35*35的产品,要求产品的允收范围在35+-0.sm。

另外客户的特殊要求也可以针对1艺参数,如Wire Bo nd的Wire Pull和Ballshear。

封装企业的新产品导入初期阶段,在制定产品生产的控制计划时,SPC的控制特性就是其中必须定义的一个部分。

特殊特性的定义主要来源于行业规范,客户的特殊要求以及通过生产经验的累积,总结出来的关键的过程参数计量型的控制图应用在如下的特性,见下表:计量型控制图的应用工序及抽样计划工序SPC控制项目控制图抽样频率样本数Wafer Backgrind TTV(Total Thickness Variatlon)X bsr R IX/Shift5Wafer saw Kerf width X bar R IX/Shift5Die Attach BondLine ThiCkneSS X bsr R IX/Shift5Wire Pull Z bar W IX/Day20Wire BondBall Sheal Z bar W IX/Day20Solder ball Shesr X bar R IX/Shift5Solder Ball AttachSolder ball Pull X bar R IX/Shift5Trim Form Corporality X bar R IX/Shift5另一方面在生产过程中,通过对质量异常情况的分析,经验总结评估等,同样可以根据工艺的需要建立使用SPC控制方法的过程或特性控制图,例如下表。

部分其它计量型控制图的应用工序SPC控制项目控制图抽样频率样本数Die Attach Die Placement X bar R IX/Shift5Package Saw Package Dimension X bar R IX/Shift52.SPC系统实施前的准备正如前所述,SPC系统将对产品实现中的关键特性进行监控,以发现由原材料,设备、参数、人员构成的生产过程系统是否存在导致失控出现的特殊原因,以及时围堵,防止不合格品的出现。

在SPC系统实施前,我们需要从以下几个方面做好准备,如图2.4 。

上线实施前的准备工作同样遵守SMEI的原则。

SPC实施人员需要从Man(人),Machine(机),恤terial (物),Method(方法),Measurement(测量)和Environment 环境)对SPC控制的全面实施进行准备:1)人正如前面所提到,作为全面质量管理的重要部分,SPC的实施要求企业从上到下的全员参与,在SPC实施的过程中除了一线的操作人员对特性进行数据收集之外,从组织的结构来看,自下往上,参与者还包括生产及工艺部门的责任工程师,各部门的领导人作为SPC小组的支持者,对小组活动起着拥护及决策作用•作为SPC实施活动中的主导因素,人员的参与能力必须得到保证,因此在SPC的全面实施之前,人员均须具备基本的SPC理论及操作知识。

对于生产线的一线操作人员,如有必要,SPC的基础知识还需要作为人员资历认证的一部分。

公司也需要安排定期的统计知识培训,分别针对操作人员,工程师及更高层次的需要.2)机器及测量系统机器是组成生产过程的重要部分,因此机器也成为SPC系统中的关键因素。

机器包括生产待检测产品的机器及检测机器。

机器的定期维护校准能够保证机器稳定的生产能力,降低机器的变异导致系统失控的可能性。

争对测量设备,测量系统分析,对测量设备的线性,稳定性,重复性,再现性,准确性进行定期的评估,保证产品减少测量系统变异为产品生产带来的异常因素。

3) 物SPC系统中的物主要提及待测的样品,测量完的样品, SPC出现失控情况下需要处理分析的半成品等。

4)法在进行SPC的策划时,SPC小组需对活动实施制定方法,其中包括样本的抽样方法,抽样频率及样品数;样本的控制保存方法;适用的SPC的判异准则;控制规范;出现失控的情况下,如何采取失效反应措施(OCAP );保证SPC管理系统健康运行的检查方法,监控的系统指标及操作规范,例如SPC执行状况审核周期,上下控制线评估的频率要求等等。

方法的制定是由SPC多方合作小组成员通过头脑风暴讨论,并分析以确定其可行性的,由小组的支持者做出最终决策并保证实施。

5)环境SPC的监控数据来源于生产线并应用于正常环境下的产品生产,所以数据的采集,测量都需要完全遵守生产环境的要求。

另一方面针对某些特定的待检测的样本,例如,封装前道的PCB需要保证样本能够真实的反应生产能力,样本需要放置在NZ柜里以防止湿度对样本的特性影响。

3.SPC施行步骤SPC活动的实施开展可以遵循下列步骤步骤1:培训SPC基本理论及应用知识。

培训内容主要有下列各项:SPC的重要性,正态分布等统计基本知识,质量管理七大工具,其中特别是要对控制图深入学习,如何制订过程控制网图,如何制订过程控制标准等等。

步骤2: 确定关键工序及影响工序的关键变量(即关键质量因素)。

步骤3: 对关键变量制定控制标准及控制计划。

具体分为以下两点:(1)对步骤2 得到的每一个关键变量进行具体分析,分析包含抽样计划、控制规范、稳定性判断准则的选择等;(2)对每个关键变量建立过程控制标准,并填写过程控制标准表。

过程控制标准表是在SPC实施中指导相关过程控制人员操作的蓝本,可参见如下样本,下表所示。

部分其它计量型控制图的应用工序SPC控制项目控制图抽样频率样本数Die Attach Die Placement X bar R IX/Shift5Package Saw Package Dimension X bar R IX/Shift5步骤4:编制控制标准手册,在各部门落实。

将具有立法性质的有关过程控制标准的文件编制成明确易懂、便于操作的手册,使各道工序使用。

包括数据采集方法、失控反应计划、过程能力分析要求等。

步骤5:对过程进行统计监控。

主要应用控制图对过程进行监控。

若发现问题,则需对上述控制标准手册进行修订,及反馈到步骤4、步骤6:对过程进行诊断并采取措施解决问题。

可注意以下几点:(1)可以运用传统的质量管理方法,如七种工具,进行分析。

3)在诊断后的纠正过程中有可能引出新的关键质量因素,即反馈到步骤2,3,4.2.4.4 管理的实施。

(2)可以运用诊断理论,进行分析和诊断。

作为TS16949体系的五大手册,SPC被要求应用在工艺监控及改进的过程中。

各企业实施SPC的具体方案各有不同,但是万变不离其中的是,SPC的实施方案包含:选择控制图,数据采集方案,失控反应计划(OCAP 分析以提供持续改进。

以芯片切割工序(waferSaw)为例:1)控制图及数据采集方案,见下表:控制图及数据采集方案工序SPC控制项目控制图抽样频率样本数Wafer Saw Kerf Width X bar R IX/Shift 5waferSaw工序需进行SPC控制的特性为切割槽的宽度,切割槽宽度的水平是waferSaw工序主要的关注参数,宽度的大小将影响芯片的尺寸,从而影响之后工序与芯片尺寸有关的参数控制。

切割槽如下图所示:2)绘制控制图,见X Bar R 控制图上图表示利用切割槽宽度测量的原始数据取平均值作为控制图上的每一个子组点,即为Xbar图。

R图,表示将每一子组内的原始数据取极差值绘制控制图,即为R图。

相关文档
最新文档