毛细管电泳的基本原理及应用剖析

合集下载

《毛细管电泳原理》课件

《毛细管电泳原理》课件
过程
将样品溶液注入毛细管一端,施加电 场后,带电粒子在电场作用下开始电 泳迁移,经过一定时间后,到达毛细 管的另一端,经过检测器检测。
毛细管电泳的应用
环境监测
用于检测水体、土壤等环境样 品中的污染物,如重金属离子
、有机物等。
生物分析
用于蛋白质、DNA、RNA等生 物分子的分离和检测,可应用 于生物医学研究、临床诊断等 领域。
标准化处理
将数据转换为统一标准,便 于比较和分析。
统计分析
运用统计学方法对实验数据 进行处理,提取有意义的信 息。
结果分析与解读
趋势分析
分析实验数据的变化趋势,揭示潜在规律。
差异分析
比较不同样本或条件下的数据差异,找出关键影响因 素。
相关性分析
探究实验数据之间的关联性,揭示变量之间的相互作 用。
误差来源与控制
06
毛细管电泳的未来发展 与展望
技术创新与改进
高效分离技术的研发
01
通过改进分离介质、优化分离条件等手段,提高毛细管电泳的
分离效率。
检测技术的升级
02
研究新型检测方法,提高检测灵敏度和特异性,满足更多样品
的检测需求。
微型化与集成化
03
将毛细管电泳技术集成到微流控芯片中,实现微型化、便携式
分析。
应用领域的拓展
毛细管清洗
实验结束后,对毛细管进行必要的清洗,以 便下次使用。
数据整理与保存
将实验数据整理并保存,以便后续分析。
仪器清洁与保养
对仪器进行必要的清洁与保养,延长其使用 寿命。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05

药物分析中的毛细管电泳技术

药物分析中的毛细管电泳技术

药物分析中的毛细管电泳技术毛细管电泳技术(Capillary Electrophoresis,简称CE)是一种基于电动力的分离技术,被广泛应用于药物分析领域。

本文将介绍毛细管电泳技术在药物分析中的原理、应用和发展前景。

一、原理毛细管电泳技术的基本原理是利用电场作用下的离子迁移和分离。

这种技术借助于毛细管的高表面积和对电荷敏感性,通过调节电压和电流,使样品中的离子在毛细管中迁移,并在离子迁移速度不同的情况下实现分离。

二、应用1. 药物纯度检测毛细管电泳技术在药物纯度检测中具有很大优势。

通过测量样品中成分的峰高和面积,可以确定药物的含量和纯度。

毛细管电泳技术还可以检测含有多个成分的混合物,提高药物的纯度和质量。

2. 药物代谢研究毛细管电泳技术在药物代谢研究中也有广泛应用。

毛细管电泳技术可以快速分离和定量药物代谢产物,并提供与其他分析方法相比更高的分辨率和灵敏度。

这对于研究药物的代谢途径、代谢产物的生成和药物代谢动力学具有重要意义。

3. 药物配伍研究在多种药物联合使用时,毛细管电泳技术可以用于药物之间的相互作用研究。

通过测量药物在毛细管中迁移的速度和峰形,可以揭示药物之间的相互作用机制,为药物配伍的合理应用提供科学依据。

三、发展前景毛细管电泳技术在药物分析领域的应用前景广阔。

随着仪器设备的改进和方法的发展,毛细管电泳技术的分离效率和灵敏度得到提高,对药物分析的应用范围也越来越广泛。

未来,毛细管电泳技术有望在药物分析中发挥更重要的作用,如提高新药的研发效率、分析药物的药动学特性等。

总结:毛细管电泳技术作为一种快速、高效的药物分析方法,已经在药物纯度检测、药物代谢研究和药物配伍研究等方面取得了显著的应用效果。

在未来,随着技术的进一步发展和改进,毛细管电泳技术将在药物分析领域发挥更重要的作用,为药物研发和质量控制提供强有力的支持。

说明毛细管电泳特点及应用

说明毛细管电泳特点及应用

说明毛细管电泳特点及应用
毛细管电泳是一种高效液相色谱技术,其基本原理是利用电场将带电粒子在毛细管中的移动速率和荷电量的差异进行分离和富集。

毛细管电泳具有高分离效率、快速分离、小量样品、自动化程度高等特点,已经成为了化学、生物、环境学等领域的一个重要分析工具。

其主要应用领域和特点如下:
1.分离生化分子
毛细管电泳可以用于分离和富集DNA、RNA、蛋白质、糖类和小分子有机物等生物分子。

这些生物分子在酸碱性、水解、氧化还原等条件下有不同的化学性质和电荷性质,可以被毛细管电泳技术精确分离和定量。

例如在DNA分离和定量方面,毛细管电泳已经成为PCR扩增产物检测、基因测序、DNA指纹鉴定等分子生物学技术中的重要手段。

2.分析环境污染物
毛细管电泳可以用于环境监测和食品安全检测等领域,可以对水、空气、土壤和食品中的有机和无机污染物进行快速准确定量分析。

例如利用毛细管电泳技术可以分析环境中的氨、硝酸盐、荧光增白剂、PESTICIDE 等有害物质含量,以及酒类中的苯甲酸、乙酸等有害物质。

3.分析药品和代谢产物
毛细管电泳可以快速、灵敏地分离和鉴定药品和代谢产物,具有药动学和毒理学研究的重要意义。

毛细管电泳技术节省反应时间,减少实验操作时间,可对液-液、液-固、固-液等反应进行分离和分析,得到精确的数据和结果。

如利用毛细管电泳技术,可以分析身体内的有机酸、氨基酸、代谢产物等物质。

总之,毛细管电泳技术在化学分析和生物分析中均有广泛应用,且已成为学术研究和工业生产的一种重要分离分析手段。

毛细管电泳技术在药物分析中的应用研究

毛细管电泳技术在药物分析中的应用研究

毛细管电泳技术在药物分析中的应用研究药物分析是现代药学研究的重要领域之一,其目的是确定药品的成分、质量和纯度等指标。

毛细管电泳技术是一种高效、灵敏、快速和准确的药物分析方法,已广泛应用于各种药物的分离、定量和结构分析等方面。

一、毛细管电泳技术的基本原理毛细管电泳技术是利用毛细管作为分离柱,通过电场效应分离药物及其成分的方法。

它基于分子电荷和大小的差异,将混合物中的成分在电压作用下沿毛细管内移动,并在观察点处被依次检测和记录。

电泳色谱法可以根据不同的物性进行物质分离,如电荷、相对分子质量、极性等。

毛细管电泳技术通过改变样品的分子充电量、外部电场大小和环境介质等因素来实现成分的分离。

二、毛细管电泳技术在药物分析中的应用毛细管电泳技术具有高效、快速、灵敏、准确等优点,已被广泛应用于药物分析领域。

其应用主要涉及药物的分离、定量和结构分析等方面。

1. 分离应用毛细管电泳技术可以有效地分离许多药物,并且分离效果优于传统的色谱法和电泳法。

例如,毛细管电泳技术可以分离抗癌药物、心血管药和皮肤科药品等各种药物。

此外,该技术也可以用于分离混合物中的多种成分。

2. 定量应用毛细管电泳技术可以用于药物的定量分析。

该技术精度高,灵敏度高,检测限低,能够准确地测定药品的含量与质量等参数。

毛细管电泳技术对药品中的极性物质和非极性物质分析均具有良好的应用效果。

3. 结构分析应用毛细管电泳技术可以用于药品的结构分析,例如能够对药品中不同结构的异构体进行分析。

该技术具有高分辨率和高选择性,能够分析药品的结构、组分及其含量等参数。

三、毛细管电泳技术的局限性毛细管电泳技术虽然具有许多优点,但在实际应用中也存在一些局限性。

该技术需要具有高度纯度的药品样本,并且样品的预处理过程比较繁琐,需要使用化学试剂等。

此外,毛细管电泳技术具有一定的操作难度,需要经过专业的操作培训和实验室实践才能掌握。

四、研究方向和展望毛细管电泳技术在药物分析中的应用领域很广泛,但是今后还需要进行进一步的研究和发展。

毛细管电泳法的原理和应用

毛细管电泳法的原理和应用

毛细管电泳法的原理和应用1. 原理毛细管电泳法(Capillary Electrophoresis,CE)是一种基于电场作用下离子在毛细管中迁移的分离技术。

其原理基于离子在电场中带电迁移速度与其电荷量、电场强度以及溶液介质的性质相关的事实。

毛细管电泳法通过在毛细管中施加电场,利用分子的电荷差异和大小来实现分离物质的目的。

1.1 分离机制毛细管电泳法的分离机制主要包括以下几个步骤:1.进样:待测样品经过电泳柱,在毛细管中形成等电流聚焦带。

2.分离:应用电场,待测物质开始在毛细管内移动,根据分子的电荷和尺寸差异,分离成不同的带电物质。

3.检测:通过检测器对不同迁移距离的带电物质进行监测和记录。

1.2 主要影响因素影响毛细管电泳分离效果的主要因素包括:•电场强度:电场强度越高,迁移速度越快,但也容易产生电泳柱壁的热效应。

•pH 值:溶液的pH 值会影响离子的电荷状态,从而影响其迁移速度。

•温度:温度的变化会影响毛细管电泳的分离效果,通常需要控制温度来确保数据的可靠性。

2. 应用领域毛细管电泳法在许多领域中得到了广泛的应用,下面列举了其中的几个主要应用领域:2.1 生物医药领域•药物分析:毛细管电泳法可以用于药物代谢产物分析、毒性物质筛选和药物质量分析等。

•蛋白质分析:毛细管电泳法对于蛋白质的分析具有高分辨率和高灵敏度的特点,被广泛应用于蛋白质药物的质量控制和结构研究等方面。

2.2 环境监测领域•水质监测:毛细管电泳法可以用于水质中有机和无机物质的分析,可用于环境污染监测和水质安全评价等。

•大气污染物监测:毛细管电泳法可以用于大气中挥发性有机物质(VOCs)和颗粒物的分析,对于大气污染物的来源和分布有重要作用。

2.3 食品安全领域•农药残留分析:毛细管电泳法可以用于食品中农药残留的检测,对于保证食品安全和农产品质量具有重要意义。

•食品添加剂分析:毛细管电泳法可用于食品添加剂的定性和定量分析,用于食品质量控制和标签声明的验证等。

《毛细管电泳法》PPT课件

《毛细管电泳法》PPT课件
蛋白质、DNA等的电荷/质量比与分子大小无关, CZE方式很难分别,采用CGE能获得良好分别。

毛细管凝胶电泳综合了电泳技术和平板 凝胶电泳的优点 :
电泳峰锋利,柱效极高 短柱上实现极好的分别 试样容量为10-12g
主要缺陷:制备柱较困难,寿命较短 已成为分别分析生物大分子如蛋白质、 多肽、核 酸、DNA等强有力的工具。 例运用CGE分别与激光诱导荧光检测相 结合,用于DNA序列快速分析。

5 毛细管等电聚焦 CIEF
1、毛细管内充有两性电解质〔合成的具有不同等电点 范围的脂肪族多胺基多羧酸混合物〕,当施加直流电压 〔6~8V〕时,管内将建立一个由阳极到阴极逐渐升高 的pH梯度;
2、氨基酸、蛋白质、多肽等的所带电荷与溶液pH有 关,在酸性溶液中带正电荷,反之带负电荷。在其等电 点时,呈电中性,淌度为零;
vT=vA=vB=vC=vL 或:
TET= AEA= BEB= CEC= LEL
式中, ,有效淌度, E,电场强度
由于
T〉 A〉 B〉 C〉 L,
所以有: E T < E A < E B < E C < E L
各区带的电场强度不同。前导电解质区带的电场强度最 小。

假设某一区带的离子进入前一区带, 由 于电场强度变小而减速,由假设进入到 下区带,由于电场强度变大而加速, 都 退回到原区带, 结果导致各区带构成鲜 明的界面.
毛细管电泳法
Capillary Electrophoresis, CE

毛细管电泳是带电粒子在电场力的 驱动下,在毛细管中按其淌度或分配系 数不同进展高效、快速分别的电泳新技 术,也称为高效毛细管电泳。
一、毛细管电泳的原理 二、分别方式

高效毛细管电泳的应用

高效毛细管电泳的应用

+ +
低 pH
-
pI 高 pH
毛细管等速聚焦电泳(ITP)的分离原理: 毛细管内首先导入具有比被分离各组分高电 泳淌度的前导电解质(Leading Electrolye), 然后进样,随后再导入比各分离组分低电泳 淌度的尾随电解质(Terminating Electrolye)。在强电场的作用下,各被分离 组分在前导电解质与尾随电解质之间的空隙 中发生聚焦分离。
3、在分离蛋白质中,蛋白质的等 电点低于缓冲液pH时,极性放置 是:+ → -,反之应是:- → +。
缓冲液的浓度选择: 在一般情况下,浓度增加被分离 物质的迁移速度下降,有利于分 离效果的提高,但随着缓冲液浓 度的增大,粘度增加,电渗流和 焦耳热增大,给分离造成反作用。
缓冲液中不同添加剂的选择:
毛细管等电聚焦电泳(IEF)的分 离原理:两性电解质在分离介质 中的迁移形成pH梯度,各种具有 不同等电点的蛋白质按照这一梯 度迁移到它们的等电点的那个位 置,并在该点停下,由此产生一 条非常窄的聚焦区带,并使不同 的蛋白质聚焦在不同的位置上。
毛细管等电聚焦的运行过程可分 为三个步骤: 1、进样。把样品与两性电解质混合 并进样。 2、聚焦。加高电压3-4分钟。 3、迁移。阴极的缓冲液换成盐类 后,再加上电压,使末端引起梯度降 低,让级分一个一个通过检测器。
高效毛细管电泳的应用 1、毛细管电泳的定义 2、几种毛细管电泳的分离原理 3、毛细管电泳的基本配置 4、毛细管电泳的应用领域
一、毛细管用下,以不同的速度向电荷相 反方向迁移的现象。
传统电泳会在电解质离子流中产 生自热,引起径向粘度和速度的 梯度,从而导致区带展宽、降低 效率。
SO3SO3-
SO3-

毛细管电泳原理及分析策略CE

毛细管电泳原理及分析策略CE

电源系统
电源要求
毛细管电泳仪的电源系统需要提供稳定的直流电,以保证仪器的 正常运行和实验结果的准确性。
电压调节
毛细管电泳仪的电压调节范围通常很宽,可以从几千伏到几十万伏, 以满足不同实验条件的需求。
电流控制
为了保护仪器和保证实验结果的准确性,电源系统通常需要具备电 流控制功能,能够限制电流的大小和方向。
工业废水等。
重金属离子分析
02
毛细管电泳可以用于分离和测定环境中的重金属离子,如铅、
汞、镉等。
营养物质与毒素分析
03
毛细管电泳可以用于分离和测定环境中的营养物质与毒素,如
硝酸盐、亚硝酸盐等。
04 毛细管电泳的优缺点
CHAPTER
优点
高分离效率
毛细管电泳采用微米级别的分离通道, 能够实现高分离效率,尤其适用于复 杂样品的分析。
毛细管电泳可以分为多种类型, 如自由溶液毛细管电泳、凝胶毛 细管电泳、等电聚焦毛细管电泳、
亲和毛细管电泳等。
根据检测方式分类
毛细管电泳也可以分为多种类型, 如紫外可见吸收光谱检测、荧光检 测、质谱检测等。
根据应用领域分类
毛细管电泳还可以分为临床检测、 生物分子分析、环境监测等领域。
02 毛细管电泳仪器
在药物分析中的应用
药物成分分离
毛细管电泳能够快速分离和测定药物中的有效成分和杂质。
药物代谢产物分析
毛细管电泳可以用于药物代谢产物的分离和鉴定,有助于药物代 谢动力学研究。
药物质量控制
毛细管电泳可用于药物质量控制,确保药物的有效性和安全性。
在环境监测中的应用
有机污染物分析
01
毛细管电泳可以用于分离和测定环境中的有机污染物,如农药、

毛细管电泳的基本原理及应用(图文参照)

毛细管电泳的基本原理及应用(图文参照)

毛细管电泳的基本原理及应用摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。

该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。

可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。

关键词:毛细管电泳原理分离模式应用1概述毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。

CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。

但他没有完全克服传统电泳的弊端[1]。

现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。

1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。

1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。

同年,Cohen 发表了毛细管凝胶电泳的工作。

近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。

毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。

C E只需高压直流电源、进样装置、毛细管和检测器。

毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

毛细管电泳的基本原理及应用剖析

毛细管电泳的基本原理及应用剖析

毛细管电泳的基本原理及应用剖析毛细管电泳(CE)是一种基于电场作用的色谱分离技术,广泛应用于生物学、医药、环境、食品等领域。

它通过在毛细管中施加电场,利用样品中的带电粒子在电场作用下发生迁移分离,最终在检测器上形成峰。

毛细管电泳具有分离效率高、样品消耗量少、实验时间短等优点,因此被广泛研究和应用。

电动力作用是指在电场作用下,带电粒子会迁移,其迁移速率与电荷大小、电场强度和粒子大小有关。

这个原理形成了毛细管电泳的分离能力。

在毛细管电泳中,带有不同电荷的离子在电场作用下会迁移到不同的位置,实现了分离。

电渗流作用是指在电场作用下,电解质溶液中的离子在毛细管内部形成一个电化学双层,从而形成了定向的流动,这种流动称为电渗流。

电渗流的作用是维持溶液流动的速度和方向,使得样品能够快速地通过毛细管。

1.生物学:毛细管电泳在DNA分析、蛋白质分析和细胞生物学中有重要应用。

例如,DNA测序、突变分析和基因检测等都可以通过毛细管电泳实现。

此外,毛细管电泳还可以用于血清蛋白质分析,从而帮助研究疾病的诊断和治疗。

2.医药:毛细管电泳在药物分析中有广泛的应用。

例如,在药物代谢研究中,毛细管电泳可以用于分析药物及其代谢产物。

此外,毛细管电泳还可以用于药物纯度和含量的测定,以及药物的质量控制和研发。

3.环境:毛细管电泳在环境监测中有重要的应用。

例如,通过毛细管电泳可以分析水、土壤和大气样品中的有机物、金属和其他污染物。

此外,毛细管电泳还可以用于监测和分析环境中的微量物质,如重金属、农药残留、有机污染物等。

4.食品:毛细管电泳在食品检测和质量控制中有广泛应用。

例如,可以利用毛细管电泳对食品中的营养成分、添加剂和农药进行分析和检测。

此外,也可以通过毛细管电泳对食品中的毒素和致病菌进行检测,确保食品的安全性。

综上所述,毛细管电泳是一种重要的色谱分离技术,其基本原理是利用电场作用使带电粒子在毛细管中迁移分离,并且具有分离效率高、样品消耗量少等优点。

毛细管电泳原理及分析策略课件

毛细管电泳原理及分析策略课件

以上内容涵盖了毛细 管电泳的基本原理和 分析策略课件的部分 内容。在实际应用中, 还需根据具体需求和 样品特性选择合适的 分离模式和分析方法。
CATALOGUE
毛细管电泳分析方法
毛细管电泳的定性分析方法
峰识别法
紫外可见光谱法
质谱联用法
毛细管电泳的定量分析方法
01
02
外标法
内标法
03 标准加入法
数据处理 原始数据的获取,通过电泳仪器获取原始电泳图谱数据。
数据预处理,包括基线校正、峰识别、去噪等步骤,以提高数据质量。
毛细管电泳实验数据处理和分析方法
毛细管电泳实验数据处理和分析方法
01
02
03
04
实验结果展示和讨论
结果展示 通过图表、电泳图谱等方式清晰展示实验结果,包括分离效果、组分定量等信息。
毛细管电泳原理及 分析策略课件
contents
目录
• 毛细管电泳简介 • 毛细管电泳原理 • 毛细管电泳分析方法 • 毛细管电泳在分析化学中的应用策略 • 毛细管电泳实验技术 • 前沿进展与未来展望
CATALOGUE
毛细管电泳简介
毛细管电泳的定义和发展历程
定义
发展历程
毛细管电泳的技术特点
01
环境污染物分析策略
重金属离子分析
毛细管电泳可用于环境水样中重金属离子的分离和检测,为环境监测和污染治理 提供依据。
有机污染物分析
采用毛细管电泳-质谱联用技术,可实现环境中有机污染物的痕量分析和结构鉴 定,提高环境分析的准确性和灵敏度。
CATALOGUE
毛细管电泳实验技术
毛细管电泳实验准备和操作技巧
对比不同实验条件下的结果,展示实验条件对分离效果和定量的影响。

毛细管电泳技术的原理及应用

毛细管电泳技术的原理及应用

毛细管电泳技术的原理及应用毛细管电泳技术(capillary electrophoresis, CE)是一种基于分子运动速度和电荷的分离技术,它可以对极为细微和复杂的样品进行非常快速、高效、高分辨率的分离,因此在生命科学、医学、环境监测以及法医鉴定等领域得到了广泛应用。

CE技术的基本原理是,将带电的分析物经过一定长度的毛细管中运动,然后按照分子电荷大小、分子尺寸、形状、亲水性等物理化学性质,在电场作用下发生运动,进而得到不同的分离柱上电泳峰。

因此,CE技术具有以下几个特点:1.高分辨率:CE技术是基于分子各自的电荷和分子体积来实现分离的,与传统的凝胶电泳、色谱等技术相比,具有更高的分离能力和更高的分辨率。

可以分离出一些极为相似化学性质的化合物,如绝对立体异构体、各种同分异构体、杂环化合物、天然产物等。

2.快速分离:CE技术分离速度快,通常只需要数分钟至数小时内就可以完成。

3.微量样品:CE技术只需要微量的样品,通常在纳升至皮克摩尔级别内,可以大幅节省样品量,减少开支。

4.广泛应用:CE技术可以广泛用于生命科学、医学、药学、环境系、农业等多种领域,如蛋白质分离、核酸分离、药物分析、糖类分析、环境监测等。

应用领域1:分离和鉴定生化大分子生命科学领域对生化大分子(如蛋白质和核酸)的检测、分离和鉴定,起着极其重要的作用。

传统方法往往采用相对陈旧的凝胶电泳、高效液相色谱等方法,分离速度慢、分辨率低、相对而言较为复杂。

而毛细管电泳克服了这一问题,可以在很多底物条件下,将生化大分子在极短的时间内分离出来。

应用领域2:药物分析随着社会不断进步,人们对药物质量越来越重视。

毛细管电泳技术的使用就可以大大提高药品的品质。

它可以轻易地实现活性成分的分离和标准控制的设置,确保了药品的控制和定量性准确。

应用领域3:环境监测环境监测是社会上一个越来越受到重视、越来越重要的领域。

CE技术在环境监测上,可以对空气污染、水污染分子和有害物质的检测、鉴定等方面发挥重要作用。

毛细管凝胶电泳

毛细管凝胶电泳
需要选择合适的缓冲液和凝胶介质以获得最佳分离效果。
02 毛细管凝胶电泳的基本原理
CHAPTER
电泳
电泳是指带电粒子在电场中的迁移行为,其迁移 速度与粒子的大小、电荷量以及电场强度有关。
电泳技术利用了带电粒子在电场中的迁移行为差 异来实现混合物中组分的分离。
在毛细管凝胶电泳中,电泳是实现组分分离的重 要手段之一。
凝胶电泳
凝胶电泳是一种利用凝胶网络 对带电粒子进行分离的技术。
凝胶网络可以减少粒子的扩散, 提高分辨率,并使不同大小的 粒子在电场中以不同的速度迁 移。
凝胶电泳常用于蛋白质、DNA 等生物大分子的分离。
毛细管凝胶电泳的分离原理
毛细管凝胶电泳是将凝胶电泳技 术应用于毛细管中,利用毛细管 的高效分离特性实现混合物中组
在核酸分离中的应用
DNA测序
毛细管凝胶电泳结合荧光标记技术,可以对DNA进行高通量测序,广泛应用于基因组学和生物信息学 研究。
RNA表达分析
通过毛细管凝胶电泳可以分离和检测不同表达水平的RNA分子,用于研究基因表达调控和疾病发生机 制。
在临床诊断中的应用
病原体检测
毛细管凝胶电泳可以用于检测病原体如病毒、细菌等的基因组,有助于快速诊断和鉴别 感染性疾病。
分的分离。
在毛细管凝胶电泳中,组分的分 离主要依赖于其在电场中的迁移 行为和与凝胶网络的相互作用。
通过调整毛细管凝胶电泳的条件, 如电场强度、凝胶类型和配方等,
可以实现不同组分的分离。
03 毛细管凝胶电泳的实验技术与操作
CHAPTER
实验准备
仪器设备
准备毛细管电泳仪、高压电源、 进样装置、检测器等必要设备, 确保仪器正常工作并按照操作规
加样与电泳

毛细管电泳技术在蛋白质分析中的应用

毛细管电泳技术在蛋白质分析中的应用

毛细管电泳技术在蛋白质分析中的应用一、引言蛋白质是生物体内功能最为重要的分子之一,对于了解细胞的生物化学过程以及疾病的发生机制具有重要意义。

因此,研究蛋白质的组成、结构和功能成为科学家们的关注焦点。

毛细管电泳技术作为一种高效、灵敏、分离能力强的方法,成为蛋白质分析中的重要手段。

二、毛细管电泳技术的原理毛细管电泳技术是基于蛋白质在电场中的迁移速度差异实现的。

其基本原理是利用电场作用下,蛋白质离子在毛细管中迁移的速度差异,以达到分离的目的。

毛细管电泳技术可以根据蛋白质的等电点、分子质量和电荷性质等特征,进行选择性的分离和定量分析。

三、毛细管电泳技术在蛋白质分析中的应用1. 等电点聚焦等电点聚焦是毛细管电泳技术中常用的一种分离方法。

通过调节pH梯度和电场强度,使得蛋白质在电场中迁移速度减慢并最终停留在等电点位置。

利用等电点聚焦技术,可以实现复杂混合样品中蛋白质的高效分离和富集。

2. 表面修饰毛细管电泳表面修饰毛细管电泳是一种改善毛细管电泳分析效果的手段。

通过在毛细管内壁涂覆一层具有特定性质的物质,可以在一定程度上调节毛细管的分离能力和选择性。

表面修饰毛细管电泳技术能够提高蛋白质的分离效果,并且具有较好的重复性和稳定性。

3. 应用实例毛细管电泳技术在蛋白质分析中已经发挥了重要作用。

例如,利用毛细管电泳技术可以对血浆蛋白质进行快速和高效的分离与定量,有助于了解疾病发生机制和诊断。

另外,毛细管电泳还可以用于蛋白质修饰的研究,如糖基化、磷酸化等。

这些应用实例充分展示了毛细管电泳技术在蛋白质分析中的重要性和广泛适用性。

四、结论毛细管电泳技术作为一种高效、灵敏、分离能力强的分析方法,在蛋白质分析中发挥着重要作用。

其原理简单、操作方便,可以应用于复杂混合样品的分离和定量分析。

随着技术的不断发展与成熟,毛细管电泳技术将进一步拓展其在蛋白质分析领域的应用前景,为蛋白质研究提供更多有力支持。

毛细管电泳技术在分离与分析中的应用研究

毛细管电泳技术在分离与分析中的应用研究

毛细管电泳技术在分离与分析中的应用研究毛细管电泳技术是一种基于电荷、质量、形状等不同特征分离和分析生物样品的方法。

由于其高效、快速、灵敏、精准等特点,在生物化学、生物医学、药学等领域得到了广泛应用。

本文将从毛细管电泳技术的原理、分类及应用等方面进行阐述和探讨。

一、毛细管电泳技术的原理毛细管电泳技术是利用毛细管内置电场作用,使样品中分子按照质量、电荷、大小等不同特征在毛细管内部分离、聚焦、检测的技术。

其主要原理是基于几种现象,包括电迁移、色散、等电点聚焦等。

电迁移是指带电粒子在电场力作用下在液体中运动的现象,其中正负电荷的移动方向相反。

当在毛细管内施加高压电场时,样品中的离子会电迁移,使不同质量、电荷的分子分离。

色散是指在毛细管内,不同分子由于分子间相互作用力的不同而速度不同,导致它们跑到毛细管末端时分布不均匀,呈现出扇形状。

同时色散也具有分离的作用。

等电点聚焦是指当毛细管内置一个具有不同等电点的两种缓冲溶液时,样品中的离子将在两种缓冲液中的电场力和等电点聚集作用下,在一定位置停留,以便进行分析和检测。

二、毛细管电泳技术的分类毛细管电泳技术根据不同的原理和分析对象,可以分为不同的分类,如下:1.凝胶毛细管电泳:使用凝胶的介质,使得DNA、RNA等大分子样品能够在凝胶缓冲溶液中进行分离,用于DNA指纹图谱、蛋白质质谱鉴定等领域。

2.电泳色谱:将毛细管内的固相介质作为分离条件,用于化学分析、药物检测等领域。

3.等电聚焦:将毛细管内置两种等电点缓冲溶液,使样品中分子在等电点处聚焦,以达到分离和检测的目的,用于蛋白质分析等领域。

三、毛细管电泳技术的应用毛细管电泳技术具有多种应用领域和方向,主要包括:1.基因分析:毛细管电泳技术可以对DNA片段进行分析和检测,可以用于基因变异诊断、肿瘤诊断等领域。

2.蛋白质质谱分析:毛细管电泳技术可以用于蛋白质质谱分析,可以揭示蛋白质的结构、功能等信息。

3.化学分析:毛细管电泳技术可以用于化学分析领域,可以进行药物检测、材料分析等工作。

《毛细管电泳原理》课件

《毛细管电泳原理》课件

分离的程度。
分辨率
02
分辨率是指毛细管电泳谱中相邻两峰之间的分离程度,分辨率
越高,分离效果越好。
检测限
03
指在毛细管电泳谱中能够检测到的最小样品浓度,检测限越低
,灵敏度越高。
定量分析
标准曲线法
通过绘制标准曲线,将毛细管电泳谱中的峰高或峰面积与样品浓度进行线性回归 分析,从而进行定量分析。
内标法
通过在样品中加入内标物,利用内标物与样品中各组分的分离度和响应因子相同 的特点,进行定量分析。
数据分析方法
峰高法
通过测量毛细管电泳谱中各组分的峰高,利用峰高与样品浓 度的线性关系进行定量分析。
峰面积法
通过积分毛细管电泳谱中各组分的峰面积,利用峰面积与样 品浓度的线性关系进行定量分析。
05
毛细管电泳的优缺点与展望
优点与缺点
高分离效能
毛细管电泳具有极高的分离效率,可 实现复杂样品的快速分离。
药物分析
毛细管电泳在药物分析中 可用于药物成分的分离和 检测,以及药物代谢产物 的分析。
食品安全
毛细管电泳可用于食品安 全检测,如食品添加剂、 农药残留等的检测。
02
毛细管电泳的仪器与实验条

仪器介绍
毛细管电泳仪的基本构成
检测器的选择
包括高压电源、进样系统、毛细管电 泳柱、检测器和数据采集系统等部分 。
配制电解质溶液
按照所需的浓度和比例,配制 电解质溶液。
数据处理与分析
采集实验数据,进行数据处理 和分析,得出结论。
03
毛细管电泳的分离模式与分
离机制
分离模式
毛细管区带电泳(CZE)
胶束电动色谱(MEKC)
毛细管凝胶电泳(CGE)

毛细管电泳技术的原理与应用

毛细管电泳技术的原理与应用

毛细管电泳技术的原理与应用自从19世纪末期发现电泳现象以来,电泳技术一直被广泛应用于各种字段。

毛细管电泳技术是一种通过毛细管,将带电离子分子分离开来的技术,这种技术广泛应用于生物医学、环境和化学等领域。

本文将介绍毛细管电泳技术的原理和应用。

一、毛细管电泳技术的原理毛细管电泳技术是一种基于电动力学和流体动力学原理的分离技术。

这种技术通过将分子沿着带电毛细管中电场的方向移动来分离不同的化合物。

毛细管电泳的原理与传统的凝胶电泳类似,但是毛细管电泳有许多其他优点,如分离速度更快,分辨率更高。

毛细管电泳最关键的元素是电场。

在毛细管内部存在一个电场,它可以使带电的分子运动,因为带电离子分子在电场中会受到电荷作用力的作用,所以它们会沿着电场方向移动。

带电分子的运动取决于其电荷大小、形状和大小,以及所处电场的强度和形状。

毛细管电泳的分离原理是:当电场被施加到带电连接物的混合物上时,该混合物中不同成分间的运动速度不同,这种运动速度的不同会导致各种化合物在毛细管中的位置发生变化,并最终实现分离。

通常,电场的方向和毛细管的长度方向平行,并且几乎与毛细管壁平行。

毛细管电泳分为两种类型:胶片毛细管电泳技术和自由毛细管电泳技术。

自由毛细管电泳没有使用聚丙烯酰胺凝胶或其他凝胶材料,而是直接将样品悬浮在缓冲液中在电场中进行。

胶片毛细管电泳技术通常用于利用凝胶介质进行DNA分离,而自由毛细管电泳技术则常用于分离更小的分子。

二、毛细管电泳技术的应用毛细管电泳技术已经被广泛应用于许多领域,包括生物化学、药学、生物医学、环境和食品安全等。

在这些领域中,毛细管电泳技术通常被用于分离、鉴定和定量不同的化合物或生物分子。

1.生物分子分离和定量毛细管电泳技术可以用于分离和定量蛋白质、核酸、糖类和细胞色素等生物分子。

例如,毛细管电泳可以用于嗜酸性粒细胞蛋白质的分离和测量,以便诊断哮喘和其他与粘膜的过敏性疾病有关的疾病。

此外,毛细管电泳还可用于分离和定量多肽、蛋白质和核酸序列,以及测定不同物种DNA之间的差异性。

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用毛细管电泳的基本原理是基于电荷迁移。

在毛细管电泳中使用的耦合电场包括静电势差和电导度差导致的静电势差。

当在电解质溶液中施加电场时,离子在电场力的作用下向相反电极迁移。

带电分子在毛细管中施加电压时也会受到电场力的作用。

有两种类型的电流在毛细管中流动:电场导电电流和电渗流(溶液流动时由于带电分子迁移而形成的电流)。

通过控制电压差和溶液流动,可以实现化合物的分离和测量。

1.离子交换毛细管电泳(IEC):通过溶液中带电离子与毛细管壁或固定相之间的电荷相互作用来实现分离。

2.凝胶毛细管电泳(GCE):使用凝胶作为分离介质以实现不同化合物的分离。

凝胶中的通道大小可调整以适应不同大小的分子。

3.毛细管等电点聚焦电泳(CIEF):根据化合物的等电点来实现分离。

通过调整溶液的pH值,可以控制每种化合物的等电点。

4.毛细管毛细管电泳(CZE):根据化合物在毛细管中的迁移速率差异来实现分离。

该方法广泛用于分析药品、蛋白质和核酸等生物分子。

1.快速分离:毛细管电泳在分析过程中常常可以几分钟内完成。

这种快速性使得该技术在高通量分析中非常有用。

2.高效分离:由于毛细管内直径小,特别是凝胶电泳中,化合物可以在短时间内得到高效的分离。

这使得毛细管电泳对于研究复杂样品或混合物的分析非常有用。

3.低样品消耗:毛细管电泳只需极少量的样品,通常在微升到纳升级别。

这使得它成为高灵敏度分析的理想选择。

4.高选择性:通过适当选择电解质的类型和浓度,可以调节样品在毛细管中的迁移速度,从而实现高度选择性的分析。

毛细管电泳在生物医学、环境监测、食品安全和制药等领域有广泛的应用。

例如,它可用于分析血液中的蛋白质和核酸,以帮助诊断疾病;还可用于分析水中的有毒化合物和污染物;另外,它还能帮助制药行业监测药品的质量和纯度。

总而言之,毛细管电泳通过其分离速度快、分辨率高和样品消耗少等优点,在化学和生物学分析中发挥着重要作用。

毛细管电泳在药物分析中的应用

毛细管电泳在药物分析中的应用

毛细管电泳在药物分析中的应用随着药物研发和制造的进一步发展,药物分析成为保证药物质量和安全性的重要环节之一。

毛细管电泳作为一种高效、快速、高灵敏度的分析技术,逐渐应用于药物分析领域。

本文将介绍毛细管电泳在药物分析中的应用,并探讨其在药物分析中的优势和挑战。

一、毛细管电泳的原理和基本步骤毛细管电泳是利用电流作用下的毛细管中离子迁移行为实现分离的一种分析方法。

它基于毛细管中的电动流动理论,通过施加电场将药物样品带到具有特定填充物的毛细管中进行分离。

毛细管电泳的基本步骤包括:样品进样、电泳分离、检测和数据处理等。

二、毛细管电泳在药物分析中的优势1. 高分离效率:毛细管电泳具有很高的分离效率,能够有效地将复杂的药物样品分离,提高分析的准确性。

2. 速度快:毛细管电泳是一种快速分析技术,通常只需几分钟到几十分钟就可完成分析,大大缩短了分析时间。

3. 灵敏度高:毛细管电泳具有很高的灵敏度,能够检测到微量的药物成分,对于药物分析中需要极低浓度检测的情况非常有优势。

4. 样品消耗少:毛细管电泳的样品消耗非常小,对于宝贵的药物样品的分析非常适用。

5. 环境友好:毛细管电泳是一种无或少有有机溶剂的分析技术,相对于传统的高效液相色谱等技术,对环境的影响更小。

三、毛细管电泳在药物分析中的应用1. 药物成分分析:毛细管电泳可用于药物成分的分析和检测,如对药物中各种成分进行定性和定量分析。

2. 药物质量评价:毛细管电泳可用于药物质量评价,对于分析药物的纯度、杂质等方面具有重要作用。

3. 药物代谢研究:毛细管电泳能够对药物代谢产物进行分析,深入研究药物在体内的转化过程和代谢途径,为药代动力学和药效学提供有力支持。

4. 生物样品分析:毛细管电泳可用于生物样品(如血液、尿液等)中药物的定性和定量分析,为生物体内药物浓度和代谢过程的研究提供便利。

5. 法药品质控制:毛细管电泳在药品质控中的应用越来越广泛,能够对药物中的活性成分进行分析和监测,保证药物的质量和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毛细管电泳的基本原理及应用摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。

该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。

可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。

关键词:毛细管电泳原理分离模式应用1概述毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。

CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。

但他没有完全克服传统电泳的弊端[1]。

现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。

1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。

1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。

同年,Cohen 发表了毛细管凝胶电泳的工作。

近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。

毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。

C E只需高压直流电源、进样装置、毛细管和检测器。

毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

2 毛细管电泳的设备和基本原理毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法[3]。

毛细管电泳仪的基本组成如图1、1 所示。

熔融石英毛细管的两端分别浸在含有电解缓冲液的贮液瓶中,毛细管内也充满同样的电解缓冲液。

在毛细管接收端之前安装在线检测系统。

被分析样品可以从进样系统采用重力法、电迁移法、抽真空法等多种进样方式引入到毛细管的进样端。

当样品被引入后,便开始在毛细管两端施加电压。

样品溶液中溶质的带电组分在电场的作用下根据各自的荷质比向检测系统方向定向迁移。

CE中的毛细管目前大多是石英材料。

当石英毛细管中充入 pH值大于 3的电解质溶液时 ,管壁的硅羟基(- SiOH)便部分解离成硅羟基负离子(- SiO-) ,使管壁带负电荷。

在静电引力下 ,- SiO-会把电解质溶液中的阳离子吸引到管壁附近,并在一定距离内形成阳离子相对过剩的扩散双电层(见图2[4])。

在外电场作用下 ,上述阳离子会向阴极移动。

由于这些阳离子实际上是溶剂化的(水化的),它们将带着毛细管中的液体一起向阴极移动,这就是 CE中的电渗流(EOF)。

电渗流的强度很高,以致于所有进入毛细管中的样品,不管是阴离子、阳离子或中性分子,都会随着液体向阴极移动。

因待测样品中正离子的电泳方向与电渗流方向一致,故最先到达毛细管的阴极端;中性粒子的电泳速度为零 ,迁移速度与电渗流速度相当;而负离子的电泳方向则与电渗流方向相反,但因电渗流速度约等于一般离子电泳速度的 5~7倍[5],故负离子也将在中性粒子之后到达毛细管的阴极端。

由于各种粒子在毛细管内的迁移速度不一致,因而使各种粒子在毛细管内能够达到很好的分离。

3 毛细管电泳的分离模式根据分离原理不同,CE分离基本模式有6种,如表 1 所示。

表 1 毛细管电泳的分离模式和应用Tab. 1 Separation modes and application of CE以上各模式以毛细管区带电泳、毛细管凝胶电泳、胶束电动毛细管色谱这3种应用较多。

4 毛细管电泳的应用4.1 CE在药物成分分析中的应用目前,CE在天然中草药分析领域中的应用主要集中在生物碱和黄酮及其甙类方面、蒽醌类分析也有报道。

生物碱有类似于碱的性质,在pH < 7的缓冲液中利用 CZE 分离。

纪秀红等[6]选取马钱子碱为内标物,在磷酸/甲醇缓冲溶液中 ,测定了小檗碱、巴马亭、药根碱的含量。

黄酮类化合物大多是中性分子,主要采用 MECC 模式分离。

LiYM[7]以SDS(十六烷基磺酸钠)为阴离子表面活性剂将黄芩中的 6 种主要的黄酮类化合物分离。

李伟等[8]以磷酸盐为缓冲体系 ,利用 CZE 模式分离、测定了大黄提取液中离蒽醌化合物的含量。

4. 2 CE在手性拆分中的应用CE因其高效、快速、选择性强的特点而成为目前最有效的手性拆分方法。

各种CE分离模式皆可用于对映异构体分离,因此手性拆分成为 CE应用最活跃、最独特的领域。

其中,添加剂法只需向电泳缓冲液中加入合适的手性试剂,经过一定的分离条件优化即能实现手性分离。

又因为可选择的添加剂种类很多,此法是 CE进行手性拆分的主要形式。

目前 ,主要的手性添加剂有环糊精类(CDs)、冠醚类、大环抗生素、蛋白质等。

仅环糊精一类就有α-CD,β-CD,γ-CD,HP -α-CD, CM-β-CD 等多种添加物质 ,其应用十分广泛。

此外,其他种类添加剂的应用结合 MECC和 NACE 模式基本上能实现各种手性药物的拆分[9~11]。

4.3 CE用于肽和蛋白分析CE在蛋白质分离分析中的应用主要包括肽和蛋白的鉴别分析、结构分析、微量制备,蛋白的定量测定、纯度检测、非均一性检测、定性和动力学研究。

C E在肽和蛋白质的别分析中应用最多的是CZE测定肽谱, SDS-CGE测蛋白分子量及CE-MS直接测定分子量。

用CZE还可测定蛋白的物理参数,如蛋白的有效尺寸、电荷和扩散系数。

用CIEF测定蛋白等电点比平板凝胶电泳测等电点的方法简单,可直接监测。

蛋白被酶解或化学裂解成肽片断,利用CZE的高分辨率分离后所得的电泳图称CE肽图。

肽图是进行蛋白序列分析的第一步,随后可用CE进行微量制备,再测定各片断的氨基酸序列,即可得出整个蛋白的一级结构。

CE的制备总量比高效液相色谱低,只适用于微量制备。

对扩散系数小的生物大分子而言,CE比HPLC的分辨率高得多,因此CE被用来作为收集非常纯的单一馏份的微量制备的手段。

在有些情况下,CE定量线性范围可达(3个数量级)。

4.4 CE用于糖类的分析近年来,毛细管电泳已成为分析单糖、寡糖、糖肽、糖蛋白等糖类化合物的有力武器,在糖型分析。

方面也取得了较大的成功单糖的pKa6值一般大于11,故需选用强碱性的缓冲液(pH>11),使糖基上的羟基去质子而带负电荷,直接进行电泳分离,用紫外(195nm)检测。

也可以选用硼酸盐缓冲液,硼酸盐与糖基络合形成带负电荷的络合物以进行电泳分离,用紫外检测。

简单单糖的分析方法也适于简单寡糖的分析[12]。

多糖一般利用酸解或酶解的方法将其转化为寡糖后进行分析。

糖蛋白经蛋白酶酶解后生成糖肽,糖肽的图谱被认为是糖蛋白的指纹图谱。

糖肽的分离主要是基于其pKa值的不同而进行CE分离,并不是基于糖链结构的不同,因此所选用的缓冲液的组成及其pH的选择尤为重要,其检测也是基于蛋白质的检测。

糖脂既可以直接用CE分离,也可以用神经酰胺聚糖酶将糖链释放出来后进行分析。

糖胺聚糖(GAG)类糖基的聚糖部分有透明质酸、硫酸软骨素、硫酸角质素和肝素等,一般都含有重复的二糖单元,而且可用裂解酶降解成糖醛酸化酸性寡糖,这些寡糖既带电荷又有紫外吸收(232nm),因此很适合用CE进行分析。

另外,CE在糖型分析方面也取得了较大的成功。

在糖的检测方面,紫外分析是最早用于CE进行糖类检测的,但它的灵敏度相对不高,检出限一般只有10—6mol数量级。

利用激光诱导荧光检测对糖类进行柱前高效荧光标记,可使检出限达到10-9mol水平。

在改进检测系统的同时,中性糖类的极性标记也在不断改进与完善。

其中一种极性标记物为8-氨基-萘-1,3,6-三磺酸,利用其可以快速高效地对均一寡糖和复杂多糖进行分离分析,具有很高的分辨率。

4.5 CE在临床化学上的应用CE 在临床化学中的应用十分广泛, 所检测样品的来源可分为尿样、血浆血清、脑脊液、红细胞、其它体液或组织以及实验动物活体(invivo)试验。

被分析的组分则包括肽类、各种蛋白、病毒、酶、糖类、寡核苷酸、DNA、小的生物活性分子、离子、药物及其代谢产物。

具体应用可分为: 临床疾病诊断临床蛋白分析、临床药物监测、代谢研究、病理研究、同工酶分析、聚合酶链反应(PCR )产物分析、DNA 片断及序列分析等。

所应用的CE 模式包括CZE、MECC、CGE、CITP 和毛细管等电聚焦(CIEF)[13.14]。

4.6 CE用于检测非均一性(多样性, Heterogeneity)许多纯化蛋白, 甚至在它们的天然状态, 往往都不是单一分子片断, 而是由相关分子组成, 称为非均一性(多样性)。

产生多样性的原因有: 氨基酸(AA )的序列不同, 如突变体的某位置AA 改变或AA 侧链改变; 后转译产生不同长度的多肽链; 糖蛋白不同程度的糖基化, 如存在不同数量的寡糖链, 寡糖链有不同的单糖组成、序列及单糖之间的异构连接。

采用CZE, MECC, CIEF, CE-MS 可检测这些非均一性。

用于心脏病的重组人组织血纤维蛋白溶酶原激活剂(rtPA )含 4 个可能糖基。

Yim [15]用 CZE 和CIEF 研究了制备过程中 rtPA 不同糖基化程度引起的非均一性, 结果表明, CIEF方法要比CZE的好。

还有用CZE 对人促红细胞生成素( rHuEPO )[16]、用MECC对重组人C2干扰素(IFN2C)[17]及CE-MS[18]研究蛋白的多样性。

有关蛋白的非均一性在临床中的一些应用, 如人铁传递蛋白、血清蛋白的变异、异构酶的分析等。

4. 7 CE用于农药残留量的分析对农药残留物的测定国外研究的较多。

Lazer等[19]将飞行时间质谱和毛细管电泳仪联用,采用样品堆积技术进样对 Paraquat 和 Diquat 两种除草剂进行了分离,检测限低至 10- 17mol/L。

Farran等[20]采用φ(乙腈) = 50 %的磷酸-硼砂缓冲液分离出两种苯氧羧酸类除草剂。

Hinsmann 等[21]通过自动在线浓缩样品,采用固相微柱以十二烷基硫酸钠(SDS)作胶束 ,添加少量乙腈 ,在13min内分离测定了水中的7种不同种类的农药。

相关文档
最新文档