高中数学必修2第一章ppt课件

合集下载

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT
北师大版高中数学教材 选择性必修第二册
第一章 数列
§1:数列的概念
知识与技能:
(1)通过实例,理解数列的概念; (2)理解数列的项和项数,通项的含义,了解数列的分类, 理解数列与函数的关系。
过程与方法:
(1)让学生从日常生活中的实际问题出发,引导学生通 过视察,推导,归纳抽象出数列的概念; (2)通过实例说明项,项数,通项的含义。
(2)数列中的数是可以重复出现,而数集中的元素 具有互异性,不能有相同的元素出现。
情情境境导导入入 新课讲授 讲练巩固 课堂小结 课后作业
2、数列的项:数列中的每一个数都叫做这个数
列的项.各项依次叫做这个数列的第 1 项(或首
项),第 2项,…,第 n 项,….
项 a1 a2
a3 a4 a5 a6
(-1)n或(-1)n+1常常用来表示正负相间的变化规律. (4)对于周期出现的数列,考虑利用周期函数的知识解答.
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
➽目标检测
1、下列数列既是递增数列,又是无穷数列的是( D )
A.1,2,3,…,20 B.-1,-2,-3,…,-n,… C.1,2,3,2,5,6,…
《庄子·天下篇》
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境二:大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律.
斐波那契数
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律. 斐波那契数 1,1,2,3,5,8,13,21,34,55,89,......

第一章角的概念推广、象限角及其表示-【新】北师大版高中数学必修第二册PPT全文课件

第一章角的概念推广、象限角及其表示-【新】北师大版高中数学必修第二册PPT全文课件
解得1294≤k<6274.
又k∈Z,所以k=1,或k=2. 当k=1时,β=435°; 当k=2时,β=795°.
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
激趣诱思
知识点拨
微思考1 60°,-660°,-300°,420°,780°的角的终边有什么关系? 提示相同.-660°=60°-2×360°,-300°=60°-360°, 420°=60°+360°,780°=60°+2×360°. 微思考2 如何表示与60°终边相同的角的集合? 提示S={β|β=60°+k·360°,k∈Z}.
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
第一章角的概念推广、象限角及其表 示-【新 】北师 大版高 中数学 必修第 二册PP T全文 课件【 完美课 件】
探究一
探究二
探究三
当堂检测
反思感悟 概念辨析问题的求解方略 对于概念辨析题,一是利用反例排除错误答案,二是利用定义直接 判断.本题需要准确理解象限角、锐角、钝角、终边相同的角等基 本概念才能作出正确的判断.
探究三
当堂检测
反思感悟 象限角的判定 1.已知一个角的大小判断其所在象限时,可先根据终边相同的角的 表示方法,找到在[0°,360°)内与之终边相同的角,再确定其象限. 2.已知角的终边所在的象限,求待求角的终边所在的位置时,通常首 先根据所给已知角的范围,得到待求角的范围,然后判断待求角终 边所在的位置.

新人教B版高中数学必修二教学课件 第一章 立体几何初步 1.2.3《(第2课时)平面与平面垂直》

新人教B版高中数学必修二教学课件 第一章 立体几何初步 1.2.3《(第2课时)平面与平面垂直》

∵PA⊥平面ABC,BC⊂平面ABC, ∴PA⊥BC, ∵AD∩PA=A,∴BC⊥平面PAC, 又AC⊂平面PAC,∴BC⊥AC.
[点评]
已知条件是线面垂直和面面垂直,要证明两条直
线垂直,应将两条直线中的一条放入一平面中,使另一条直线 与该平面垂直,即由线面垂直得到线线垂直.在空间图形中, 高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看 到:面面垂直⇒线面垂直⇒线线垂直.
求证:平面ABC⊥平面SBC.
[ 解析]
解法一:取 BC 的中点 D,连接 AD、SD.
由题意知△ASB 与△ASC 是等边三角 形,则 AB=AC. ∴AD⊥BC,SD⊥BC. 2 令 SA=a,在△SBC 中,SD= 2 a, 2 又∵AD= AC -CD = 2 a,
2 2
∴AD2+SD2=SA2. 即 AD⊥SD.又∵AD⊥BC,∴AD⊥平面 SBC. ∵AD⊂平面 ABC, ∴平面 ABC⊥平面 SBC.
[解析]
∵△ABC为正三角形,D为BC的中点,
∴AD⊥BC. 又∵CC1⊥底面ABC,AD⊂平面ABC, ∴CC1⊥AD. 又BC∩CC1=C, ∴AD⊥平面BCC1B1. 又AD⊂平面AC1D,
∴平面AC1D⊥平面BCC1B1.
三棱锥 S -ABC 中,∠ BSC = 90°,∠ ASB= 60°,∠ ASC =60°,SA=SB=SC.
当 F 为 PC 的中点时,满
足平面 DEF⊥平面 ABCD. 取 AD 的中点 G,PC 的中点 F,连 接 PG、BG、DE、EF、DF,则 PG⊥ AD,而平面 PAD⊥面 ABCD, 所以 PG⊥平面 ABCD.在△PBC 中, EF∥PB; 在菱形 ABCD 中,GB∥DE,而 EF⊂平面 DEF,DE⊂平面 DEF,EF∩DE =E,∴平面 DEF∥平面 PGB.又 PG⊥平面 ABCD,PG⊂平面 PGB, ∴平面 PGB⊥平面 ABCD,∴平面 DEF⊥平面 ABCD.

高中数学人教B版必修2 第一章《立体几何初步》蜂巢中的几何 研究课 课件(共24张PPT)

高中数学人教B版必修2 第一章《立体几何初步》蜂巢中的几何 研究课 课件(共24张PPT)
B
E' F'
A'
D' C'
B'
E' F'
A'
D'
E'
F'
C'
A' B'
D' C'
B'
(1)中空柱状
E' F'
A'
D' C'
B'
N
D
N
D
F M
F
O M
B
P O
B
E' F'
A'
D'
E'
F'
C'
A' B'
D' C'
B'
(1)中空柱状体与正六棱柱在结构上的关系
【证明】
探究一:蜂巢口为什么建成正六边形?
(3)还有比正六边形更好的正多边形吗?
(n 2) 180 k 360 n
k 2n 2(n 2) 4 2 4
n2 n2
n2
n 3, 4, 6
自主探究
探究一:蜂巢口为什么建成正六边形?
无缝拼接+面积最大
探究二:蜂巢的每个中空柱状体底面为什么 建成三个全等的菱形面?
(1)中空柱状体与正六棱柱在结构上的关系
(2)中空柱状体与正六棱柱在体积上的关系
相等
(3)中空柱状体与正六棱柱在表面积上的关系
(3)中空柱状体与正六棱柱在表面积上的关系
E F
A
E' F'
A'
D

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)
1.画组合体的三视图的“四个步骤” (1)析:分析组合体的组成形式.
(2)分:把组合体分解成简单几何体. (3)画:画分解后的简单几何体的三视图. (4)拼:将各个三视图拼合成组合体的三视图.
探究一
探究二
探究三
探究四
探究五
【例 1】某几何体的主视图和左视图均如图所示,则该几何体的俯视图
不可能是( )
探究一
探究二
探究三
探究四
探究五
探究三 三视图的还原问题
1.由三视图还原几何体的三个步骤.
探究一
探究二
探究三
探究四
探究五
2.在还原过程中,下列常见几何体的三视图要熟记,以方便还原.
几何体
主视图
左视图 俯视图
正方体
长方体
圆柱
圆锥 圆台
画组合体的三视图的“四个步骤”
能将三视图还原成几何体;
探究二 简单组合体的三视图 能将三视图还原成几何体;
1.1.5 三视图
温故知新:结合图形说出平行投影的定义及性质
探究一
探究二
探究三
探究四
探究五
探究一 正投影问题
作物体的正投影,一般是按照这样的过程: 如图所示,把要作投影的物体放在投射面和观 察者中间,按观察者—物体—投射面的顺序摆 好.由观察者的眼睛假想发出一束平行的投射
线,这些投射线经过物体轮廓线上的顶点后,与
(3)画出如图所示几何体的三视图.
解:三视图如图所示.
1234
1234
(4)若某几何体的三视图如图所示,则这个几何体的直观图 可以是( )
1234
解析:由题意知,A,C 中所给几何体的主视图、俯视图不符合要求,D 中所给 几何体的左视图不符合要求. 答案:B

北师大版高中数学必修2第一章2任意角课件

北师大版高中数学必修2第一章2任意角课件
360 720的元素写出来。
解:终边在直线y轴上的角的集合
S 90 k 180, k Z
S中适合 360 720的元素是 :
270, 90,90,270,450 ,630
变式训练
变式2:已知A 60 k 360, k Z B 60 k 180, k Z C 60 k 90, k Z ,则集合A, B,C之间有什么关系?
B
任意角
O
顶点
A
始边
问题(1)假如时钟慢了5分钟,如何校准? 将分针旋转-30° 问题(2)假如时钟快了5分钟,如何校准? 将分针旋转30°
小试牛刀
【例1】
(1)填空:时钟慢了15分钟,只需要将分针旋转_-_90_˚即可校准;
时钟快了1小时15分针,只需要将分针旋转_4_5_0_˚即可校准。
(2)思考:始边与终边重合的角是零角,对吗?为什么?
形成概念
我们规定:按逆时针方向旋转形成的角叫做正角,
按顺时针方向旋转形成的角叫做负角, 如果一条射线没有任何旋转,我们称它形成了一个零角。
这样我们就把角的概念推广到了任意角,包括正角、负角和
零角。
1.1.1 任意角
知识梳理
1、角的定义: 2、角的表示:一般角可以用希腊字母 , , 来表示
(旋转量和旋转方向) 3、角的分类: 终边
初中,角是怎么分类的?角的 范围是什么? 0°到360°之间
钝角
周角
平角

直角
锐角
探索新知
情境二一“时体钟操” 如这何角区的分范角围 的不旋够转用方,向怎 呢么?办?
继续旋转,增加旋转量
O
A
思考:如何利用数学的方法对按顺时针、
逆时针两种方向旋转的角加以区分呢?同

人教B版高中数学必修二课件第一章1.1.6棱柱、棱锥、棱台和球的表面积

人教B版高中数学必修二课件第一章1.1.6棱柱、棱锥、棱台和球的表面积

法二:延长正四棱台的侧棱交于点 P, 如图设 PB1=x, 则x+x 8=48,得 x=8. ∴PB1=B1B=8, ∴E1 为 PE 的中点 ∴PE1= 82-22=2 15, PE=2PE1=4 15.
∴S =S -S 正棱台侧
大正棱锥侧
小正棱锥侧
=4×12×8×PE-4×12×4×PE1
=4×12×8×4 15-4×12×4×2 15
[通一类] 4.(2012·枣庄高一检测)已知一个表面积为120cm2的正 方体的四个顶点在半球的球面上,四个顶点在半球的
底面上,求半球的表面积.
解:如图,为过正方体对角面的截面图.设正方体的棱长为 a, 半球的半径为 R, 由 6a2=120 得 a2=20, 在 Rt△AOB 中,AB=a,OB= 22a, 由勾股定理,得 R2=a2+( 22a)2=32a2=30. 所以半球的表面积为 S=2πR2+πR2=3πR2=3×30π=90π(cm2).
=48 15(cm2).
∴正四棱台的侧面积为 48 15 cm2.
[研一题] [例3] 正四棱台两底面边长分别为a和b(a<b).若侧棱所在 直线与上、下底面正方形中心的连线所成的角为45°,求 棱台的侧面积. [自主解答] 如图, 设O1,O分别为上、下底面的中心, 过C1作C1E⊥AC于E,过E作EF⊥BC 于F,连接C1F, 则C1F为正四棱台的斜高. 由题意知∠C1CO=45°,
∴球的表面积 S=4πR2=4π×172a2=73πa2. [答案] B
[悟一法] 与球有关的组合体共有两种,一种是内切,一种是外接.解 题时要认真分析图形,明确切点和接点的位置,灵活利用球的 对称性, ①若半径为 R 的球的内接正方体的棱长为 a,则 2R= 3a. ②若半径为 R 的球的内接长方体的长、宽、高分别为 a, b,c,则 2R= a2+b2+c2.

2020-2021学年高一数学人教A版高中数学必修2第一章1.2.1中心投影与平行投影课件

2020-2021学年高一数学人教A版高中数学必修2第一章1.2.1中心投影与平行投影课件

探究二 :空间几何体的三视图 长
正视图





侧 视

c(高)

b(宽)
a(长)
俯视图
三视图能反映物体真实的形状和长、宽、高.

视 图
c(高)
a(长)
高 平
长对正 齐

c(高)
视 图
b(宽)

a(长)

b(宽)

宽相等
c(高)
b(宽)
a(长)
正侧俯 视视视 图图图 反反反 映映映 了了了 物物物 体体体 的的的 高高长 度度度 和和和 长宽宽 度度度
(D)三棱柱
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
5、一空间几何体的三视图如图所示, 则该几何体是___
巩固提高:简单组合体的三视图
例2:画出下面几何体的三视图。
正视图
侧视图
俯视图 注意:不可见的轮廓线,用虚线画出。
正视图
侧视图
俯视图
正视图
侧视图
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
例3:(1)一个几何体的三视图如下,你 能说出它是什么立体图形吗?
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】

人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)

人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)
3
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱

探究一
探究二
探究三
探究四
【典型例题 2】 已知正六棱台的两底面边长分别为 1 cm 和 2 cm,高是 1 cm,求它的侧面积.
解:如图所示是正六棱台的一个侧面及其高组成 的一部分(其余部分省略),则侧面 ABB1A1 为等腰梯 形,OO1 为高,且 OO1=1 cm,AB=1 cm,A1B1=2 cm,取 AB 和 A1B1 的中点 C,C1,连接 OC,CC1,O1C1,则 CC1 为正六 棱台的斜高,且四边形 OO1C1C 为直角梯形.
探究一
探究二
探究三
探究四
【典型例题 1】 如图所示,正四棱锥底面正方形的边长为 4 cm,高与斜 高的夹角为 30°,求该正四棱锥的侧面积和表面积.
思路分析:根据多面体的侧面积公式,必须求出相应多面体的底面边长 和各侧面的斜高,我们可以把问题转化到三角形内加以分析求解.
探究一
探究二
探究三
探究四
解:正四棱锥的高 PO,斜高 PE,底面边心距 OE 组成一个 Rt△POE. 因为 OE=2 cm,∠OPE=30°, 所以 PE=sin���3������0��� °=4(cm).
思考 1 斜棱柱的侧面展开图是什么?它的侧面积如何求解?
提示:斜棱柱的侧面展开图是一些平行四边形连接起来的不规则图形, 它的侧面积等于各个侧面面积之和,也等于直截面(与侧棱垂直相交的截面) 的周长与侧棱长的乘积.
2.圆柱、圆锥的侧面积 几何体 侧面展开图 圆柱
圆锥
侧面积公式
S 圆柱侧=2πrl r 为底面半径 l 为侧面母线长
1.1.6 棱柱、棱锥、棱台和球的表面积
课程目标
1.掌握棱柱、棱锥和棱台的表面积公式 的推导方法,进一步加强空间问题与平 面问题相互转化的思想,并熟练运用公 式求面积. 2.了解棱柱、棱锥和棱台的侧面积的求 法——侧面展开图. 3.了解球的表面积公式,并会熟练运用公 式求球的表面积. 4.了解旋转体的构成,并会求旋转体的表 面积.

新人教版高中数学必修二全册教学课件ppt

新人教版高中数学必修二全册教学课件ppt

答案
返回
题型探究
重点难点 个个击破
类型一 旋转体的结构特征 例1 判断下列各命题是否正确: (1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线; 解 错. 由圆柱母线的定义知,圆柱的母线应平行于轴.
解析答案
(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几 何体是圆台; 解 错. 直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与 一个圆锥组成的简单组合体,如图所示.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
柱是怎样形成的呢?与圆柱有关的几个概念是
为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转
体叫做圆台
相关概念:
圆台的轴: 旋转轴
圆台的底面: 垂直于轴 的边旋转一周所形成的圆面
圆台的侧面: 不垂直于轴 的边旋转一周所形成的曲面 图中圆台表示为:
母线:无论旋转到什么位置,不垂直于轴的边

高中数学必修二全册课件ppt人教版

高中数学必修二全册课件ppt人教版

解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱

平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……

高中数学北师大版必修2课件:第一章立体几何初步1-3-1简单组合体的三视图课件

高中数学北师大版必修2课件:第一章立体几何初步1-3-1简单组合体的三视图课件
例1.下图所示的长方体和圆柱三视图是否正确?
主 视 图
左 视 图
主 视 图
左 视 图

俯 视 图
视 图
理论迁移
例2.如图是一个颠倒的四棱柱的两种摆放,试 分别画出其三视图,并比较它们的异同.
主视
主视
主视
主视图
左视图
俯视图
主视图
左视图
主视
俯视图
能看见的轮廓线和棱用实线表示, 不能看见的轮廓线和棱用虚线表示.
2.右图所示为一简单组合体的三视图, 它的左部和右部分别是( B ). A. 圆锥,圆柱 B. 圆柱,圆锥 C. 圆柱,圆柱 D. 圆锥,圆锥
3.右图是一个物体的三视图,则此三视图 所描述的物体是下列几何体中的( D )
(A) (B) (C) (D)
旋转体的正左视图 一样
主视图
左视图
主视图
左视图
主视图
2r
左视图
2r
俯视图
俯视图
俯视图
思考4 一般地,一个几何体的主视图、左视 图和俯视图的长度、宽度和高度有什么关系?
高平齐

主视图 c 视 c

b
a
c 长对正 a
b
宽相等
俯视图 bΒιβλιοθήκη 主俯等长, 主左等高, 左俯等宽.
a 长对正,高平齐,宽相等
理论迁移
(3)
( 俯视图 )
( 左视图 )
例3、画下面几何体的三视图。
例4. 下图是一个零件的直观图,画出这 个几何体的三视图。
从三个方向看
从正面看
从三个方向看
主视图
左视图
俯视图
从正面看
练习题: 1.如果一个几何体的主视图是四边形, 则这个几何体不可能是( D ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形成的旋转体叫做球体,简称 球 , 半圆的圆心 叫
球心, 半圆的半径
叫做球的半径, 半圆的直径
叫做球的直径.球常用表示球心的字母来表示.
人 教
A



第一章 空间几何体
人பைடு நூலகம்教 A 版 数 学
第一章 空间几何体
本节学习重点:柱、锥、台、球的概念与结构特征.
人 教
A
本节学习难点:棱柱及台体的结构特征.
定义
,抓
准差
别进行
判断
,版 数

圆锥定义中要求以直角三角形的一条直角边所在直线为轴
旋转.
[解析] 不一定,当绕其直角边旋转时形成圆锥,当
绕其斜边旋转时形成同底的两个圆锥.
第一章 空间几何体
矩形ABCD中,AB=4,AD=2,分别以AB、AD所在
直线为轴旋转所形成的圆柱相同吗?________.
人 教
为旋转轴,其余三边旋转所形成的曲面所围成的旋转体.
6.用运动变化的观点来认识柱、锥、台之间的关系:
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
[例1] 直角三角形绕其一边旋转一周所形成的几何体
是否一定是圆锥.
人 教
A
[分析]

念辨
析题
要紧扣
版 数

第一章 空间几何体
3.下面两个图形中的几何体都不是棱台,图(1)中,
截面A1B1C1D1与底面虽然平行,但各侧棱AA1,BB1,CC1,
DD1延长后不能相交于一点;图(2)中显然各侧棱延长后能
交 于 一 点 , 即 原 几 何 体 为 棱 锥 , 但 截 面 A1B1C1D1 与 底 面
人 教 A
字母来表示棱柱.
第一章 空间几何体
3.一般地:有一个面是多边形,其余各面是 有一个公共顶点的三角形 ,这些面围成的几何体叫做棱
锥;多边形面叫做棱锥的底面;其余各面叫做侧面;相邻
侧面的公共边叫做侧棱,各侧面的公共顶点叫做顶点,底
人 教
A
面是n边形的棱锥叫做n棱锥,其中三棱锥又常叫做
版 数
四面体 ,我们可以用顶点和底面各顶点来表示棱锥. 学
柱的底面, 平行于轴的边
旋转而成的曲面叫做圆
人 教
A
柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做
版 数

圆柱侧面的母线,圆柱可用表示它轴的字母表示.
第一章 空间几何体
6.以 直角三角形 的一条 直角 边 所 在 直
线为旋转轴,其余两边旋转所形成的曲面所围成的旋转体
叫做圆锥.圆锥常用表示它轴的字母来表示.
体.
人 教
A
(2)多面体是由若干个 平面多边形
所围成的几何
版 数
体.围成多面体的各个多边形叫做多面体的 面 ; 相 邻 两 学
个面的公共边叫做多面体的 棱 ;棱和棱的公共点叫做 多面体的顶点.
第一章 空间几何体
(3)我们把一个平面图形绕它所在平面内的一条定直线
旋转所形成的封闭几何体,叫做 旋转体 .这条 定 直线叫
A
[答案] 不相同
版 数

[解析] 以AB为轴旋转形成的圆柱底面半径为2,以
AD为轴旋转所形成圆柱的底面半径为4.
第一章 空间几何体
[例2] 将下列几何体按结构特征分类填空
①课本 ②篮球 ③量筒 ④三棱镜 ⑤金字塔


⑥滤纸卷成漏斗 ⑦量杯 ⑧羽毛球
A 版

(1)棱柱结构特征的有:________________;
“其余各面都是四边形,且每.相.邻.两.个.四.边.形.的.公.共.边.都.互.
相.平.行.”.
第一章 空间几何体
2.理解棱锥定义时,注意“有公共顶点”这一重要条
件,否则就不是棱锥了.
如图是由三棱锥M-PBC和四棱锥P-ABCD拼合而成
的几何体.显然它符合“有一个面是多边形,其余各面都
人 教
A
是三角形的要求”,但它不是棱锥.
7.用
平行
于圆锥底面的平面去截圆锥,底面与
人 教
A
截面间的部分叫做圆台,截面叫做圆台的上底面,圆锥的
版 数

底面叫做圆台的下底面,圆锥的母线被截后余下的部分叫
做圆台的母线.
圆柱和棱柱统称为 柱体 ; 圆 锥 和 棱 锥 统 称 为
锥体 ;棱台和圆台统称为
台体 .
第一章 空间几何体
8.以半圆的 直径 所在直线为轴,旋转一周,所
做旋转体的 轴 .
2.一般地:有两个面
互相平行
,其余各面都是
人 教
A
四边形
,并且相邻两个四边形的公共边互相平行 ,
版 数

这些面围成的几何体叫做棱柱. 互相平行 的 两 个 平
面叫做棱柱的底面,其余各面叫做侧面;相邻两个侧面的
公共边叫做侧棱,侧面与底面的公共顶点叫做顶点,底面
是n边形的棱柱叫做n棱柱.我们可以用表示底面各顶点的
ABCD不平行.
版 数

第一章 空间几何体
4.①球面也可以看作空间中到定点的距离等于定长的
点的集合.
②球面被经过球心的平面截得的圆叫做球的大圆;被
不经过球心的平面截得的圆叫做球的小圆.
人 教
A
③球
小圆

圆心
O′

球心
O,
|OO′|

d,
球小

半径
r
,版 数

球半径为R,则d2=R2-r2.
5.圆台可看作直角梯形以其垂直于两底的腰所在直线
4.用一个平行 于棱锥底面的平面去截棱锥,底面与
截面间的部分叫做棱台,截面叫做棱台的上底面,棱锥的
底面叫做棱台的下底面.棱锥的侧棱被截后余下的部分为
棱台的侧棱.
第一章 空间几何体
5.以 矩形 的一边所在直线为旋转轴,其余三边
旋转形成的曲面所围成的旋转体叫做圆柱,旋转轴叫做圆
柱的 轴 , 垂直于轴的边 旋转而成的圆面叫做圆

(2)圆柱结构特征的有:__________________;
(3)棱锥结构特征的有:________________;
(4)圆锥结构特征的有:________________;
(5)球体结构特征的有:________________;
第一章 空间几何体


1.1 空间几何体的结构
A 版


第一章 空间几何体

1.1.1 柱、锥、台、球的结构
教 A


特征

第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
阅读教材P2-6,回答下列问题: 1.(1)只考虑物体占有空间部分的 形状和大小 ,
而不考虑其它因素,则这个空间部分叫做一个空间几何
版 数

第一章 空间几何体
人 教 A 版 数 学
第一章 空间几何体
1.不能把棱柱理解成“有两个面是互相平行且全等的 人
多边形,其余各面都是平行四边形的多面体.”如图所示, 教 A
底面△ABC 与△A1B1C1 是平行且全等的多边形,其余各面都
版 数
是平行四边形,显然这个多面体不是棱柱,所以定义中强调 学
相关文档
最新文档