各种求极限方法以及求导公式
高等数学极限求法总结
![高等数学极限求法总结](https://img.taocdn.com/s3/m/b3853d6acdbff121dd36a32d7375a417866fc123.png)
04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
求导数公式
![求导数公式](https://img.taocdn.com/s3/m/175e97153868011ca300a6c30c2259010202f3c6.png)
求导数公式24个基本求导公式可以分成三类。
第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。
最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。
1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。
其它所有基本求导公式都是由这个公式引出来的。
包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数, f'(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数,指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数, f'(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a 不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数, f'(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)'=cosx. 即正弦的导数是余弦.10、(cosx)'=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)'=(secx)^2. 即正切的导数是正割的平方.12、(cotx)'=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)'=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)'=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)'=1/根号(1-x^2).16、(arccosx)'=-1/根号(1-x^2).17、(arctanx)'=1/(1+x^2).18、(arccotx)'=-1/(1+x^2).最后是利用四则运算法则、复合函数求导法则以及反函数的求导法则,就可以实现求所有初等函数的导数。
高数求导公式大全法则
![高数求导公式大全法则](https://img.taocdn.com/s3/m/7b1c4154c4da50e2524de518964bcf84b9d52dc5.png)
高数求导公式大全法则
高数求导公式和法则如下:
1. 基本初等函数求导公式:
y=c y'=0
y=α^μ y'=μα^(μ-1)
y=a^x y'=a^x lna
y=e^x y'=e^x
y=loga,x y'=loga,e/x
y=lnx y'=1/x
y=sinx y'=cosx
2. 基本的求导法则:
求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
两个函数的乘积的导函数:一导乘二+一乘二导。
两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
3. 链式法则:如果有复合函数,则用链式法则求导。
4. 导数的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率。
5. 导数的计算方法:计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
6. 导数在几何上的意义是该函数曲线在这一点上的切线斜率。
希望对您有所帮助!如果您还有疑问,建议咨询数学专业人士。
求极限的几种常用方法
![求极限的几种常用方法](https://img.taocdn.com/s3/m/e77598650622192e453610661ed9ad51f01d54f5.png)
求极限的几种常用方法极限是数学中一个非常重要的概念,在计算和分析各种数学模型或问题时经常会遇到。
求极限的方法有很多种,我们来看一下其中几种常用的方法。
1.代入法代入法是求解极限的最基本方法。
当直接代入极限的值会导致不确定形式(比如0/0或无穷大/无穷大)时,可以尝试将这个函数做一些化简或变形,然后再进行代入。
2.夹逼准则夹逼准则也叫夹逼定理,是一种常用的求解极限的方法。
当我们要求解f(x)在x=a处的极限时,如果能够找到两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且当x趋近于a时,g(x)和h(x)的极限都等于L,那么根据夹逼准则,f(x)的极限也等于L。
3.分别极限法当一个函数可以拆解为多个子函数的和、积或商时,可以使用分别极限法进行求解。
即求出每个子函数的极限,然后再根据所涉及的运算性质来得到整个函数的极限。
4.换元法换元法也是求解极限的一种常用方法。
当求解一个复杂函数的极限时,我们可以进行变量的替换,将原函数转化为一个更加简单的函数,从而更容易求解极限。
5.泰勒展开泰勒展开是一种利用泰勒公式来近似表示函数的方法。
通过将一个函数近似展开为多项式的形式,可以用这个多项式来计算函数在其中一点的极限。
当需要计算给定点附近的极限时,泰勒展开是一种常用的方法。
6.渐近线性当极限存在且无穷大或无穷小时,可以利用函数的渐近线性来求解极限。
根据函数在无穷远处的性质和斜率,可以通过观察渐近线的特征来判断极限的结果。
7.收敛性对于数列来说,如果数列的极限存在,那么我们可以通过观察数列的性质和规律来判断极限的结果。
一般可以利用单调有界原理、数列的递推关系、数列的特征和规律等方法来判断极限的收敛性。
8. L'Hopital法则L'Hopital法则是一种用于求解0/0或无穷大/无穷大形式的极限的方法。
根据这个法则,如果一个函数的极限形式为0/0或无穷大/无穷大,可以通过对分子和分母同时求导再次进行极限计算,直到得到极限的结果。
极限基本求导积分公式
![极限基本求导积分公式](https://img.taocdn.com/s3/m/8b9da5fb64ce0508763231126edb6f1afe007161.png)
极限基本求导积分公式1.极限的定义和性质:极限是描述函数趋势的概念,表示函数在其中一点逐渐接近于一些值。
常用的极限定义和性质有:- 极限的定义:对于函数 f(x),当自变量 x 趋近于 a 时,如果存在一个实数 L,使得对于任意一个足够小的正数ε,都存在一个正数δ,使得当 0 < ,x-a,< δ 时,有,f(x)-L,< ε,则称 L 为函数f(x) 在 x=a 处的极限,记作lim(x→a) f(x) = L。
-极限的四则运算性质:设函数f(x)和g(x)在x=a处的极限都存在且为L和M,则有以下四则运算性质:- lim(x→a) [f(x) + g(x)] = L + M- lim(x→a) [f(x) - g(x)] = L - M- lim(x→a) [f(x) * g(x)] = L * M- lim(x→a) [f(x) / g(x)] = L / M (如果M ≠ 0)2.基本求导公式:求导是求函数在其中一点的斜率,也就是函数的变化率。
根据导数的定义,我们可以推导出一系列函数的导数公式:-常数函数导数:如果f(x)=C,其中C是一个常数,则f'(x)=0。
-幂函数导数:如果f(x)=x^n,其中n是正整数或实数,则f'(x)=n*x^(n-1)。
- 指数函数导数:如果 f(x) = a^x,其中 a 是正实数且a ≠ 1,则 f'(x) = ln(a) * a^x。
- 对数函数导数:如果 f(x) = log_a(x),其中 a 是正实数且a ≠ 1,则 f'(x) = 1 / (x * ln(a))。
-三角函数导数:- sin(x) 的导数为 cos(x)。
- cos(x) 的导数为 -sin(x)。
- tan(x) 的导数为 sec^2(x)。
- cot(x) 的导数为 -csc^2(x)。
-反三角函数导数:- arcsin(x) 的导数为 1 / sqrt(1-x^2)。
求极限的计算方法总结
![求极限的计算方法总结](https://img.taocdn.com/s3/m/92f7b549cd1755270722192e453610661ed95a05.png)
求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。
计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。
极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。
这个方法通常适用于简单的极限,例如多项式的极限。
2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。
例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。
3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。
例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。
4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。
例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。
5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。
该法则适用于极限形式为0/0或无穷/无穷的情况。
它的基本思想是将函数的求导转化为简化问题。
例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。
然后可以利用夹逼准则得到要计算函数的极限。
例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。
7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。
数学极限公式知识点总结
![数学极限公式知识点总结](https://img.taocdn.com/s3/m/36a1bc74366baf1ffc4ffe4733687e21af45ffeb.png)
数学极限公式知识点总结极限的数学定义是非常严格和精确的,它可以在多种情况下应用,比如在求导和积分中。
极限是微积分基本概念之一,也是微积分的核心内容之一。
所以,掌握极限的概念和计算方法对于学习微积分课程非常重要。
下面我将对极限的基本概念、常见的极限计算方法以及一些常见的极限公式进行总结和归纳,希望对大家学习极限有所帮助。
一、极限的基本概念1. 自变量趋于无穷大时的极限当自变量趋于无穷大时,函数的极限情况是我们经常遇到的一种情况。
在这种情况下,我们可以利用一些方法来求解函数的极限。
比如,可以利用函数的单调性和有界性来求解函数的极限值。
在计算自变量趋于无穷大时函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用夹逼定理来求解自变量趋于无穷大时函数的极限值。
2. 自变量趋于有限数值时的极限当自变量趋于有限数值时,函数的极限情况也是我们经常遇到的一种情况。
在这种情况下,我们可以利用函数的特性来求解函数的极限。
比如,可以利用函数的连续性和可导性来求解函数的极限值。
在计算自变量趋于有限数值时函数的极限值时,我们通常使用洛必达法则,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用泰勒展开式和极坐标系等方法来求解自变量趋于有限数值时函数的极限值。
3. 无穷小量与极限无穷小量是微积分中一个非常重要的概念,它是用来描述函数在某一点附近的行为的。
在数学中,无穷小量是指在某一点附近(通常是无穷小范围内)取得非常小的值的变量。
无穷小量可以用来描述函数在某一点附近的变化情况,也可以用来求解函数的极限值。
在计算函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用函数的单调性和有界性来求解函数的极限值。
二、常见的极限计算方法1. 无穷大与无穷小的比较法在计算自变量趋于无穷大时函数的极限值时,我们可以利用无穷大与无穷小的比较法来求解。
求函数极限的方法和技巧
![求函数极限的方法和技巧](https://img.taocdn.com/s3/m/cd289b74366baf1ffc4ffe4733687e21ae45ff61.png)
求函数极限的方法和技巧函数极限是微积分中很重要的一个概念,它在描述函数的性质和行为上起着关键的作用。
在求函数极限时,有许多方法和技巧可以帮助我们得出准确的结果。
本文将介绍一些常用的方法和技巧,帮助读者更好地理解和计算函数极限。
一、基本极限公式和定理在求函数极限时,有一些基本的极限公式和定理是非常有用的,可以帮助我们快速计算极限。
下面是一些常见的基本极限:1. 常数极限:lim(常数)= 常数2. 幂函数极限:lim(xn)= 0 (当n > 0时)、lim(x^n)= 1(当n = 0时)3. 正弦函数和余弦函数极限:lim(sinx)= 0、lim(cosx)= 14. 自然对数函数和指数函数极限:lim(lnx)= -∞(当x→0+时)、lim(ex)= ∞(当x→∞时)除了基本的极限公式外,还有一些常用的极限定理可以简化计算:1. 四则运算法则:若lim(f(x))和lim(g(x))存在,则lim(f(x) ± g(x))= lim(f(x))± lim(g(x))lim(f(x) * g(x))= lim(f(x)) * lim(g(x))lim(f(x) / g(x))= lim(f(x)) / lim(g(x))(此处lim(g(x))≠0)2. 复合函数极限:若lim(f(x))= a,则lim(g(f(x)))= g(a)这些基本极限公式和定理在计算极限时非常有用,可以大大简化计算过程。
二、夹逼定理夹逼定理是求解函数极限的重要工具,它对于求解一些复杂函数的极限非常有帮助。
夹逼定理通常用于以下情况:1.当函数在一些区间内被两个已知函数夹逼时,可以利用夹逼定理求出函数的极限。
具体而言,如果存在函数g(x)≤f(x)≤h(x)以及lim(g(x))= lim (h(x))= a,那么lim(f(x))= a。
这意味着,当一个函数夹在两个已知函数之间,并且这两个函数的极限相等时,该函数的极限也等于这个相等的极限。
用导数的定义求极限的方法
![用导数的定义求极限的方法](https://img.taocdn.com/s3/m/016f0c78777f5acfa1c7aa00b52acfc789eb9ffe.png)
用导数的定义求极限的方法一、导数的定义导数是微积分中一个非常重要的概念,它描述了函数在某一点处的变化率。
导数的定义如下:设函数y=f(x),x0为实数,若极限lim┬(Δx→0)〖(f(x0+Δx)-f(x0))/Δx〗存在,则称此极限为函数f(x)在点x0处的导数,记作f'(x0)或dy/dx|_(x=x0)。
二、求导法则为了求解函数在某一点处的导数,我们需要掌握一些基本的求导法则。
以下是常见的求导法则:1. 常数规则:若c为常数,则d(c)/dx=0。
2. 幂规则:若n为正整数,则d(x^n)/dx=n*x^(n-1)。
3. 和差规则:若f(x)和g(x)都可导,则(d(f+g)/dx)=(df/dx)+(dg/dx),(d(f-g)/dx)=(df/dx)-(dg/dx)。
4. 积法则:若f(x)和g(x)都可导,则(d(f*g)/dx)=f*(dg/dx)+g*(df/dx)。
5. 商法则:若f(x)和g(x)都可导且g(x)!=0,则(d(f/g)/dx)=(g*(df/dx)-f*(dg/dx))/(g^2)。
6. 复合函数求导法则:若y=f(u)和u=g(x)都可导,则(dy/dx)=(dy/du)*(du/dx)。
三、用导数的定义求极限的方法在掌握了以上的求导法则之后,我们可以使用导数的定义来求解函数在某一点处的极限。
以下是具体步骤:1. 根据导数的定义,设函数y=f(x),x0为实数,则有:f'(x0)=lim┬(Δx→0)〖(f(x0+Δx)-f(x0))/Δx〗。
2. 通过代入函数值和极限值,将上式转化为以下形式:lim┬(h→0)〖(f(x0+h)-f(x0))/h〗其中,h=Δx。
3. 将上式进行化简,并利用求导法则进行计算。
具体步骤如下:a. 将分子中的差化为和:f(x0+h)-f(x0)=f(x0)+h*f'(x0)+o(h)-f(x0),其中o(h)表示当h趋近于零时比h高阶无穷小量。
数学分析中求极限的方法总结
![数学分析中求极限的方法总结](https://img.taocdn.com/s3/m/c5ee1678ff4733687e21af45b307e87100f6f878.png)
数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下:定理1.1(1(2(3)若B ≠0(4(5)[]0lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数)i由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例1. 求225lim3x x x →+- 解:由定理中的第三式可以知道()()22222lim 55lim 3lim 3x x x x x x x →→→++=--22222lim lim5lim lim3x x x x x x →→→→+=+225923+==--例2. 求3x →33x x→→=3x→=14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知()11112231nxn n=+++⨯⨯-⨯观察11=1122-⨯111=2323-⨯因此得到()11112231nxn n=+++⨯⨯-⨯11111111223311n nn=-+-+-+---1lim lim11nn nxn→∞→∞⎛⎫=-=⎪⎝⎭2 利用导数的定义求极限导数的定义:函数f(x)如果()()00lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆存在,则此极限值就称函数f(x)()'f x。
即f(x)在定点0x 的导数。
例4.lim()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=3 利用两个重要极限公式求极限两个极限公式:(1(2)1lim 1xx ex →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1,(2例5:xx x x 10)1()21(lim +-→解:为了利用极限故把原式括号内式子拆成两项,使得第一项为e x xx =+→10)1(lim 1,第二项和括号外的指数互为倒数进行配平。
高等数学18个求导公式
![高等数学18个求导公式](https://img.taocdn.com/s3/m/8abe2addbb0d4a7302768e9951e79b896802682a.png)
高等数学18个求导公式高等数学的求导,是高等数学的重要的基本技能。
求导的基本定义是求出一个函数的变化率,也就是求函数的导数。
下面给出18个求导公式:1.常数项求导公式:若y = c,其中c为常数,则y′ = 0;2.幂函数求导公式:若y = x^n,其中n为正整数,则y′ = nx^{n-1};3.多次幂函数求导公式:若y = x^n + a^n,其中n为正整数,则y′ = nx^{n-1} + na^{n-1};4.指数函数求导公式:若y = a^x,其中a为正数,则y′ = a^xln a;5.对数函数求导公式:若y = lnx,则y′ = \frac{1}{x};6.三角函数求导公式:若y = sin x,则y′ = cos x;若y = cos x,则y′ = -sin x;若y = tan x,则y′ = \frac{1}{cos^2 x};7.反三角函数求导公式:若y = arcsin x,则y′ =\frac{1}{\sqrt{1-x^2}};若y = arccos x,则y′ = \frac{-1}{\sqrt{1-x^2}};若y = arctan x,则y′ = \frac{1}{1+x^2};8.指数函数的导数:若y = e^x,则y′ = e^x;9.乘法公式求导公式:若y = f(x)g(x),则y′ = f'(x)g(x) +f(x)g'(x);10.链式法则求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);11.求和求导公式:若y = \sum_{i=1}^{n} f(x_i),则y′ =\sum_{i=1}^{n} f'(x_i);12.积分求导公式:若y = \int f(x)dx,则y′ = f(x);13.极限求导公式:若y = \lim_{x \to a} f(x),则y′ =\lim_{x \to a} f'(x);14.复合函数求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);15.乘方公式求导公式:若y = (f(x))^n,其中n为正整数,则y′ = n(f(x))^{n-1}f'(x);16.幂函数的导数:若y = x^n,则y′ = nx^{n-1};17.对数函数的导数:若y = lnx,则y′ = \frac{1}{x};18.三角函数的导数:若y = sinx,则y′ = cosx;若y = cosx,则y′ = -sinx;若y = tanx,则y′ = \frac{1}{cos^2 x}。
(2021年整理)极限、基本求导、积分公式
![(2021年整理)极限、基本求导、积分公式](https://img.taocdn.com/s3/m/a5a670c5ff00bed5b8f31d59.png)
极限、基本求导、积分公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(极限、基本求导、积分公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为极限、基本求导、积分公式的全部内容。
初等函数基本求导公式(1)0)(='c c cx =')( (2)αααα()(1-='x x 为任意实数) (3)a a a x x ln )(=' (4)x x e e =')( (5)a x x a ln 1)(log =' (6)x x 1)(ln =' (7)x x cos )(sin =' (8)x x sin )(cos -=' (9)x x 2sec )(tan =' (10)x x 2csc )(cot -='(11)x x x tan sec )(sec =' (12)x x x cot csc )(csc -='(13)211)(arcsin x x -=' (14)211)(arccos x x -='-(15)211)(arctan x x +=' (16)211)cot (xx arc +='- 初等函数基本积分公式 C e cdx e x cx +=⎰1 (1)C kx kdx +=⎰(k 是常数) C dx =⎰0 (2)C x dx x a a ++=+⎰111μ(a<〉—1) (3)C x dx x+=⎰||ln 1 (4)C a a dx a xx +=⎰ln (a>0,a 〈〉1) (5)C e dx e x x +=⎰ (6)C x xdx +-=⎰cos sin (7)C x xdx +=⎰sin cos (8)C x xdx dx x +==⎰⎰tan sec cos 122(9)C x xdx dx x +-==⎰⎰cot csc sin 122 (10)C x dx x +=-⎰arcsin 112 (11)C x dx x +=+⎰arctan 112 (12)C x a x a a dx x a +-+=-⎰||ln 21122 (13)C x x xdx ++=⎰|tan sec |ln sec (14)C x dx x +=⎰ch sh (15)C x dx x +=⎰sh ch (16)C x xdx +-=⎰|cos |ln tan (17)C x xdx +=⎰|sin |ln cot(19)C x x xdx +-=⎰|cot csc |ln csc (21)C a x a x a dx a x ++-=-⎰||ln 21122 (23)C a x dx x a +=-⎰arcsin 122 (24)C a x x a x dx +±+=±⎰)ln(2222 (25)C x a x a x a dx x a +-+=-⎰|2arcsin 222222 (26)C a x a dx xa +=+⎰arctan 1122(27)C x xdx x +=⎰sec tan sec (28)C x dx x +-=⎰csc cot csc 极限七个代换公式 当x —-〉0时;~)1ln( ;~arcsin ;~arctan ;~tan ;~sin x x x x x x x x x x +cosx ~2-1 ;2~cosx -1 ;~122x x x e x-。
16个重要极限公式推导
![16个重要极限公式推导](https://img.taocdn.com/s3/m/d8bf41fbc67da26925c52cc58bd63186bceb92ed.png)
16个重要极限公式推导《16个重要极限公式推导》在数学中,极限是一个重要的概念,它描述了函数在某一点上趋近于某个值的行为。
极限公式是一种常用的工具,可以帮助我们求解各种复杂的极限问题。
以下是16个重要的极限公式以及它们的推导过程。
1. 极限公式:$\lim_{x\to 0}\frac{\sin(x)}{x}=1$推导过程:我们从单位圆的几何性质入手。
当$x$接近于0时,我们可以认为边长为$x$的小角度$x$是相似三角形中的等腰三角形。
根据单位圆上的弧长公式,我们有$\lim_{x\to0}\frac{\sin(x)}{x}=1$。
2. 极限公式:$\lim_{x\to \infty}\left(1+\frac{1}{x}\right)^x=e$推导过程:我们将极限转化为自然对数的形式,即$\lim_{x\to\infty}\ln\left(\left(1+\frac{1}{x}\right)^x\right)$. 通过应用泰勒级数展开,我们可以得到$\ln\left(\left(1+\frac{1}{x}\right)^x\right)=1-\frac{1}{2x}+O\left(\frac{1}{x^2}\right)$。
因为$\lim_{x\to \infty}\frac{1}{2x}=0$,所以$\lim_{x\to\infty}\ln\left(\left(1+\frac{1}{x}\right)^x\right)=1$,即$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$。
3. 极限公式:$\lim_{x\to \infty}\left(1+\frac{a}{x}\right)^x=e^a$推导过程:类似于第2个公式的推导,我们可以得到$\lim_{x\to\infty}\ln\left(\left(1+\frac{a}{x}\right)^x\right)=a$。
求极限方法总结
![求极限方法总结](https://img.taocdn.com/s3/m/e7968b12a300a6c30d229f08.png)
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
极限运算公式总结
![极限运算公式总结](https://img.taocdn.com/s3/m/12326b0eff4733687e21af45b307e87101f6f83e.png)
极限运算公式总结极限运算是数学中一项重要的运算概念,它广泛应用于微积分、数学分析及其他相关领域中。
极限运算可以帮助我们研究函数和序列的性质,以及解决各种求解问题。
在极限运算中,有一些重要的公式和定理,它们可以帮助我们更方便地计算和理解极限。
本文将总结一些常用的极限运算公式,以供参考和学习。
一、基本极限运算公式:1. 常数函数极限:lim(c)=c,其中c为常数。
2. 单变量函数极限:lim(x→a)f(x)=L,其中x为自变量,a为趋向点,f(x)为函数,L为极限。
3. 数列极限:lim(n→∞)an=L,其中an为数列的第n项,L为极限。
4. 数列极限的唯一性:如果数列an的极限存在,则极限必唯一。
二、运算法则:1. 极限的四则运算法则:(1)和差法则:lim(x→a)[f(x)±g(x)]=lim(x→a)f (x)±lim(x→a)g(x)(2)积法则:lim(x→a)[f(x)·g(x)]= [lim(x→a)f (x} ·lim(x→a)g(x)](3)商法则:lim(x→a)[f(x)/g(x)]= [lim(x→a)f (x} /lim(x→a)g(x)](其中lim(x→a)g(x)≠0)2. 极限的乘方法则:(1)lim(x→a)[f(x)^n]= [lim(x→a)f(x}]^n(2)lim(x→a)[^n√f(x)]= ^n√[lim(x→a)f(x})](其中n为整数)3. 极限的复合函数法则:(1)lim(x→a)f(g(x))= f(lim(x→a)g(x))(前提是f和g各自的极限都存在)(2)lim(x→∞)f(x)= lim(t→∞)f(t)(当x→∞等价于t→∞)4. 极限的夹逼准则:设函数f(x),g(x),h(x)在区间(a,b)上有定义且满足:f(x)≤ g(x)≤ h(x),对于x在(a,b)上的所有点成立;lim(x→a)f(x)= lim(x→a)h(x)=L,则lim(x→a)g(x)=L。
数学导数与极限公式整理
![数学导数与极限公式整理](https://img.taocdn.com/s3/m/9bcad77b68eae009581b6bd97f1922791788be52.png)
数学导数与极限公式整理数学是一门抽象而又重要的学科,其中导数与极限是数学分析中的重要概念和工具。
导数描述了函数在某一点处的变化率,而极限则描述了函数在趋近某一点时的特性。
为了更好地理解与应用数学导数与极限,下面整理了相关公式。
一、导数公式1. 基本导数公式:(1)常数导数公式若f(x) = C,其中C为常数,则f'(x) = 0。
(2)幂函数导数公式若f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
(3)指数函数导数公式若f(x) = a^x,其中a为常数且a>0,则f'(x) = a^x * ln(a)。
(4)对数函数导数公式若f(x) = log_a(x),其中a为常数且a>0,且a≠1,则f'(x) = 1 / (x * ln(a))。
(5)三角函数导数公式若f(x)为sin(x), cos(x), tan(x)中的一种,则f'(x) = cos(x), -sin(x), sec^2(x)。
2. 基本导数运算法则:(1)和差法则若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
(2)常数倍法则若f(x) = c * u(x),其中c为常数,则f'(x) = c * u'(x)。
(3)乘法法则若f(x) = u(x) * v(x),则f'(x) = u'(x) * v(x) + u(x) * v'(x)。
(4)除法法则若f(x) = u(x) / v(x),则f'(x) = (u'(x) * v(x) - u(x) * v'(x)) / v^2(x),其中v(x) ≠ 0。
二、极限公式1. 基本极限公式:(1)常数极限公式lim (c) = c,其中c为常数。
(2)幂函数极限公式当n为正整数时,lim (x^n) = a^n,其中a为实数。
各种求极限方法以及求导公式
![各种求极限方法以及求导公式](https://img.taocdn.com/s3/m/f4dcc730c5da50e2524d7fbc.png)
极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于A x 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
各种求极限方法以及求导公式
![各种求极限方法以及求导公式](https://img.taocdn.com/s3/m/9fdf62a8846a561252d380eb6294dd88d1d23d6b.png)
各种求极限方法以及求导公式求极限方法:1.代入法:将$x$的值代入函数中,求出极限值。
这种方法适用于能够直接代入得到结果的情况。
2.因子分解法:对分式进行因式分解,然后化简,得到一个更容易求解的形式。
这种方法适用于分子或分母存在因子相同的情况。
3.辅助函数法:通过构造一个辅助函数,使得原始函数与辅助函数的极限相同,从而求得原函数的极限。
这种方法适用于复杂函数的情况。
4.夹逼定理:对于夹在两个趋于同一极限的函数之间的函数,可以通过夹逼定理求得该函数的极限值。
求导公式:1.常数法则:如果$f(x)=c$($c$为常数),则$f'(x)=0$。
2. 幂函数法则:如果$f(x)=x^n$($n$为实数),则$f'(x)=nx^{n-1}$。
3. 指数函数法则:如果$f(x)=a^x$($a$为正实数且$a≠1$),则$f'(x)=a^x\ln a$。
4. 对数函数法则:如果$f(x)=\log_a x$($a$为正实数且$a≠1$),则$f'(x)=\frac{1}{x\ln a}$。
5. 正弦函数法则:如果$f(x)=\sin x$,则$f'(x)=\cos x$。
6. 余弦函数法则:如果$f(x)=\cos x$,则$f'(x)=-\sin x$。
7. 反函数法则:如果$f(x)$的反函数为$y=g(x)$,则$g'(x)=\frac{1}{f'(g(x))}$。
8. 和差法则:如果$f(x)=g(x)\pm h(x)$,则$f'(x)=g'(x)\pmh'(x)$。
9.积法则:如果$f(x)=g(x)h(x)$,则$f'(x)=g'(x)h(x)+g(x)h'(x)$。
10. 商法则:如果$f(x)=\frac{g(x)}{h(x)}$,则$f'(x)=\frac{g'(x)h(x)-g(x)h'(x)}{h(x)^2}$。
极限及求导积分公式
![极限及求导积分公式](https://img.taocdn.com/s3/m/e2de373b0b4c2e3f572763cb.png)
极限及其求导积分公式一.极限公式1.c c =lim2.00lim x x x x =→ 3.01lim =∞→x x 4.1sin 0lim =→x xx[][]1sin 0lim =→x 5.1tan 0lim =→x xx[][]1tan 0lim =→x 6.ba bx ax x =→sin sin 0lim 1arcsin 0lim =→x x x ()()[]()1sin 0lim =→x x x ϕϕϕ7. ()e x x x =+→)(1)](1[0lim ϕϕϕ [][][]e =+→1)1(0lim8.e nn n=+∞→)11(lim[][][]e =+∞→)11(lim 9.ab bx e xax =+∞→)1(lim10.k k k xxx e e e xk x k x k x k x x 32)21()1(lim )2(lim ==-+∞→=-+∞→-二.方法1.分母极限为0时,分解因式,凑公式2.当∞→x 时,除以最高指数的X n3.等价无穷小量代换x x →sin x x →tan x x →arctan x x →arcsin x e x →-12cos 12x x →- x x →+)1ln(211x x →-+ 三.导数公式1.三角函数x x x 22'sec cos 1)(tan ==2'11)(arcsin xx -=x x x 22csc sin 1)'(cot -=-= 211)'(arccos xx --= x x x tan sec )'(sec ∙= x x x cot csc )'(csc ∙-= 211)'(arctan x x +=211)'cot (x x arc --=x x cos )'(sin = x x sin )'(cos -=2.幂指数)1,0(ln )'(≠>=a a a a a x x )1,0(ln 1log 1)'(log ≠>==a a ax e x x a a 1)'(-=μμμx x x x e e =)'(xx 1)'(ln =3.xx 21)'(=21)'1(x x -=四.导数的四则运算法则设)(x u u =,)(x v v =均为x 的可导函数,则有 1.'')'(v u v u ±=± 2.'')'(uv v u v u +=∙ 3.')'(cu cu = 4.)0('')'(2≠-=v v uv v u vu 6.''')'(uvw w uv vw u w v u ++=∙∙ 7.)(y x φ=为)(x f y =的反函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于A x 等等。
全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提!!!!!!
必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)
必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他法则分为3中情况
1 0比0 无穷比无穷时候直接用
2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了
3 0的0次方1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)
E的x展开 sina 展开 cos 展开 ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!!!!!!!!!!!
看上去复杂处理很简单!!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。
这两个很重要!!!!!对第一个而言是X趋近0时候的sin x与x比值。
地2个就如果x趋近无穷大无穷小都有对有对应的形式
(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方快于 x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢) !!!!!!
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用证明单调性!!!!!!
16直接使用求导数的定义来求极限,
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候就是暗示你一定要用导数定义!!!!)
求导公式
c'=0(c为常数)
(x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且a≠1 (lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2) (arccosx)'=-1/√(1-x^2) (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
(uv)'=uv'+u'v
(u+v)'=u'+v'
(u/)'=(u'v-uv')/^2。